Search results for: ad-hoc mesh networks
995 Convolutional Neural Network and LSTM Applied to Abnormal Behaviour Detection from Highway Footage
Authors: Rafael Marinho de Andrade, Elcio Hideti Shiguemori, Rafael Duarte Coelho dos Santos
Abstract:
Relying on computer vision, many clever things are possible in order to make the world safer and optimized on resource management, especially considering time and attention as manageable resources, once the modern world is very abundant in cameras from inside our pockets to above our heads while crossing the streets. Thus, automated solutions based on computer vision techniques to detect, react, or even prevent relevant events such as robbery, car crashes and traffic jams can be accomplished and implemented for the sake of both logistical and surveillance improvements. In this paper, we present an approach for vehicles’ abnormal behaviors detection from highway footages, in which the vectorial data of the vehicles’ displacement are extracted directly from surveillance cameras footage through object detection and tracking with a deep convolutional neural network and inserted into a long-short term memory neural network for behavior classification. The results show that the classifications of behaviors are consistent and the same principles may be applied to other trackable objects and scenarios as well.Keywords: artificial intelligence, behavior detection, computer vision, convolutional neural networks, LSTM, highway footage
Procedia PDF Downloads 165994 Energy Efficient Clustering with Adaptive Particle Swarm Optimization
Authors: KumarShashvat, ArshpreetKaur, RajeshKumar, Raman Chadha
Abstract:
Wireless sensor networks have principal characteristic of having restricted energy and with limitation that energy of the nodes cannot be replenished. To increase the lifetime in this scenario WSN route for data transmission is opted such that utilization of energy along the selected route is negligible. For this energy efficient network, dandy infrastructure is needed because it impinges the network lifespan. Clustering is a technique in which nodes are grouped into disjoints and non–overlapping sets. In this technique data is collected at the cluster head. In this paper, Adaptive-PSO algorithm is proposed which forms energy aware clusters by minimizing the cost of locating the cluster head. The main concern is of the suitability of the swarms by adjusting the learning parameters of PSO. Particle Swarm Optimization converges quickly at the beginning stage of the search but during the course of time, it becomes stable and may be trapped in local optima. In suggested network model swarms are given the intelligence of the spiders which makes them capable enough to avoid earlier convergence and also help them to escape from the local optima. Comparison analysis with traditional PSO shows that new algorithm considerably enhances the performance where multi-dimensional functions are taken into consideration.Keywords: Particle Swarm Optimization, adaptive – PSO, comparison between PSO and A-PSO, energy efficient clustering
Procedia PDF Downloads 245993 An Enhanced Distributed Weighted Clustering Algorithm for Intra and Inter Cluster Routing in MANET
Authors: K. Gomathi
Abstract:
Mobile Ad hoc Networks (MANET) is defined as collection of routable wireless mobile nodes with no centralized administration and communicate each other using radio signals. Especially MANETs deployed in hostile environments where hackers will try to disturb the secure data transfer and drain the valuable network resources. Since MANET is battery operated network, preserving the network resource is essential one. For resource constrained computation, efficient routing and to increase the network stability, the network is divided into smaller groups called clusters. The clustering architecture consists of Cluster Head(CH), ordinary node and gateway. The CH is responsible for inter and intra cluster routing. CH election is a prominent research area and many more algorithms are developed using many different metrics. The CH with longer life sustains network lifetime, for this purpose Secondary Cluster Head(SCH) also elected and it is more economical. To nominate efficient CH, a Enhanced Distributed Weighted Clustering Algorithm (EDWCA) has been proposed. This approach considers metrics like battery power, degree difference and speed of the node for CH election. The proficiency of proposed one is evaluated and compared with existing algorithm using Network Simulator(NS-2).Keywords: MANET, EDWCA, clustering, cluster head
Procedia PDF Downloads 398992 Human Computer Interaction Using Computer Vision and Speech Processing
Authors: Shreyansh Jain Jeetmal, Shobith P. Chadaga, Shreyas H. Srinivas
Abstract:
Internet of Things (IoT) is seen as the next major step in the ongoing revolution in the Information Age. It is predicted that in the near future billions of embedded devices will be communicating with each other to perform a plethora of tasks with or without human intervention. One of the major ongoing hotbed of research activity in IoT is Human Computer Interaction (HCI). HCI is used to facilitate communication between an intelligent system and a user. An intelligent system typically comprises of a system consisting of various sensors, actuators and embedded controllers which communicate with each other to monitor data collected from the environment. Communication by the user to the system is typically done using voice. One of the major ongoing applications of HCI is in home automation as a personal assistant. The prime objective of our project is to implement a use case of HCI for home automation. Our system is designed to detect and recognize the users and personalize the appliances in the house according to their individual preferences. Our HCI system is also capable of speaking with the user when certain commands are spoken such as searching on the web for information and controlling appliances. Our system can also monitor the environment in the house such as air quality and gas leakages for added safety.Keywords: human computer interaction, internet of things, computer vision, sensor networks, speech to text, text to speech, android
Procedia PDF Downloads 361991 E-Marketing Strategies and Destination Branding for the Tourism Industry in Nigeria
Authors: Abdullahi Marshal Idris, Murtala Mohammed Alamai, Adama Jummai Idris, Bello Mohammed Gwagwada
Abstract:
The technological revolution of the 1990s have brought about many new opportunities and challenges for the tourism and hospitality industries mostly in Nigeria and with tourism having global industry information as its life-blood and technology becoming fundamental to the ability of the industry to operate effectively and competitively. The whole system of information technologies is being rapidly diffused throughout the tourism industry and no player will escape information technologies impacts. The paper gives an insight into the importance of destination branding and the application of information technologies and the use of Internet in tourism and hospitality industries in Nigeria giving strategic frameworks, providing analysis of the Internet and its impact on these sectors. It also aims to show how technological innovations and information system can be beneficial for destinations companies like game reserves national parks, and other resorts by using the literature of existing efforts in global industry players as well as documented evidences where recommendations for destinations and companies is made to seek to foster the development of this connection by investing considerable resources in marketing activities on social networks and by reinforcing the trust of users, because credibility and reliability are still critical in this area.Keywords: branding, marketing, technology, tourism product
Procedia PDF Downloads 445990 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction
Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh
Abstract:
Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction
Procedia PDF Downloads 171989 The Experience of Grandparenthood among Grandparents of Children with Autism in the Arab–Bedouin Society
Authors: Binoun Chaki Hagar
Abstract:
Studies have investigated grandparents' perceptions relating to their grandchildren with disabilities. Literature on grandparenthood focuses on the Western grandparents. Autism within the Arab populations has also being investigated. Moreover, the Bedouin population can also be seen in various studies related to different experiences and different perceptions about disabilities in general and among children in particular. However, as far as we know, no studies were found on grand parenting a child with autism in Bedouin society. This study combines three areas of knowledge, to create another knowledge domain. The aim of this study was to learn about the experience of grand parenting an autistic child in the Bedouin Arab society, to examine how it affects the grandparents' relationships, feelings, and functioning within the family, and as individuals, as well as to examine their coping mechanisms and their social support networks. This study is significant and as it examines autism and grandparents among the Bedouin Arab population in Israel, a population that has unique socio-demographic, cultural and traditional characteristics. The study revealed three themes concerning the meaning of grandparenthood to be associated with family continuity, how autism is perceived, and the importance of religion. It also suggests another category – the status of the elderly in the Arab-Bedouin family. It is recognized that the role of the elderly is held in high esteem, and can be affected by the grandchild’s’ autism.Keywords: Arab–Bedouin family, autism, grandparents, family relationships
Procedia PDF Downloads 290988 Numerical Study of Leisure Home Chassis under Various Loads by Using Finite Element Analysis
Authors: Asem Alhnity, Nicholas Pickett
Abstract:
The leisure home industry is experiencing an increase in sales due to the rise in popularity of staycations. However, there is also a demand for improvements in thermal and structural behaviour from customers. Existing standards and codes of practice outline the requirements for leisure home design. However, there is a lack of expertise in applying Finite Element Analysis (FEA) to complex structures in this industry. As a result, manufacturers rely on standardized design approaches, which often lead to excessively engineered or inadequately designed products. This study aims to address this issue by investigating the impact of the habitation structure on chassis performance in leisure homes. The aim of this research is to comprehensively analyse the impact of the habitation structure on chassis performance in leisure homes. By employing FEA on the entire unit, including both the habitation structure and the chassis, this study seeks to develop a novel framework for designing and analysing leisure homes. The objectives include material reduction, enhancing structural stability, resolving existing design issues, and developing innovative modular and wooden chassis designs. The methodology used in this research is quantitative in nature. The study utilizes FEA to analyse the performance of leisure home chassis under various loads. The analysis procedures involve running the FEA simulations on the numerical model of the leisure home chassis. Different load scenarios are applied to assess the stress and deflection performance of the chassis under various conditions. FEA is a numerical method that allows for accurate analysis of complex systems. The research utilizes flexible mesh sizing to calculate small deflections around doors and windows, with large meshes used for macro deflections. This approach aims to minimize run-time while providing meaningful stresses and deflections. Moreover, it aims to investigate the limitations and drawbacks of the popular approach of applying FEA only to the chassis and replacing the habitation structure with a distributed load. The findings of this study indicate that the popular approach of applying FEA only to the chassis and replacing the habitation structure with a distributed load overlooks the strengthening generated from the habitation structure. By employing FEA on the entire unit, it is possible to optimize stress and deflection performance while achieving material reduction and enhanced structural stability. The study also introduces innovative modular and wooden chassis designs, which show promising weight reduction compared to the existing heavily fabricated lattice chassis. In conclusion, this research provides valuable insights into the impact of the habitation structure on chassis performance in leisure homes. By employing FEA on the entire unit, the study demonstrates the importance of considering the strengthening generated from the habitation structure in chassis design. The research findings contribute to advancements in material reduction, structural stability, and overall performance optimization. The novel framework developed in this study promotes sustainability, cost-efficiency, and innovation in leisure home design.Keywords: static homes, caravans, motor homes, holiday homes, finite element analysis (FEA)
Procedia PDF Downloads 99987 Active Islanding Detection Method Using Intelligent Controller
Authors: Kuang-Hsiung Tan, Chih-Chan Hu, Chien-Wu Lan, Shih-Sung Lin, Te-Jen Chang
Abstract:
An active islanding detection method using disturbance signal injection with intelligent controller is proposed in this study. First, a DC\AC power inverter is emulated in the distributed generator (DG) system to implement the tracking control of active power, reactive power outputs and the islanding detection. The proposed active islanding detection method is based on injecting a disturbance signal into the power inverter system through the d-axis current which leads to a frequency deviation at the terminal of the RLC load when the utility power is disconnected. Moreover, in order to improve the transient and steady-state responses of the active power and reactive power outputs of the power inverter, and to further improve the performance of the islanding detection method, two probabilistic fuzzy neural networks (PFNN) are adopted to replace the traditional proportional-integral (PI) controllers for the tracking control and the islanding detection. Furthermore, the network structure and the online learning algorithm of the PFNN are introduced in detail. Finally, the feasibility and effectiveness of the tracking control and the proposed active islanding detection method are verified with experimental results.Keywords: distributed generators, probabilistic fuzzy neural network, islanding detection, non-detection zone
Procedia PDF Downloads 389986 Minimum Vertices Dominating Set Algorithm for Secret Sharing Scheme
Authors: N. M. G. Al-Saidi, K. A. Kadhim, N. A. Rajab
Abstract:
Over the past decades, computer networks and data communication system has been developing fast, so, the necessity to protect a transmitted data is a challenging issue, and data security becomes a serious problem nowadays. A secret sharing scheme is a method which allows a master key to be distributed among a finite set of participants, in such a way that only certain authorized subsets of participants to reconstruct the original master key. To create a secret sharing scheme, many mathematical structures have been used; the most widely used structure is the one that is based on graph theory (graph access structure). Subsequently, many researchers tried to find efficient schemes based on graph access structures. In this paper, we propose a novel efficient construction of a perfect secret sharing scheme for uniform access structure. The dominating set of vertices in a regular graph is used for this construction in the following way; each vertex represents a participant and each minimum independent dominating subset represents a minimal qualified subset. Some relations between dominating set, graph order and regularity are achieved, and can be used to demonstrate the possibility of using dominating set to construct a secret sharing scheme. The information rate that is used as a measure for the efficiency of such systems is calculated to show that the proposed method has some improved values.Keywords: secret sharing scheme, dominating set, information rate, access structure, rank
Procedia PDF Downloads 392985 Platooning Method Using Dynamic Correlation of Destination Vectors in Urban Areas
Authors: Yuya Tanigami, Naoaki Yamanaka, Satoru Okamoto
Abstract:
Economic losses due to delays in traffic congestion regarding urban transportation networks have become a more serious social problem as traffic volume increases. Platooning has recently been attracting attention from many researchers to alleviate traffic jams, especially on the highway. On highways, platooning can have positive effects, such as reducing inter-vehicular distance and reducing air resistance. However, the impacts of platooning on urban roads have not been addressed in detail since traffic lights may break the platoons. In this study, we propose a platooning method using L2 norm and cosine similarity to form a platoon with highly similar routes. Also, we investigate the sorting method within a platoon according to each vehicle’s straightness. Our proposed sorting platoon method, which uses two lanes, eliminates Head of Line Blocking at the intersection and improves throughput at intersections. This paper proposes a cyber-physical system (CPS) approach to collaborative urban platoon control. We conduct simulations using the traffic simulator SUMO and the road network, which imitates Manhattan Island. Results from the SUMO confirmed that our method shortens the average travel time by 10-20%. This paper shows the validity of forming a platoon based on destination vectors and sorting vehicles within a platoon.Keywords: CPS, platooning, connected car, vector correlation
Procedia PDF Downloads 74984 Development of Geo-computational Model for Analysis of Lassa Fever Dynamics and Lassa Fever Outbreak Prediction
Authors: Adekunle Taiwo Adenike, I. K. Ogundoyin
Abstract:
Lassa fever is a neglected tropical virus that has become a significant public health issue in Nigeria, with the country having the greatest burden in Africa. This paper presents a Geo-Computational Model for Analysis and Prediction of Lassa Fever Dynamics and Outbreaks in Nigeria. The model investigates the dynamics of the virus with respect to environmental factors and human populations. It confirms the role of the rodent host in virus transmission and identifies how climate and human population are affected. The proposed methodology is carried out on a Linux operating system using the OSGeoLive virtual machine for geographical computing, which serves as a base for spatial ecology computing. The model design uses Unified Modeling Language (UML), and the performance evaluation uses machine learning algorithms such as random forest, fuzzy logic, and neural networks. The study aims to contribute to the control of Lassa fever, which is achievable through the combined efforts of public health professionals and geocomputational and machine learning tools. The research findings will potentially be more readily accepted and utilized by decision-makers for the attainment of Lassa fever elimination.Keywords: geo-computational model, lassa fever dynamics, lassa fever, outbreak prediction, nigeria
Procedia PDF Downloads 92983 Pushover Analysis of a Typical Bridge Built in Central Zone of Mexico
Authors: Arturo Galvan, Jatziri Y. Moreno-Martinez, Daniel Arroyo-Montoya, Jose M. Gutierrez-Villalobos
Abstract:
Bridges are one of the most seismically vulnerable structures on highway transportation systems. The general process for assessing the seismic vulnerability of a bridge involves the evaluation of its overall capacity and demand. One of the most common procedures to obtain this capacity is by means of pushover analysis of the structure. Typically, the bridge capacity is assessed using non-linear static methods or non-linear dynamic analyses. The non-linear dynamic approaches use step by step numerical solutions for assessing the capacity with the consuming computer time inconvenience. In this study, a nonlinear static analysis (‘pushover analysis’) was performed to predict the collapse mechanism of a typical bridge built in the central zone of Mexico (Celaya, Guanajuato). The bridge superstructure consists of three simple supported spans with a total length of 76 m: 22 m of the length of extreme spans and 32 m of length of the central span. The deck width is of 14 m and the concrete slab depth is of 18 cm. The bridge is built by means of frames of five piers with hollow box-shaped sections. The dimensions of these piers are 7.05 m height and 1.20 m diameter. The numerical model was created using a commercial software considering linear and non-linear elements. In all cases, the piers were represented by frame type elements with geometrical properties obtained from the structural project and construction drawings of the bridge. The deck was modeled with a mesh of rectangular thin shell (plate bending and stretching) finite elements. The moment-curvature analysis was performed for the sections of the piers of the bridge considering in each pier the effect of confined concrete and its reinforcing steel. In this way, plastic hinges were defined on the base of the piers to carry out the pushover analysis. In addition, time history analyses were performed using 19 accelerograms of real earthquakes that have been registered in Guanajuato. In this way, the displacements produced by the bridge were determined. Finally, pushover analysis was applied through the control of displacements in the piers to obtain the overall capacity of the bridge before the failure occurs. It was concluded that the lateral deformation of the piers due to a critical earthquake occurred in this zone is almost imperceptible due to the geometry and reinforcement demanded by the current design standards and compared to its displacement capacity, they were excessive. According to the analysis, it was found that the frames built with five piers increase the rigidity in the transverse direction of the bridge. Hence it is proposed to reduce these frames of five piers to three piers, maintaining the same geometrical characteristics and the same reinforcement in each pier. Also, the mechanical properties of materials (concrete and reinforcing steel) were maintained. Once a pushover analysis was performed considering this configuration, it was concluded that the bridge would continue having a “correct” seismic behavior, at least for the 19 accelerograms considered in this study. In this way, costs in material, construction, time and labor would be reduced in this study case.Keywords: collapse mechanism, moment-curvature analysis, overall capacity, push-over analysis
Procedia PDF Downloads 150982 Long Distance Aspirating Smoke Detection for Large Radioactive Areas
Authors: Michael Dole, Pierre Ninin, Denis Raffourt
Abstract:
Most of the CERN’s facilities hosting particle accelerators are large, underground and radioactive areas. All fire detection systems installed in such areas, shall be carefully studied to cope with the particularities of this stringent environment. The detection equipment usually chosen by CERN to secure these underground facilities are based on air sampling technology. The electronic equipment is located in non-radioactive areas whereas air sampling networks are deployed in radioactive areas where fire detection is required. The air sampling technology provides very good detection performances and prevent the "radiation-to-electronic" effects. In addition, it reduces the exposure to radiations of maintenance workers and is permanently available during accelerator operation. In order to protect the Super Proton Synchrotron and its 7 km tunnels, a specific long distance aspirating smoke detector has been developed to detect smoke at up to 700 meters between electronic equipment and the last air sampling hole. This paper describes the architecture, performances and return of experience of the long distance fire detection system developed and installed to secure the CERN Super Proton Synchrotron tunnels.Keywords: air sampling, fire detection, long distance, radioactive areas
Procedia PDF Downloads 158981 Application Programming Interface Security in Embedded and Open Finance
Authors: Andrew John Zeller, Artjoms Formulevics
Abstract:
Banking and financial services are rapidly transitioning from being monolithic structures focusing merely on their own financial offerings to becoming integrated players in multiple customer journeys and supply chains. Banks themselves are refocusing on being liquidity providers and underwriters in these networks, while the general concept of ‘embeddedness’ builds on the market readily available API (Application Programming Interface) architectures to flexibly deliver services to various requestors, i.e., online retailers who need finance and insurance products to better serve their customers, respectively. With this new flexibility come new requirements for enhanced cybersecurity. API structures are more decentralized and inherently prone to change. Unfortunately, this has not been comprehensively addressed in the literature. This paper tries to fill this gap by looking at security approaches and technologies relevant to API architectures found in embedded finance. After presenting the research methodology applied and introducing the major bodies of knowledge involved, the paper will discuss six dominating technology trends shaping high-level financial services architectures. Subsequently, embedded finance and the respective usage of API strategies will be described. Building on this, security considerations for APIs in financial and insurance services will be elaborated on before concluding with some ideas for possible further research.Keywords: embedded finance, embedded banking strategy, cybersecurity, API management, data security, cybersecurity, IT management
Procedia PDF Downloads 40980 Traffic Congestion Analysis and Modeling for Urban Roads of Srinagar City
Authors: Adinarayana Badveeti, Mohammad Shafi Mir
Abstract:
In Srinagar City, in India, traffic congestion is a condition on transport networks that occurs as use increases and is characterized by slower speeds, longer trip times, and increased vehicular queuing. Traffic congestion is conventionally measured using indicators such as roadway level-of-service, the Travel Time Index and their variants. Several measures have been taken in order to counteract congestion like road pricing, car pooling, improved traffic management, etc. While new road construction can temporarily relieve congestion in the longer term, it simply encourages further growth in car traffic through increased travel and a switch away from public transport. The full paper report, on which this abstract is based, aims to provide policymakers and technical staff with the real-time data, conceptual framework and guidance on some of the engineering tools necessary to manage congestion in such a way as to reduce its overall impact on individuals, families, communities, and societies dynamic, affordable, liveable and attractive urban regions will never be free of congestion. Road transport policies, however, should seek to manage congestion on a cost-effective basis with the aim of reducing the burden that excessive congestion imposes upon travellers and urban dwellers throughout the urban road network.Keywords: traffic congestion, modeling, traffic management, travel time index
Procedia PDF Downloads 318979 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem
Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq
Abstract:
High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.Keywords: artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch
Procedia PDF Downloads 188978 Effects of Pulsed Electromagnetic and Static Magnetic Fields on Musculoskeletal Low Back Pain: A Systematic Review Approach
Authors: Mohammad Javaherian, Siamak Bashardoust Tajali, Monavvar Hadizadeh
Abstract:
Objective: This systematic review study was conducted to evaluate the effects of Pulsed Electromagnetic (PEMF) and Static Magnetic Fields (SMG) on pain relief and functional improvement in patients with musculoskeletal Low Back Pain (LBP). Methods: Seven electronic databases were searched by two researchers independently to identify the published Randomized Controlled Trials (RCTs) on the efficacy of pulsed electromagnetic, static magnetic, and therapeutic nuclear magnetic fields. The identified databases for systematic search were Ovid Medline®, Ovid Cochrane RCTs and Reviews, PubMed, Web of Science, Cochrane Library, CINAHL, and EMBASE from 1968 to February 2016. The relevant keywords were selected by Mesh. After initial search and finding relevant manuscripts, all references in selected studies were searched to identify second hand possible manuscripts. The published RCTs in English would be included to the study if they reported changes on pain and/or functional disability following application of magnetic fields on chronic musculoskeletal low back pain. All studies with surgical patients, patients with pelvic pain, and combination of other treatment techniques such as acupuncture or diathermy were excluded. The identified studies were critically appraised and the data were extracted independently by two raters (M.J and S.B.T). Probable disagreements were resolved through discussion between raters. Results: In total, 1505 abstracts were found following the initial electronic search. The abstracts were reviewed to identify potentially relevant manuscripts. Seventeen possibly appropriate studies were retrieved in full-text of which 48 were excluded after reviewing their full-texts. Ten selected articles were categorized into three subgroups: PEMF (6 articles), SMF (3 articles), and therapeutic nuclear magnetic fields (tNMF) (1 article). Since one study evaluated tNMF, we had to exclude it. In the PEMF group, one study of acute LBP did not show significant positive results and the majority of the other five studies on Chronic Low Back Pain (CLBP) indicated its efficacy on pain relief and functional improvement, but one study with the lowest sessions (6 sessions during 2 weeks) did not report a significant difference between treatment and control groups. In the SMF subgroup, two articles reported near significant pain reduction without any functional improvement although more studies are needed. Conclusion: The PEMFs with a strength of 5 to 150 G or 0.1 to 0.3 G and a frequency of 5 to 64 Hz or sweep 7 to 7KHz can be considered as an effective modality in pain relief and functional improvement in patients with chronic low back pain, but there is not enough evidence to confirm their effectiveness in acute low back pain. To achieve the appropriate effectiveness, it is suggested to perform this treatment modality 20 minutes per day for at least 9 sessions. SMFs have not been reported to be substantially effective in decreasing pain or improving the function in chronic low back pain. More studies are necessary to achieve more reliable results.Keywords: pulsed electromagnetic field, static magnetic field, magnetotherapy, low back pain
Procedia PDF Downloads 204977 Calculating Non-Unique Sliding Modes for Switched Dynamical Systems
Authors: Eugene Stepanov, Arkadi Ponossov
Abstract:
Ordinary differential equations with switching nonlinearities constitute a very useful tool in many applications. The solutions of such equations can usually be calculated analytically if they cross the discontinuities transversally. Otherwise, one has trajectories that slides along the discontinuity, and the calculations become less straightforward in this case. For instance, one of the problems one faces is non-uniqueness of the sliding modes. In the presentation, it is proposed to apply the theory of hybrid dynamical systems to calculate the solutions that are ‘hidden’ in the discontinuities. Roughly, one equips the underlying switched system with an explicitly designed discrete dynamical system (‘automaton’), which governs the dynamics of the switched system. This construction ‘splits’ the dynamics, which, as it is shown in the presentation, gives uniqueness of the resulting hybrid trajectories and at the same time provides explicit formulae for them. Projecting the hybrid trajectories back onto the original continuous system explains non-uniqueness of its trajectories. The automaton is designed with the help of the attractors of the specially constructed adjoint dynamical system. Several examples are provided in the presentation, which supports the efficiency of the suggested scheme. The method can be of interest in control theory, gene regulatory networks, neural field models and other fields, where switched dynamics is a part of the analysis.Keywords: hybrid dynamical systems, singular perturbation analysis, sliding modes, switched dynamics
Procedia PDF Downloads 159976 Mobile Systems: History, Technology, and Future
Authors: Shivendra Pratap Singh, Rishabh Sharma
Abstract:
The widespread adoption of mobile technology in recent years has revolutionized the way we communicate and access information. The evolution of mobile systems has been rapid and impactful, shaping our lives and changing the way we live and work. However, despite its significant influence, the history and development of mobile technology are not well understood by the general public. This research paper aims to examine the history, technology and future of mobile systems, exploring their evolution from early mobile phones to the latest smartphones and beyond. The study will analyze the technological advancements and innovations that have shaped the mobile industry, from the introduction of mobile internet and multimedia capabilities to the integration of artificial intelligence and 5G networks. Additionally, the paper will also address the challenges and opportunities facing the future of mobile technology, such as privacy concerns, battery life, and the increasing demand for high-speed internet. Finally, the paper will also provide insights into potential future developments and innovations in the mobile sector, such as foldable phones, wearable technology, and the Internet of Things (IoT). The purpose of this research paper is to provide a comprehensive overview of the history, technology, and future of mobile systems, shedding light on their impact on society and the challenges and opportunities that lie ahead.Keywords: mobile technology, artificial intelligence, networking, iot, technological advancements, smartphones
Procedia PDF Downloads 91975 An Image Processing Based Approach for Assessing Wheelchair Cushions
Authors: B. Farahani, R. Fadil, A. Aboonabi, B. Hoffmann, J. Loscheider, K. Tavakolian, S. Arzanpour
Abstract:
Wheelchair users spend long hours in a sitting position, and selecting the right cushion is highly critical in preventing pressure ulcers in that demographic. Pressure mapping systems (PMS) are typically used in clinical settings by therapists to identify the sitting profile and pressure points in the sitting area to select the cushion that fits the best for the users. A PMS is a flexible mat composed of arrays of distributed networks of flexible sensors. The output of the PMS systems is a color-coded image that shows the intensity of the pressure concentration. Therapists use the PMS images to compare different cushions fit for each user. This process is highly subjective and requires good visual memory for the best outcome. This paper aims to develop an image processing technique to analyze the images of PMS and provide an objective measure to assess the cushions based on their pressure distribution mappings. In this paper, we first reviewed the skeletal anatomy of the human sitting area and its relation to the PMS image. This knowledge is then used to identify the important features that must be considered in image processing. We then developed an algorithm based on those features to analyze the images and rank them according to their fit to the users' needs.Keywords: dynamic cushion, image processing, pressure mapping system, wheelchair
Procedia PDF Downloads 169974 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery
Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao
Abstract:
Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset
Procedia PDF Downloads 118973 Comparing Image Processing and AI Techniques for Disease Detection in Plants
Authors: Luiz Daniel Garay Trindade, Antonio De Freitas Valle Neto, Fabio Paulo Basso, Elder De Macedo Rodrigues, Maicon Bernardino, Daniel Welfer, Daniel Muller
Abstract:
Agriculture plays an important role in society since it is one of the main sources of food in the world. To help the production and yield of crops, precision agriculture makes use of technologies aiming at improving productivity and quality of agricultural commodities. One of the problems hampering quality of agricultural production is the disease affecting crops. Failure in detecting diseases in a short period of time can result in small or big damages to production, causing financial losses to farmers. In order to provide a map of the contributions destined to the early detection of plant diseases and a comparison of the accuracy of the selected studies, a systematic literature review of the literature was performed, showing techniques for digital image processing and neural networks. We found 35 interesting tool support alternatives to detect disease in 19 plants. Our comparison of these studies resulted in an overall average accuracy of 87.45%, with two studies very closer to obtain 100%.Keywords: pattern recognition, image processing, deep learning, precision agriculture, smart farming, agricultural automation
Procedia PDF Downloads 378972 Detecting Port Maritime Communities in Spain with Complex Network Analysis
Authors: Nicanor Garcia Alvarez, Belarmino Adenso-Diaz, Laura Calzada Infante
Abstract:
In recent years, researchers have shown an interest in modelling maritime traffic as a complex network. In this paper, we propose a bipartite weighted network to model maritime traffic and detect port maritime communities. The bipartite weighted network considers two different types of nodes. The first one represents Spanish ports, while the second one represents the countries with which there is major import/export activity. The flow among both types of nodes is modeled by weighting the volume of product transported. To illustrate the model, the data is segmented by each type of traffic. This will allow fine tuning and the creation of communities for each type of traffic and therefore finding similar ports for a specific type of traffic, which will provide decision-makers with tools to search for alliances or identify their competitors. The traffic with the greatest impact on the Spanish gross domestic product is selected, and the evolution of the communities formed by the most important ports and their differences between 2019 and 2009 will be analyzed. Finally, the set of communities formed by the ports of the Spanish port system will be inspected to determine global similarities between them, analyzing the sum of the membership of the different ports in communities formed for each type of traffic in particular.Keywords: bipartite networks, competition, infomap, maritime traffic, port communities
Procedia PDF Downloads 148971 Novel Marketing Strategy To Increase Sales Revenue For SMEs Through Social Media
Authors: Kruti Dave
Abstract:
Social media marketing is an essential component of 21st-century business. Social media platforms enable small and medium-sized businesses to enhance brand recognition, generate leads and sales. However, the research on social media marketing is still fragmented and focuses on specific topics, such as effective communication techniques. Since the various ways in which social media impacts individuals and companies alike, the authors of this article focus on the origin, impacts, and current state of Social Media, emphasizing their significance as customer empowerment agents. It illustrates their potential and current responsibilities as part of the corporate business strategy and also suggests several methods to engage them as marketing tools. The focus of social media marketing ranges from defenders to explorers, the culture of Social media marketing encompasses the poles of conservatism and modernity, social media marketing frameworks lie between hierarchies and networks, and its management goes from autocracy to anarchy. This research proposes an integrative framework for small and medium-sized businesses through social media, and the influence of the same will be measured. This strategy will help industry experts to understand this new era. We propose an axiom: Social Media is always a function of marketing as a revenue generator.Keywords: social media, marketing strategy, media marketing, brand awareness, customer engagement, revenue generator, brand recognition
Procedia PDF Downloads 196970 Visualizing the Commercial Activity of a City by Analyzing the Data Information in Layers
Authors: Taras Agryzkov, Jose L. Oliver, Leandro Tortosa, Jose Vicent
Abstract:
This paper aims to demonstrate how network models can be used to understand and to deal with some aspects of urban complexity. As it is well known, the Theory of Architecture and Urbanism has been using for decades’ intellectual tools based on the ‘sciences of complexity’ as a strategy to propose theoretical approaches about cities and about architecture. In this sense, it is possible to find a vast literature in which for instance network theory is used as an instrument to understand very diverse questions about cities: from their commercial activity to their heritage condition. The contribution of this research consists in adding one step of complexity to this process: instead of working with one single primal graph as it is usually done, we will show how new network models arise from the consideration of two different primal graphs interacting in two layers. When we model an urban network through a mathematical structure like a graph, the city is usually represented by a set of nodes and edges that reproduce its topology, with the data generated or extracted from the city embedded in it. All this information is normally displayed in a single layer. Here, we propose to separate the information in two layers so that we can evaluate the interaction between them. Besides, both layers may be composed of structures that do not have to coincide: from this bi-layer system, groups of interactions emerge, suggesting reflections and in consequence, possible actions.Keywords: graphs, mathematics, networks, urban studies
Procedia PDF Downloads 179969 The Impact of Artificial Intelligence on Spare Parts Technology
Authors: Amir Andria Gad Shehata
Abstract:
Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.Keywords: spare part, spare part inventory, inventory model, optimization, maintenanceneural network, LSTM, MLP, forecasting demand, inventory management
Procedia PDF Downloads 62968 User Selections on Social Network Applications
Authors: C. C. Liang
Abstract:
MSN used to be the most popular application for communicating among social networks, but Facebook chat is now the most popular. Facebook and MSN have similar characteristics, including usefulness, ease-of-use, and a similar function, which is the exchanging of information with friends. Facebook outperforms MSN in both of these areas. However, the adoption of Facebook and abandonment of MSN have occurred for other reasons. Functions can be improved, but users’ willingness to use does not just depend on functionality. Flow status has been established to be crucial to users’ adoption of cyber applications and to affects users’ adoption of software applications. If users experience flow in using software application, they will enjoy using it frequently, and even change their preferred application from an old to this new one. However, no investigation has examined choice behavior related to switching from Facebook to MSN based on a consideration of flow experiences and functions. This investigation discusses the flow experiences and functions of social-networking applications. Flow experience is found to affect perceived ease of use and perceived usefulness; perceived ease of use influences information ex-change with friends, and perceived usefulness; information exchange influences perceived usefulness, but information exchange has no effect on flow experience.Keywords: consumer behavior, social media, technology acceptance model, flow experience
Procedia PDF Downloads 355967 Predictive Analytics in Traffic Flow Management: Integrating Temporal Dynamics and Traffic Characteristics to Estimate Travel Time
Authors: Maria Ezziani, Rabie Zine, Amine Amar, Ilhame Kissani
Abstract:
This paper introduces a predictive model for urban transportation engineering, which is vital for efficient traffic management. Utilizing comprehensive datasets and advanced statistical techniques, the model accurately forecasts travel times by considering temporal variations and traffic dynamics. Machine learning algorithms, including regression trees and neural networks, are employed to capture sequential dependencies. Results indicate significant improvements in predictive accuracy, particularly during peak hours and holidays, with the incorporation of traffic flow and speed variables. Future enhancements may integrate weather conditions and traffic incidents. The model's applications range from adaptive traffic management systems to route optimization algorithms, facilitating congestion reduction and enhancing journey reliability. Overall, this research extends beyond travel time estimation, offering insights into broader transportation planning and policy-making realms, empowering stakeholders to optimize infrastructure utilization and improve network efficiency.Keywords: predictive analytics, traffic flow, travel time estimation, urban transportation, machine learning, traffic management
Procedia PDF Downloads 82966 Application of Deep Neural Networks to Assess Corporate Credit Rating
Authors: Parisa Golbayani, Dan Wang, Ionut¸ Florescu
Abstract:
In this work we implement machine learning techniques to financial statement reports in order to asses company’s credit rating. Specifically, the work analyzes the performance of four neural network architectures (MLP, CNN, CNN2D, LSTM) in predicting corporate credit rating as issued by Standard and Poor’s. The paper focuses on companies from the energy, financial, and healthcare sectors in the US. The goal of this analysis is to improve application of machine learning algorithms to credit assessment. To accomplish this, the study investigates three questions. First, we investigate if the algorithms perform better when using a selected subset of important features or whether better performance is obtained by allowing the algorithms to select features themselves. Second, we address the temporal aspect inherent in financial data and study whether it is important for the results obtained by a machine learning algorithm. Third, we aim to answer if one of the four particular neural network architectures considered consistently outperforms the others, and if so under which conditions. This work frames the problem as several case studies to answer these questions and analyze the results using ANOVA and multiple comparison testing procedures.Keywords: convolutional neural network, long short term memory, multilayer perceptron, credit rating
Procedia PDF Downloads 235