Search results for: CMOS process sensor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16450

Search results for: CMOS process sensor

14200 An Adaptive Opportunistic Transmission for Unlicensed Spectrum Sharing in Heterogeneous Networks

Authors: Daehyoung Kim, Pervez Khan, Hoon Kim

Abstract:

Efficient utilization of spectrum resources is a fundamental issue of wireless communications due to its scarcity. To improve the efficiency of spectrum utilization, the spectrum sharing for unlicensed bands is being regarded as one of key technologies in the next generation wireless networks. A number of schemes such as Listen-Before-Talk(LBT) and carrier sensor adaptive transmission (CSAT) have been suggested from this aspect, but more efficient sharing schemes are required for improving spectrum utilization efficiency. This work considers an opportunistic transmission approach and a dynamic Contention Window (CW) adjustment scheme for LTE-U users sharing the unlicensed spectrum with Wi-Fi, in order to enhance the overall system throughput. The decision criteria for the dynamic adjustment of CW are based on the collision evaluation, derived from the collision probability of the system. The overall performance can be improved due to the adaptive adjustment of the CW. Simulation results show that our proposed scheme outperforms the Distributed Coordination Function (DCF) mechanism of IEEE 802.11 MAC.

Keywords: spectrum sharing, adaptive opportunistic transmission, unlicensed bands, heterogeneous networks

Procedia PDF Downloads 350
14199 A Comparison of Kinetic and Mechanical Properties between Graphene Oxide (GO) and Carbon Nanotubes (CNT)-Epoxy Nanocomposites

Authors: Marina Borgert Moraes, Gilmar Patrocinio Thim

Abstract:

It is still unknown how the presence of nanoparticles such as graphene oxide (GO) or carbon nanotubes (CNT) influence the curing process and the final mechanical properties as well. In this work, kinetic and mechanical properties of the nanocomposites were analyzed, where the kinetic process was followed by DSC and the mechanical properties by DMA as well as mechanical tests. Initially, CNT was annealed at high temperature (1800 °C) under vacuum atmosphere, followed by a chemical treatment using acids and ethylenediamine. GO was synthesized through chemical route, washed clean, dried and ground to #200. The presence of functional groups on CNT and GO surface was confirmed by XPS spectra and FT-IR. Then, nanoparticles and acetone were mixed by sonication in order to obtain the composites. DSC analyses were performed on samples with different curing cycles (1h 80 °C + 2h 120 °C; 3h 80 °C + 2h 120 °C; 5h 80 °C) and samples with different times at constant temperature (120 °C). Mechanical tests were performed according to ASTM D638 and D790. Results showed that the kinetic process and the mechanical strength are very dependent on the presence of graphene and functionalized-CNT in the nanocomposites, and the GO reinforced samples had a slightly bigger improvement compared to functionalized CNT.

Keywords: carbon nanotube, epoxy resin, graphene oxide, nanocomposite

Procedia PDF Downloads 262
14198 Logistical Optimization of Nuclear Waste Flows during Decommissioning

Authors: G. Dottavio, M. F. Andrade, F. Renard, V. Cheutet, A.-L. Ladier, S. Vercraene, P. Hoang, S. Briet, R. Dachicourt, Y. Baizet

Abstract:

An important number of technological equipment and high-skilled workers over long periods of time have to be mobilized during nuclear decommissioning processes. The related operations generate complex flows of waste and high inventory levels, associated to information flows of heterogeneous types. Taking into account that more than 10 decommissioning operations are on-going in France and about 50 are expected toward 2025: A big challenge is addressed today. The management of decommissioning and dismantling of nuclear installations represents an important part of the nuclear-based energy lifecycle, since it has an environmental impact as well as an important influence on the electricity cost and therefore the price for end-users. Bringing new technologies and new solutions into decommissioning methodologies is thus mandatory to improve the quality, cost and delay efficiency of these operations. The purpose of our project is to improve decommissioning management efficiency by developing a decision-support framework dedicated to plan nuclear facility decommissioning operations and to optimize waste evacuation by means of a logistic approach. The target is to create an easy-to-handle tool capable of i) predicting waste flows and proposing the best decommissioning logistics scenario and ii) managing information during all the steps of the process and following the progress: planning, resources, delays, authorizations, saturation zones, waste volume, etc. In this article we present our results from waste nuclear flows simulation during decommissioning process, including discrete-event simulation supported by FLEXSIM 3-D software. This approach was successfully tested and our works confirms its ability to improve this type of industrial process by identifying the critical points of the chain and optimizing it by identifying improvement actions. This type of simulation, executed before the start of the process operations on the basis of a first conception, allow ‘what-if’ process evaluation and help to ensure quality of the process in an uncertain context. The simulation of nuclear waste flows before evacuation from the site will help reducing the cost and duration of the decommissioning process by optimizing the planning and the use of resources, transitional storage and expensive radioactive waste containers. Additional benefits are expected for the governance system of the waste evacuation since it will enable a shared responsibility of the waste flows.

Keywords: nuclear decommissioning, logistical optimization, decision-support framework, waste management

Procedia PDF Downloads 323
14197 Intertextuality in Choreography: Investigation of Text and Movements in Making Choreography

Authors: Muhammad Fairul Azreen Mohd Zahid

Abstract:

Speech, text, and movement intensify aspects of creating choreography by connecting with emotional entanglements, tradition, literature, and other texts. This research focuses on the practice as research that will prioritise the choreography process as an inquiry approach. With the driven context, the study intervenes in critical conjunctions of choreographic theory, bringing together new reflections on the moving body, spaces of action, as well as intertextuality between text and movements in making choreography. Throughout the process, the researcher will introduce the level of deliberation from speech through movements and text to express emotion within a narrative context of an “illocutionary act.” This practice as research will produce a different meaning from the “utterance text” to “utterance movements” in the perspective of speech acts theory by J.L Austin based on fragmented text from “pidato adat” which has been used as opening speech in Randai. Looking at the theory of deconstruction by Jacque Derrida also will give a different meaning from the text. Nevertheless, the process of creating the choreography will also help to lay the basic normative structure implicit in “constative” (statement text/movement) and “performative” (command text/movement). Through this process, the researcher will also look at several methods of using text from two works by Joseph Gonzales, “Becoming King-The Pakyung Revisited” and Crystal Pite's “The Statement,” as references to produce different methods in making choreography. The perspective from the semiotic foundation will support how occurrences within dance discourses as texts through a semiotic lens. The method used in this research is qualitative, which includes an interview and simulation of the concept to get an outcome.

Keywords: intertextuality, choreography, speech act, performative, deconstruction

Procedia PDF Downloads 96
14196 A Machine Learning Approach for Performance Prediction Based on User Behavioral Factors in E-Learning Environments

Authors: Naduni Ranasinghe

Abstract:

E-learning environments are getting more popular than any other due to the impact of COVID19. Even though e-learning is one of the best solutions for the teaching-learning process in the academic process, it’s not without major challenges. Nowadays, machine learning approaches are utilized in the analysis of how behavioral factors lead to better adoption and how they related to better performance of the students in eLearning environments. During the pandemic, we realized the academic process in the eLearning approach had a major issue, especially for the performance of the students. Therefore, an approach that investigates student behaviors in eLearning environments using a data-intensive machine learning approach is appreciated. A hybrid approach was used to understand how each previously told variables are related to the other. A more quantitative approach was used referred to literature to understand the weights of each factor for adoption and in terms of performance. The data set was collected from previously done research to help the training and testing process in ML. Special attention was made to incorporating different dimensionality of the data to understand the dependency levels of each. Five independent variables out of twelve variables were chosen based on their impact on the dependent variable, and by considering the descriptive statistics, out of three models developed (Random Forest classifier, SVM, and Decision tree classifier), random forest Classifier (Accuracy – 0.8542) gave the highest value for accuracy. Overall, this work met its goals of improving student performance by identifying students who are at-risk and dropout, emphasizing the necessity of using both static and dynamic data.

Keywords: academic performance prediction, e learning, learning analytics, machine learning, predictive model

Procedia PDF Downloads 157
14195 Handwriting Velocity Modeling by Artificial Neural Networks

Authors: Mohamed Aymen Slim, Afef Abdelkrim, Mohamed Benrejeb

Abstract:

The handwriting is a physical demonstration of a complex cognitive process learnt by man since his childhood. People with disabilities or suffering from various neurological diseases are facing so many difficulties resulting from problems located at the muscle stimuli (EMG) or signals from the brain (EEG) and which arise at the stage of writing. The handwriting velocity of the same writer or different writers varies according to different criteria: age, attitude, mood, writing surface, etc. Therefore, it is interesting to reconstruct an experimental basis records taking, as primary reference, the writing speed for different writers which would allow studying the global system during handwriting process. This paper deals with a new approach of the handwriting system modeling based on the velocity criterion through the concepts of artificial neural networks, precisely the Radial Basis Functions (RBF) neural networks. The obtained simulation results show a satisfactory agreement between responses of the developed neural model and the experimental data for various letters and forms then the efficiency of the proposed approaches.

Keywords: Electro Myo Graphic (EMG) signals, experimental approach, handwriting process, Radial Basis Functions (RBF) neural networks, velocity modeling

Procedia PDF Downloads 440
14194 Holomorphic Prioritization of Sets within Decagram of Strategic Decision Making of POSM Using Operational Research (OR): Analytic Hierarchy Process (AHP) Analysis

Authors: Elias Ogutu Azariah Tembe, Hussain Abdullah Habib Al-Salamin

Abstract:

There is decagram of strategic decisions of operations and production/service management (POSM) within operational research (OR) which must collate, namely: design, inventory, quality, location, process and capacity, layout, scheduling, maintain ace, and supply chain. This paper presents an architectural configuration conceptual framework of a decagram of sets decisions in a form of mathematical complete graph and abelian graph. Mathematically, a complete graph is undirected (UDG), and directed (DG) a relationship where every pair of vertices are connected, collated, confluent, and holomorphic. There has not been any study conducted which, however, prioritizes the holomorphic sets which of POMS within OR field of study. The study utilizes OR structured technique known as The Analytic Hierarchy Process (AHP) analysis for organizing, sorting and prioritizing (ranking) the sets within the decagram of POMS according to their attribution (propensity), and provides an analysis how the prioritization has real-world application within the 21st century.

Keywords: holomorphic, decagram, decagon, confluent, complete graph, AHP analysis, SCM, HRM, OR, OM, abelian graph

Procedia PDF Downloads 402
14193 Nanowire by Ac Electrodeposition Into Nanoporous Alumina Fabrication of High Aspect Ratio Metalic

Authors: M. Beyzaiea, S. Mohammadia

Abstract:

High aspect ratio metallic (silver, cobalt) nanowire arrays were fabricated using ac electrodeposition techniques into the nanoporous alumina template. The template with long pore dept fabricated by hard anodization (HA) and thinned for ac electrodeposition. Template preparation was done in short time by using HA technique and high speed thing process. The TEM and XRD investigation confirm the three dimensional nucleation growth mechanism of metallic nanowire inside the nanoporous alumina that fabricated by HA process.

Keywords: metallic, nanowire, nanoporous alumina, ac electrodeposition

Procedia PDF Downloads 273
14192 Interactive Planning of Suburban Apartment Buildings

Authors: J. Koiso-Kanttila, A. Soikkeli, A. Aapaoja

Abstract:

Construction in Finland is focusing increasingly on renovation instead of conventional new construction, and this trend will continue to grow in the coming years and decades. Renovation of the large number of suburban residential apartment buildings built in the 1960s and 1970s poses a particular challenge. However, renovation projects are demanding for the residents of these buildings, since they usually are uninitiated in construction issues. On the other hand, renovation projects generally apply the operating models of new construction. Nevertheless, the residents of an existing residential apartment building are some of the best experts on the site. Thus, in this research project we applied a relational model in developing and testing at case sites a planning process that employs interactive planning methods. Current residents, housing company managers, the city zoning manager, the contractor’s and prefab element supplier’s representatives, professional designers and researchers all took part in the planning. The entire interactive planning process progressed phase by phase as the participants’ and designers’ concerted discussion and ideation process, so that the end result was a renovation plan desired by the residents.

Keywords: apartment building renovation, interactive planning, project alliance, user-orientedness

Procedia PDF Downloads 385
14191 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence

Authors: Muhammad Bilal Shaikh

Abstract:

Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.

Keywords: multimodal AI, computer vision, NLP, mineral processing, mining

Procedia PDF Downloads 68
14190 Improvement of Reaction Technology of Decalin Halogenation

Authors: Dmitriy Yu. Korulkin, Ravshan M. Nuraliev, Raissa A. Muzychkina

Abstract:

In this research paper, we investigated the main regularities of a radical bromination reaction of decalin. We studied the temperature effect, durations of reaction, frequency rate of process, ratio of initial components, type and number of the initiator on decalin bromination degree. We found specified optimum conditions of synthesis of a perbromodecalin by the method of a decalin bromination. We developed the technological flowchart of receiving a perbromodecalin and the mass balance of process on the first and the subsequent loadings of components. The results of the research of antibacterial and antifungal activity of synthesized bromoderivatives have been represented.

Keywords: decalin, optimum technology, perbromodecalin, radical bromination

Procedia PDF Downloads 225
14189 Lignin Valorization: Techno-Economic Analysis of Three Lignin Conversion Routes

Authors: Iris Vural Gursel, Andrea Ramirez

Abstract:

Effective utilization of lignin is an important mean for developing economically profitable biorefineries. Current literature suggests that large amounts of lignin will become available in second generation biorefineries. New conversion technologies will, therefore, be needed to carry lignin transformation well beyond combustion to produce energy, but towards high-value products such as chemicals and transportation fuels. In recent years, significant progress on catalysis has been made to improve transformation of lignin, and new catalytic processes are emerging. In this work, a techno-economic assessment of two of these novel conversion routes and comparison with more established lignin pyrolysis route were made. The aim is to provide insights into the potential performance and potential hotspots in order to guide the experimental research and ease the commercialization by early identifying cost drivers, strengths, and challenges. The lignin conversion routes selected for detailed assessment were: (non-catalytic) lignin pyrolysis as the benchmark, direct hydrodeoxygenation (HDO) of lignin and hydrothermal lignin depolymerisation. Products generated were mixed oxygenated aromatic monomers (MOAMON), light organics, heavy organics, and char. For the technical assessment, a basis design followed by process modelling in Aspen was done using experimental yields. A design capacity of 200 kt/year lignin feed was chosen that is equivalent to a 1 Mt/y scale lignocellulosic biorefinery. The downstream equipment was modelled to achieve the separation of the product streams defined. For determining external utility requirement, heat integration was considered and when possible gasses were combusted to cover heating demand. The models made were used in generating necessary data on material and energy flows. Next, an economic assessment was carried out by estimating operating and capital costs. Return on investment (ROI) and payback period (PBP) were used as indicators. The results of the process modelling indicate that series of separation steps are required. The downstream processing was found especially demanding in the hydrothermal upgrading process due to the presence of significant amount of unconverted lignin (34%) and water. Also, external utility requirements were found to be high. Due to the complex separations, hydrothermal upgrading process showed the highest capital cost (50 M€ more than benchmark). Whereas operating costs were found the highest for the direct HDO process (20 M€/year more than benchmark) due to the use of hydrogen. Because of high yields to valuable heavy organics (32%) and MOAMON (24%), direct HDO process showed the highest ROI (12%) and the shortest PBP (5 years). This process is found feasible with a positive net present value. However, it is very sensitive to the prices used in the calculation. The assessments at this stage are associated with large uncertainties. Nevertheless, they are useful for comparing alternatives and identifying whether a certain process should be given further consideration. Among the three processes investigated here, the direct HDO process was seen to be the most promising.

Keywords: biorefinery, economic assessment, lignin conversion, process design

Procedia PDF Downloads 261
14188 An Analysis of Economical Drivers and Technical Challenges for Large-Scale Biohydrogen Deployment

Authors: Rouzbeh Jafari, Joe Nava

Abstract:

This study includes learnings from an engineering practice normally performed on large scale biohydrogen processes. If properly scale-up is done, biohydrogen can be a reliable pathway for biowaste valorization. Most of the studies on biohydrogen process development have used model feedstock to investigate process key performance indicators (KPIs). This study does not intend to compare different technologies with model feedstock. However, it reports economic drivers and technical challenges which help in developing a road map for expanding biohydrogen economy deployment in Canada. BBA is a consulting firm responsible for the design of hydrogen production projects. Through executing these projects, activity has been performed to identify, register and mitigate technical drawbacks of large-scale hydrogen production. Those learnings, in this study, have been applied to the biohydrogen process. Through data collected by a comprehensive literature review, a base case has been considered as a reference, and several case studies have been performed. Critical parameters of the process were identified and through common engineering practice (process design, simulation, cost estimate, and life cycle assessment) impact of these parameters on the commercialization risk matrix and class 5 cost estimations were reported. The process considered in this study is food waste and woody biomass dark fermentation. To propose a reliable road map to develop a sustainable biohydrogen production process impact of critical parameters was studied on the end-to-end process. These parameters were 1) feedstock composition, 2) feedstock pre-treatment, 3) unit operation selection, and 4) multi-product concept. A couple of emerging technologies also were assessed such as photo-fermentation, integrated dark fermentation, and using ultrasound and microwave to break-down feedstock`s complex matrix and increase overall hydrogen yield. To properly report the impact of each parameter KPIs were identified as 1) Hydrogen yield, 2) energy consumption, 3) secondary waste generated, 4) CO2 footprint, 5) Product profile, 6) $/kg-H2 and 5) environmental impact. The feedstock is the main parameter defining the economic viability of biohydrogen production. Through parametric studies, it was found that biohydrogen production favors feedstock with higher carbohydrates. The feedstock composition was varied, by increasing one critical element (such as carbohydrate) and monitoring KPIs evolution. Different cases were studied with diverse feedstock, such as energy crops, wastewater slug, and lignocellulosic waste. The base case process was applied to have reference KPIs values and modifications such as pretreatment and feedstock mix-and-match were implemented to investigate KPIs changes. The complexity of the feedstock is the main bottleneck in the successful commercial deployment of the biohydrogen process as a reliable pathway for waste valorization. Hydrogen yield, reaction kinetics, and performance of key unit operations highly impacted as feedstock composition fluctuates during the lifetime of the process or from one case to another. In this case, concept of multi-product becomes more reliable. In this concept, the process is not designed to produce only one target product such as biohydrogen but will have two or multiple products (biohydrogen and biomethane or biochemicals). This new approach is being investigated by the BBA team and the results will be shared in another scientific contribution.

Keywords: biohydrogen, process scale-up, economic evaluation, commercialization uncertainties, hydrogen economy

Procedia PDF Downloads 110
14187 Membrane Bioreactor for Wastewater Treatment and Reuse

Authors: Sarra Kitanou

Abstract:

Water recycling and reuse is an effective measure to solve the water stress problem. The sustainable use of water resource has become a national development strategy in Morocco. A key aspect of improving overall sustainability is the potential for direct wastewater effluent reuse. However, the hybrid technology membrane bioreactors (MBR) have been identified as an attractive option for producing high quality and nutrient-rich effluents for wastewater treatment. It is based on complex interactions between biological processes, filtration process and rheological properties of the liquid to be treated. Currently, with the evolution of wastewater treatment projects in Morocco, the MBR technology can be used as a technology treating different types of wastewaters and to produce effluent with suitable quality for reuse. However, the energetic consumption of this process is a great concern, which can limit the development and implementation of this technology. In this investigation, the electric energy consumption of an ultrafiltration membrane bioreactor process in domestic wastewater treatment is evaluated and compared to some MBR installations based on literature review. Energy requirements of the MBR are linked to operational parameters and reactor performance. The analysis of energy consumption shows that the biological aeration and membrane filtration are more energy consuming than the other components listed as feed and recirculation pumps. Biological aeration needs 53% of the overall energetic consumption and the specific energy consumption for membrane filtration is about 25%. However, aeration is a major energy consumer, often exceeding 50% share of total energy consumption. The optimal results obtained on the MBR process (pressure p = 1.15 bar), hydraulic retention time (15 h) showed removal efficiencies up to 90% in terms of organic compounds removal, 100% in terms of suspended solids presence and up to 80% reduction of total nitrogen and total phosphorus. The effluent from this MBR system could be considered as qualified for irrigation reuse, showing its potential application in the future.

Keywords: hybrid process, membrane bioreactor, wastewater treatment, reuse

Procedia PDF Downloads 83
14186 Development of a Smart Liquid Level Controller

Authors: Adamu Mudi, Ibrahim Wahab Fawole, Abubakar Abba Kolo

Abstract:

In this research paper, we present a microcontroller-based liquid level controller that identifies the various levels of a liquid, carries out certain actions, and is capable of communicating with the human being and other devices through the GSM network. This project is useful in ensuring that a liquid is not wasted. It also contributes to the internet of things paradigm, which is the future of the internet. The method used in this work includes designing the circuit and simulating it. The circuit is then implemented on a solderless breadboard, after which it is implemented on a strip board. A C++ computer program is developed and uploaded into the microcontroller. This program instructs the microcontroller on how to carry out its actions. In other to determine levels of the liquid, an ultrasonic wave is sent to the surface of the liquid similar to radar or the method for detecting the level of sea bed. Message is sent to the phone of the user similar to the way computers send messages to phones of GSM users. It is concluded that the routine of observing the levels of a liquid in a tank, refilling the tank when the liquid level is too low can be entirely handled by a programmable device without wastage of the liquid or bothering a human being with such tasks.

Keywords: Arduino Uno, HC-SR04 ultrasonic sensor, internet of things, IoT, SIM900 GSM module

Procedia PDF Downloads 130
14185 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application

Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob

Abstract:

Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.

Keywords: robotic vision, image processing, applications of robotics, artificial intelligent

Procedia PDF Downloads 97
14184 Manual Wheelchair Propulsion Efficiency on Different Slopes

Authors: A. Boonpratatong, J. Pantong, S. Kiattisaksophon, W. Senavongse

Abstract:

In this study, an integrated sensing and modeling system for manual wheelchair propulsion measurement and propulsion efficiency calculation was used to indicate the level of overuse. Seven subjects participated in the measurement. On the level surface, the propulsion efficiencies were not different significantly as the riding speed increased. By contrast, the propulsion efficiencies on the 15-degree incline were restricted to around 0.5. The results are supported by previously reported wheeling resistance and propulsion torque relationships implying margin of the overuse. Upper limb musculoskeletal injuries and syndromes in manual wheelchair riders are common, chronic, and may be caused at different levels by the overuse i.e. repetitive riding on steep incline. The qualitative analysis such as the mechanical effectiveness on manual wheeling to establish the relationship between the riding difficulties, mechanical efforts and propulsion outputs is scarce, possibly due to the challenge of simultaneous measurement of those factors in conventional manual wheelchairs and everyday environments. In this study, the integrated sensing and modeling system were used to measure manual wheelchair propulsion efficiency in conventional manual wheelchairs and everyday environments. The sensing unit is comprised of the contact pressure and inertia sensors which are portable and universal. Four healthy male and three healthy female subjects participated in the measurement on level and 15-degree incline surface. Subjects were asked to perform manual wheelchair ridings with three different self-selected speeds on level surface and only preferred speed on the 15-degree incline. Five trials were performed in each condition. The kinematic data of the subject’s dominant hand and a spoke and the trunk of the wheelchair were collected through the inertia sensors. The compression force applied from the thumb of the dominant hand to the push rim was collected through the contact pressure sensors. The signals from all sensors were recorded synchronously. The subject-selected speeds for slow, preferred and fast riding on level surface and subject-preferred speed on 15-degree incline were recorded. The propulsion efficiency as a ratio between the pushing force in tangential direction to the push rim and the net force as a result of the three-dimensional riding motion were derived by inverse dynamic problem solving in the modeling unit. The intra-subject variability of the riding speed was not different significantly as the self-selected speed increased on the level surface. Since the riding speed on the 15-degree incline was difficult to regulate, the intra-subject variability was not applied. On the level surface, the propulsion efficiencies were not different significantly as the riding speed increased. However, the propulsion efficiencies on the 15-degree incline were restricted to around 0.5 for all subjects on their preferred speed. The results are supported by the previously reported relationship between the wheeling resistance and propulsion torque in which the wheelchair axle torque increased but the muscle activities were not increased when the resistance is high. This implies the margin of dynamic efforts on the relatively high resistance being similar to the margin of the overuse indicated by the restricted propulsion efficiency on the 15-degree incline.

Keywords: contact pressure sensor, inertia sensor, integrating sensing and modeling system, manual wheelchair propulsion efficiency, manual wheelchair propulsion measurement, tangential force, resultant force, three-dimensional riding motion

Procedia PDF Downloads 290
14183 AI-Enabled Smart Contracts for Reliable Traceability in the Industry 4.0

Authors: Harris Niavis, Dimitra Politaki

Abstract:

The manufacturing industry was collecting vast amounts of data for monitoring product quality thanks to the advances in the ICT sector and dedicated IoT infrastructure is deployed to track and trace the production line. However, industries have not yet managed to unleash the full potential of these data due to defective data collection methods and untrusted data storage and sharing. Blockchain is gaining increasing ground as a key technology enabler for Industry 4.0 and the smart manufacturing domain, as it enables the secure storage and exchange of data between stakeholders. On the other hand, AI techniques are more and more used to detect anomalies in batch and time-series data that enable the identification of unusual behaviors. The proposed scheme is based on smart contracts to enable automation and transparency in the data exchange, coupled with anomaly detection algorithms to enable reliable data ingestion in the system. Before sensor measurements are fed to the blockchain component and the smart contracts, the anomaly detection mechanism uniquely combines artificial intelligence models to effectively detect unusual values such as outliers and extreme deviations in data coming from them. Specifically, Autoregressive integrated moving average, Long short-term memory (LSTM) and Dense-based autoencoders, as well as Generative adversarial networks (GAN) models, are used to detect both point and collective anomalies. Towards the goal of preserving the privacy of industries' information, the smart contracts employ techniques to ensure that only anonymized pointers to the actual data are stored on the ledger while sensitive information remains off-chain. In the same spirit, blockchain technology guarantees the security of the data storage through strong cryptography as well as the integrity of the data through the decentralization of the network and the execution of the smart contracts by the majority of the blockchain network actors. The blockchain component of the Data Traceability Software is based on the Hyperledger Fabric framework, which lays the ground for the deployment of smart contracts and APIs to expose the functionality to the end-users. The results of this work demonstrate that such a system can increase the quality of the end-products and the trustworthiness of the monitoring process in the smart manufacturing domain. The proposed AI-enabled data traceability software can be employed by industries to accurately trace and verify records about quality through the entire production chain and take advantage of the multitude of monitoring records in their databases.

Keywords: blockchain, data quality, industry4.0, product quality

Procedia PDF Downloads 189
14182 The Indigenous Forced Migration in Mato Grosso in Pedro Casaldaliga's Poetic

Authors: Eliziane Navarro

Abstract:

It is intended, in this study, from some poems from the work of the poet and Bishop of Sao Felix do Araguaia-MT Brazil Dom Pedro Casaldaliga, to analyze his poetics from the perspective of the environmental law. In his work, Casaldaliga made a considerable manifest against the oppression experienced especially by Xavante people inside the countryside of the state of Mato Grosso when some government programs benefited a large number of landowners in instead of that minority as a power and control self-affirmation process. The attention which Casaldaliga dismissed to the cause of indigenous eviction of their land called Maraiwatsede resulted in numerous death threats against the poet who was not silenced in the face of the landowners’ grievances. His voice contributed significantly to the process of land returning to the indigenous people. Because of the international pressure, the Italian company AGIP, owner of the land, tried to return it to the hands of the indigenous, unfortunately, in the middle of the process, the land was occupied by politicians and big landowners of the region. Another objective of this research is to check the connection of his testimonial literature with the actual legal context of the state in the 50s and also to analyze his poetry as a complaint that led the cause of the state's indigenous to the Eco 92 discussion in Rio de Janeiro.

Keywords: law and literature, indigenous migration, Mato Grosso, Pedro Casaldaliga

Procedia PDF Downloads 243
14181 Flood Susceptibility Assessment of Mandaluyong City Using Analytic Hierarchy Process

Authors: Keigh D. Guinto, Ma. Romina M. Santos

Abstract:

One of the most catastrophic natural disasters in the Philippines is floods. Twelve (12) million people reside in Metro Manila, National Capital Region (NCR), prone to flooding. A flood can cause widespread devastation resulting in damaged properties and infrastructures and loss of life. By using the analytical hierarchy process, six (6) parameters were selected, namely elevation, slope, lithology, distance from the river, river network density, and flow accumulation. Ranking of these parameters demonstrates that distance from the river with 25.31% and river density with 17.30% ranked the highest causative factor to flooding. This is followed by flow accumulation with 16.72%, elevation with 15.33%, slope with 13.53%, and the least flood causative factor is lithology with 11.8%. The generated flood susceptibility map of Mandaluyong has three (3) classes: high susceptibility, moderate susceptibility, and low susceptibility. The flood susceptibility map generated in this study can be used as an aid for planning flood mitigation, land use planning, and general public awareness. This study can also be used for emergency management and can be applied in the disaster risk management of Mandaluyong.

Keywords: analytical hierarchy process, assessment, flood, geographic information system

Procedia PDF Downloads 200
14180 Optimization of Biodiesel Production from Palm Oil over Mg-Al Modified K-10 Clay Catalyst

Authors: Muhammad Ayoub, Abrar Inayat, Bhajan Lal, Sintayehu Mekuria Hailegiorgis

Abstract:

Biodiesel which comes from pure renewable resources provide an alternative fuel option for future because of limited fossil fuel resources as well as environmental concerns. The transesterification of vegetable oils for biodiesel production is a promising process to overcome this future crises of energy. The use of heterogeneous catalysts greatly simplifies the technological process by facilitating the separation of the post-reaction mixture. The purpose of the present work was to examine a heterogeneous catalyst, in particular, Mg-Al modified K-10 clay, to produce methyl esters of palm oil. The prepared catalyst was well characterized by different latest techniques. In this study, the transesterification of palm oil with methanol was studied in a heterogeneous system in the presence of Mg-Al modified K-10 clay as solid base catalyst and then optimized these results with the help of Design of Experiments software. The results showed that methanol is the best alcohol for this reaction condition. The best results was achieved for optimization of biodiesel process. The maximum conversion of triglyceride (88%) was noted after 8 h of reaction at 60 ̊C, with a 6:1 molar ratio of methanol to palm oil and 3 wt % of prepared catalyst.

Keywords: palm oil, transestrefication, clay, biodiesel, mesoporous clay, K-10

Procedia PDF Downloads 396
14179 Synthesis of Liposomal Vesicles by a Novel Supercritical Fluid Process

Authors: Wen-Chyan Tsai, Syed S. H. Rizvi

Abstract:

Organic solvent residues are always associated with liposomes produced by the traditional techniques like the thin film hydration and reverse phase evaporation methods, which limit the applications of these vesicles in the pharmaceutical, food and cosmetic industries. Our objective was to develop a novel and benign process of liposomal microencapsulation by using supercritical carbon dioxide (SC-CO2) as the sole phospholipid-dissolving medium and a green substitute for organic solvents. This process consists of supercritical fluid extraction followed by rapid expansion via a nozzle and automatic cargo suction. Lecithin and cholesterol mixed in 10:1 mass ratio were dissolved in SC-CO2 at 20 ± 0.5 MPa and 60 oC. After at least two hours of equilibrium, the lecithin/cholesterol-laden SC-CO2 was passed through a 1000-micron nozzle and immediately mixed with the cargo solution to form liposomes. Liposomal micro-encapsulation was conducted at three pressures (8.27, 12.41, 16.55 MPa), three temperatures (75, 83 and 90 oC) and two flow rates (0.25 ml/sec and 0.5 ml/sec). Liposome size, zeta potential and encapsulation efficiency were characterized as functions of the operating parameters. The average liposomal size varied from 400-500 nm to 1000-1200 nm when the pressure was increased from 8.27 to 16.55 MPa. At 12.41 MPa, 90 oC and 0.25 ml per second of 0.2 M glucose cargo loading rate, the highest encapsulation efficiency of 31.65 % was achieved. Under a confocal laser scanning microscope, large unilamellar vesicles and multivesicular vesicles were observed to make up a majority of the liposomal emulsion. This new approach is a rapid and continuous process for bulk production of liposomes using a green solvent. Based on the results to date, it is feasible to apply this technique to encapsulate hydrophilic compounds inside the aqueous core as well as lipophilic compounds in the phospholipid bilayers of the liposomes for controlled release, solubility improvement and targeted therapy of bioactive compounds.

Keywords: liposome, micro encapsulation, supercritical carbon dioxide, non-toxic process

Procedia PDF Downloads 431
14178 CIPP Evaluation of Online Broadcasting of Suan Dusit Rajabhat University

Authors: Somkiat Korbuakaew, Winai Mankhatitham, Anchan Chongcharoen, Wichar Kunkum

Abstract:

This research’s objective is to evaluate the online broadcasting of Suan Dusit Rajabhat Univeristy by CIPP model. The evaluation was separated into 4 parts: context factor, input factor, process factor and product factor. Sample group in this research were 399 participants who were university’s executive, staff and students. Questionnaires and interview were the research tools. Data were analyzed by computer program. Statistics used here were percentage, mean, and standard deviation. Findings are as follows: 1. Context factor: The context factor here in this research was university’s executives, staff and students. The study shows that they would like to use online broadcasting to be the educational tool and IT development. 2. Input factor: The input factor was the modern IT equipment to create interesting teaching materials and develop education in general. 3. Process factor: The process factor in this study was the publication of the program that it should be promoted more among students and should be more objective. 4. Product factor: The product factor in this study was the purpose of the program that it expands the educational channel for students.

Keywords: evaluation, project, internet, online broadcasting

Procedia PDF Downloads 526
14177 Comparing the Experimental Thermal Conductivity Results Using Transient Methods

Authors: Sofia Mylona, Dale Hume

Abstract:

The main scope of this work is to compare the experimental thermal conductivity results of fluids between devices using transient techniques. A range of different liquids within a range of viscosities was measured with two or more devices, and the results were compared between the different methods and the reference equations wherever it was available. The liquids selected are the most commonly used in academic or industrial laboratories to calibrate their thermal conductivity instruments having a variety of thermal conductivity, viscosity, and density. Three transient methods (Transient Hot Wire, Transient Plane Source, and Transient Line Source) were compared for the thermal conductivity measurements taken by using them. These methods have been chosen as the most accurate and because they all follow the same idea; as a function of the logarithm of time, the thermal conductivity is calculated from the slope of a plot of sensor temperature rise. For all measurements, the selected temperature range was at the atmospheric level from 10 to 40 ° C. Our results are coming with an agreement with the objections of several scientists over the reliability of the results of a few popular devices. The observation was surprising that the device used in many laboratories for fast measurements of liquid thermal conductivity display deviations of 500 percent which can be very poorly reproduced.

Keywords: accurate data, liquids, thermal conductivity, transient methods.

Procedia PDF Downloads 160
14176 Characterization of an Almond Shell Composite Based on PHBH

Authors: J. Ivorra-Martinez, L. Quiles-Carrillo, J. Gomez-Caturla, T. Boronat, R. Balart

Abstract:

The utilization of almond crop by-products to obtain PHBH-based composites was carried out by using an extrusion process followed by an injection to obtain test samples. To improve the properties of the resulting composite, the incorporation of OLA 8 as a coupling agent and plasticizer was additionally considered. A characterization process was carried out by the measurement of mechanical properties, thermal properties, surface morphology, and water absorption ability. The use of the almond residue allows obtaining composites based on PHBH with a higher environmental interest and lower cost.

Keywords: almond shell, PHBH, composites, compatibilization

Procedia PDF Downloads 103
14175 A Novel Machining Method and Tool-Path Generation for Bent Mandrel

Authors: Hong Lu, Yongquan Zhang, Wei Fan, Xiangang Su

Abstract:

Bent mandrel has been widely used as precise mould in automobile industry, shipping industry and aviation industry. To improve the versatility and efficiency of turning method of bent mandrel with fixed rotational center, an instantaneous machining model based on cutting parameters and machine dimension is prospered in this paper. The spiral-like tool path generation approach in non-axisymmetric turning process of bent mandrel is developed as well to deal with the error of part-to-part repeatability in existed turning model. The actual cutter-location points are calculated by cutter-contact points, which are obtained from the approach of spiral sweep process using equal-arc-length segment principle in polar coordinate system. The tool offset is set to avoid the interference between tool and work piece is also considered in the machining model. Depend on the spindle rotational angle, synchronization control of X-axis, Z-axis and C-axis is adopted to generate the tool-path of the turning process. The simulation method is developed to generate NC program according to the presented model, which includes calculation of cutter-location points and generation of tool-path of cutting process. With the approach of a bent mandrel taken as an example, the maximum offset of center axis is 4mm in the 3D space. Experiment results verify that the machining model and turning method are appropriate for the characteristics of bent mandrel.

Keywords: bent mandrel, instantaneous machining model, simulation method, tool-path generation

Procedia PDF Downloads 336
14174 KCBA, A Method for Feature Extraction of Colonoscopy Images

Authors: Vahid Bayrami Rad

Abstract:

In recent years, the use of artificial intelligence techniques, tools, and methods in processing medical images and health-related applications has been highlighted and a lot of research has been done in this regard. For example, colonoscopy and diagnosis of colon lesions are some cases in which the process of diagnosis of lesions can be improved by using image processing and artificial intelligence algorithms, which help doctors a lot. Due to the lack of accurate measurements and the variety of injuries in colonoscopy images, the process of diagnosing the type of lesions is a little difficult even for expert doctors. Therefore, by using different software and image processing, doctors can be helped to increase the accuracy of their observations and ultimately improve their diagnosis. Also, by using automatic methods, the process of diagnosing the type of disease can be improved. Therefore, in this paper, a deep learning framework called KCBA is proposed to classify colonoscopy lesions which are composed of several methods such as K-means clustering, a bag of features and deep auto-encoder. Finally, according to the experimental results, the proposed method's performance in classifying colonoscopy images is depicted considering the accuracy criterion.

Keywords: colorectal cancer, colonoscopy, region of interest, narrow band imaging, texture analysis, bag of feature

Procedia PDF Downloads 57
14173 Folding Pathway and Thermodynamic Stability of Monomeric GroEL

Authors: Sarita Puri, Tapan K. Chaudhuri

Abstract:

Chaperonin GroEL is a tetradecameric Escherichia coli protein having identical subunits of 57 kDa. The elucidation of thermodynamic parameters related to stability for the native GroEL is not feasible as it undergoes irreversible unfolding because of its large size (800kDa) and multimeric nature. Nevertheless, it is important to determine the thermodynamic stability parameters for the highly stable GroEL protein as it helps in folding and holding of many substrate proteins during many cellular stresses. Properly folded monomers work as building-block for the formation of native tetradecameric GroEL. Spontaneous refolding behavior of monomeric GroEL makes it suitable for protein-denaturant interactions and thermodynamic stability based studies. The urea mediated unfolding is a three state process which means there is the formation of one intermediate state along with native and unfolded states. The heat mediated denaturation is a two-state process. The unfolding process is reversible as observed by the spontaneous refolding of denatured protein in both urea and head mediated refolding processes. Analysis of folding/unfolding data provides a measure of various thermodynamic stability parameters for the monomeric GroEL. The proposed mechanism of unfolding of monomeric GroEL is a three state process which involves formation of one stable intermediate having folded apical domain and unfolded equatorial, intermediate domains. Research in progress is to demonstrate the importance of specific residues in stability and oligomerization of GroEL protein. Several mutant versions of GroEL are under investigation to resolve the above mentioned issue.

Keywords: equilibrium unfolding, monomeric GroEl, spontaneous refolding, thermodynamic stability

Procedia PDF Downloads 282
14172 Optimization of the Mechanical Performance of Fused Filament Fabrication Parts

Authors: Iván Rivet, Narges Dialami, Miguel Cervera, Michele Chiumenti

Abstract:

Process parameters in Additive Manufacturing (AM) play a critical role in the mechanical performance of the final component. In order to find the input configuration that guarantees the optimal performance of the printed part, the process-performance relationship must be found. Fused Filament Fabrication (FFF) is the selected demonstrative AM technology due to its great popularity in the industrial manufacturing world. A material model that considers the different printing patterns present in a FFF part is used. A voxelized mesh is built from the manufacturing toolpaths described in the G-Code file. An Adaptive Mesh Refinement (AMR) based on the octree strategy is used in order to reduce the complexity of the mesh while maintaining its accuracy. High-fidelity and cost-efficient Finite Element (FE) simulations are performed and the influence of key process parameters in the mechanical performance of the component is analyzed. A robust optimization process based on appropriate failure criteria is developed to find the printing direction that leads to the optimal mechanical performance of the component. The Tsai-Wu failure criterion is implemented due to the orthotropy and heterogeneity constitutive nature of FFF components and because of the differences between the strengths in tension and compression. The optimization loop implements a modified version of an Anomaly Detection (AD) algorithm and uses the computed metrics to obtain the optimal printing direction. The developed methodology is verified with a case study on an industrial demonstrator.

Keywords: additive manufacturing, optimization, printing direction, mechanical performance, voxelization

Procedia PDF Downloads 63
14171 Minimization Entropic Applied to Rotary Dryers to Reduce the Energy Consumption

Authors: I. O. Nascimento, J. T. Manzi

Abstract:

The drying process is an important operation in the chemical industry and it is widely used in the food, grain industry and fertilizer industry. However, for demanding a considerable consumption of energy, such a process requires a deep energetic analysis in order to reduce operating costs. This paper deals with thermodynamic optimization applied to rotary dryers based on the entropy production minimization, aiming at to reduce the energy consumption. To do this, the mass, energy and entropy balance was used for developing a relationship that represents the rate of entropy production. The use of the Second Law of Thermodynamics is essential because it takes into account constraints of nature. Since the entropy production rate is minimized, optimals conditions of operations can be established and the process can obtain a substantial gain in energy saving. The minimization strategy had been led using classical methods such as Lagrange multipliers and implemented in the MATLAB platform. As expected, the preliminary results reveal a significant energy saving by the application of the optimal parameters found by the procedure of the entropy minimization It is important to say that this method has shown easy implementation and low cost.

Keywords: thermodynamic optimization, drying, entropy minimization, modeling dryers

Procedia PDF Downloads 258