Search results for: software defined radios
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7539

Search results for: software defined radios

5319 Groundwater Level Modelling by ARMA and PARMA Models (Case Study: Qorveh Aquifer)

Authors: Motalleb Byzedi, Seyedeh Chaman Naderi Korvandan

Abstract:

Regarding annual statistics of groundwater level resources about current piezometers at Qorveh plains, both ARMA & PARMA modeling methods were applied in this study by the using of SAMS software. Upon performing required tests, a model was used with minimum amount of Akaike information criteria and suitable model was selected for piezometers. Then it was possible to make necessary estimations by using these models for future fluctuations in each piezometer. According to the results, ARMA model had more facilities for modeling of aquifer. Also it was cleared that eastern parts of aquifer had more failures than other parts. Therefore it is necessary to prohibit critical parts along with more supervision on taking rates of wells.

Keywords: qorveh plain, groundwater level, ARMA, PARMA

Procedia PDF Downloads 292
5318 Behavior of Composite Timber-Concrete Beam with CFRP Reinforcement

Authors: O. Vlcek

Abstract:

The paper deals with current issues in the research of advanced methods to increase the reliability of traditional timber structural elements. It analyses the issue of strengthening of bent timber beams, such as ceiling beams in old (historical) buildings with the additional concrete slab in combination with externally bonded fibre-reinforced polymer. The study evaluates deflection of a selected group of timber beams with concrete slab and additional CFRP reinforcement using different calculating methods and observes differences in results from different calculating methods. An elastic calculation method and evaluation with FEM analysis software were used.

Keywords: timber-concrete composite, strengthening, fibre-reinforced polymer, theoretical analysis

Procedia PDF Downloads 319
5317 Application of Optical Method Based on Laser Devise as Non-Destructive Testing for Calculus of Mechanical Deformation

Authors: R. Daïra, V. Chalvidan

Abstract:

We present the speckle interferometry method to determine the deformation of a piece. This method of holographic imaging using a CCD camera for simultaneous digital recording of two states object and reference. The reconstruction is obtained numerically. This latest method has the advantage of being simpler than the methods currently available, and it does not suffer the holographic configuration faults online. Furthermore, it is entirely digital and avoids heavy analysis after recording the hologram. This work was carried out in the laboratory HOLO 3 (optical metrology laboratory in Saint Louis, France) and it consists in controlling qualitatively and quantitatively the deformation of object by using a camera CCD connected to a computer equipped with software of Fringe Analysis.

Keywords: speckle, nondestructive testing, interferometry, image processing

Procedia PDF Downloads 501
5316 Numerical Erosion Investigation of Standalone Screen (Wire-Wrapped) Due to the Impact of Sand Particles Entrained in a Single-Phase Flow (Water Flow)

Authors: Ahmed Alghurabi, Mysara Mohyaldinn, Shiferaw Jufar, Obai Younis, Abdullah Abduljabbar

Abstract:

Erosion modeling equations were typically acquired from regulated experimental trials for solid particles entrained in single-phase or multi-phase flows. Evidently, those equations were later employed to predict the erosion damage caused by the continuous impacts of solid particles entrained in streamflow. It is also well-known that the particle impact angle and velocity do not change drastically in gas-sand flow erosion prediction; hence an accurate prediction of erosion can be projected. On the contrary, high-density fluid flows, such as water flow, through complex geometries, such as sand screens, greatly affect the sand particles’ trajectories/tracks and consequently impact the erosion rate predictions. Particle tracking models and erosion equations are frequently applied simultaneously as a method to improve erosion visualization and estimation. In the present work, computational fluid dynamic (CFD)-based erosion modeling was performed using a commercially available software; ANSYS Fluent. The continuous phase (water flow) behavior was simulated using the realizable K-epsilon model, and the secondary phase (solid particles), having a 5% flow concentration, was tracked with the help of the discrete phase model (DPM). To accomplish a successful erosion modeling, three erosion equations from the literature were utilized and introduced to the ANSYS Fluent software to predict the screen wire-slot velocity surge and estimate the maximum erosion rates on the screen surface. Results of turbulent kinetic energy, turbulence intensity, dissipation rate, the total pressure on the screen, screen wall shear stress, and flow velocity vectors were presented and discussed. Moreover, the particle tracks and path-lines were also demonstrated based on their residence time, velocity magnitude, and flow turbulence. On one hand, results from the utilized erosion equations have shown similarities in screen erosion patterns, locations, and DPM concentrations. On the other hand, the model equations estimated slightly different values of maximum erosion rates of the wire-wrapped screen. This is solely based on the fact that the utilized erosion equations were developed with some assumptions that are controlled by the experimental lab conditions.

Keywords: CFD simulation, erosion rate prediction, material loss due to erosion, water-sand flow

Procedia PDF Downloads 168
5315 A Medical Resource Forecasting Model for Emergency Room Patients with Acute Hepatitis

Authors: R. J. Kuo, W. C. Cheng, W. C. Lien, T. J. Yang

Abstract:

Taiwan is a hyper endemic area for the Hepatitis B virus (HBV). The estimated total number of HBsAg carriers in the general population who are more than 20 years old is more than 3 million. Therefore, a case record review is conducted from January 2003 to June 2007 for all patients with a diagnosis of acute hepatitis who were admitted to the Emergency Department (ED) of a well-known teaching hospital. The cost for the use of medical resources is defined as the total medical fee. In this study, principal component analysis (PCA) is firstly employed to reduce the number of dimensions. Support vector regression (SVR) and artificial neural network (ANN) are then used to develop the forecasting model. A total of 117 patients meet the inclusion criteria. 61% patients involved in this study are hepatitis B related. The computational result shows that the proposed PCA-SVR model has superior performance than other compared algorithms. In conclusion, the Child-Pugh score and echogram can both be used to predict the cost of medical resources for patients with acute hepatitis in the ED.

Keywords: acute hepatitis, medical resource cost, artificial neural network, support vector regression

Procedia PDF Downloads 423
5314 LORA: A Learning Outcome Modelling Approach for Higher Education

Authors: Aqeel Zeid, Hasna Anees, Mohamed Adheeb, Mohamed Rifan, Kalpani Manathunga

Abstract:

To achieve constructive alignment in a higher education program, a clear set of learning outcomes must be defined. Traditional learning outcome definition techniques such as Bloom’s taxonomy are not written to be utilized by the student. This might be disadvantageous for students in student-centric learning settings where the students are expected to formulate their own learning strategies. To solve the problem, we propose the learning outcome relation and aggregation (LORA) model. To achieve alignment, we developed learning outcome, assessment, and resource authoring tools which help teachers to tag learning outcomes during creation. A pilot study was conducted with an expert panel consisting of experienced professionals in the education domain to evaluate whether the LORA model and tools present an improvement over the traditional methods. The panel unanimously agreed that the model and tools are beneficial and effective. Moreover, it helped them model learning outcomes in a more student centric and descriptive way.

Keywords: learning design, constructive alignment, Bloom’s taxonomy, learning outcome modelling

Procedia PDF Downloads 191
5313 Deep Learning for SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network

Procedia PDF Downloads 74
5312 The Wear Recognition on Guide Surface Based on the Feature of Radar Graph

Authors: Youhang Zhou, Weimin Zeng, Qi Xie

Abstract:

Abstract: In order to solve the wear recognition problem of the machine tool guide surface, a new machine tool guide surface recognition method based on the radar-graph barycentre feature is presented in this paper. Firstly, the gray mean value, skewness, projection variance, flat degrees and kurtosis features of the guide surface image data are defined as primary characteristics. Secondly, data Visualization technology based on radar graph is used. The visual barycentre graphical feature is demonstrated based on the radar plot of multi-dimensional data. Thirdly, a classifier based on the support vector machine technology is used, the radar-graph barycentre feature and wear original feature are put into the classifier separately for classification and comparative analysis of classification and experiment results. The calculation and experimental results show that the method based on the radar-graph barycentre feature can detect the guide surface effectively.

Keywords: guide surface, wear defects, feature extraction, data visualization

Procedia PDF Downloads 522
5311 Facility Anomaly Detection with Gaussian Mixture Model

Authors: Sunghoon Park, Hank Kim, Jinwon An, Sungzoon Cho

Abstract:

Internet of Things allows one to collect data from facilities which are then used to monitor them and even predict malfunctions in advance. Conventional quality control methods focus on setting a normal range on a sensor value defined between a lower control limit and an upper control limit, and declaring as an anomaly anything falling outside it. However, interactions among sensor values are ignored, thus leading to suboptimal performance. We propose a multivariate approach which takes into account many sensor values at the same time. In particular Gaussian Mixture Model is used which is trained to maximize likelihood value using Expectation-Maximization algorithm. The number of Gaussian component distributions is determined by Bayesian Information Criterion. The negative Log likelihood value is used as an anomaly score. The actual usage scenario goes like a following. For each instance of sensor values from a facility, an anomaly score is computed. If it is larger than a threshold, an alarm will go off and a human expert intervenes and checks the system. A real world data from Building energy system was used to test the model.

Keywords: facility anomaly detection, gaussian mixture model, anomaly score, expectation maximization algorithm

Procedia PDF Downloads 276
5310 Welfare Estimation in a General Equilibrium Model with Cities

Authors: Oded Hochman

Abstract:

We first show that current measures of welfare changes in the whole economy do not apply to an economy with cities. In addition, since such measures are defined over a partial equilibrium, they capture only partially the effect of a welfare change. We then define a unique and additive measure that we term the modified economic surplus (mES) which fully captures the welfare effects caused by a change in the price of a nationally traded good. We show that the price change causes, on the one hand a change of land rents in the economy and, on the other hand, an equal change of mES that can be estimated by measuring areas in the price-quantity national demand and supply plane. We construct for each city a cost function from which we derive a city’s and, after aggregation, an economy-wide demand and supply functions of nationwide prices and of either the unearned incomes (Marshalian functions) or the utility levels (compensated functions).

Keywords: city cost function, welfare measures, modified compensated variation, modified economic surplus, unearned income function, differential land rents, city size

Procedia PDF Downloads 326
5309 Phosphorus Reduction in Plain and Fully Formulated Oils Using Fluorinated Additives

Authors: Gabi N. Nehme

Abstract:

The reduction of phosphorus and sulfur in engine oil are the main topics of this paper. Very reproducible boundary lubrication tests were conducted as part of Design of Experiment software (DOE) to study the behavior of fluorinated catalyst iron fluoride (FeF3), and polutetrafluoroethylene or Teflon (PTFE) in developing environmentally friendly (reduced P and S) anti-wear additives for future engine oil formulations. Multi-component Chevron fully formulated oil (GF3) and Chevron plain oil were used with the addition of PTFE and catalyst to characterize and analyze their performance. Lower phosphorus blends were the goal of the model solution. Experiments indicated that new sub-micron FeF3 catalyst played an important role in preventing breakdown of the tribofilm.

Keywords: wear, SEM, EDS, friction, lubricants

Procedia PDF Downloads 290
5308 Design and Analysis of Blade Length and Number of Blades of Small Horizontal Axis Wind Turbine

Authors: Ali Gul, Bhart Kumar, Samiullah Ansari

Abstract:

The current research is focused on the study of various lengths of blades (i.e. 1 to 5m) and several bladed rotors (3,5,7 & 9) of small horizontal axis wind turbine under low wind conditions usingQBlade software. Initially, the rotor was designed using airfoil SG6043 with five different lengths of the blades. Subsequently, simulations were carried out in which, under low wind regimes, the power output was observed. Further, four rotors having 3,5,7 & 9 blades were analyzed. However, the most promising coefficient of performance (CP) was observed at the 3-bladed rotor. Both studies established a clear view of harvesting wind energy at low wind speeds that can be mobilized in the energy sector. That suggests the utilization of wind energy at the domestic levelwhich is acceleratory growing in the last few decades.

Keywords: small HAWT, QBlade, BEM, CFD

Procedia PDF Downloads 183
5307 A Technical Overview of LLM-Powered Cover Letter Generation

Authors: Shivani Dinkar Patil, Shirlene Rose Bandela, Revati Vikas Bhavsar, Venkata Chaitanya K., Aryan Agrawal

Abstract:

This project outlines a significant challenge in the job application process: crafting a compelling and relevant cover letter. It highlights the limitations of existing AI-generated cover letter drafts, noting their generic nature and lack of personalization. This project aims at aiding candidates in securing their dream jobs by generating the best possible cover letter tailored to a specific job posting. This is achieved with minimal hassle, leveraging AI technologies to enhance personalization and context. The project distinguishes itself by focusing on the candidate's unique qualifications and experiences, ensuring the cover letter resonates with potential employers and stands out in a pool of applicants.

Keywords: large language models, NLP, software engineering, prompt engineering

Procedia PDF Downloads 11
5306 Low-Level Forced and Ambient Vibration Tests on URM Building Strengthened by Dampers

Authors: Rafik Taleb, Farid Bouriche, Mehdi Boukri, Fouad Kehila

Abstract:

The aim of the paper is to investigate the dynamic behavior of an unreinforced masonry (URM) building strengthened by DC-90 dampers by ambient and low-level forced vibration tests. Ambient and forced vibration techniques are usually applied to reinforced concrete or steel buildings to understand and identify their dynamic behavior, however, less is known about their applicability for masonry buildings. Ambient vibrations were measured before and after strengthening of the URM building by DC-90 dampers system. For forced vibration test, a series of low amplitude steady state harmonic forced vibration tests were conducted after strengthening using eccentric mass shaker. The resonant frequency curves, mode shapes and damping coefficients as well as stress distribution in the steel braces of the DC-90 dampers have been investigated and could be defined. It was shown that the dynamic behavior of the masonry building, even if not regular and with deformable floors, can be effectively represented. It can be concluded that the strengthening of the building does not change the dynamic properties of the building due to the fact of low amplitude excitation which do not activate the dampers.

Keywords: ambient vibrations, masonry buildings, forced vibrations, structural dynamic identification

Procedia PDF Downloads 411
5305 Failure Analysis and Fatigue Life Estimation of a Shaft of a Rotary Draw Bending Machine

Authors: B. Engel, Sara Salman Hassan Al-Maeeni

Abstract:

Human consumption of the Earth's resources increases the need for a sustainable development as an important ecological, social, and economic theme. Re-engineering of machine tools, in terms of design and failure analysis, is defined as steps performed on an obsolete machine to return it to a new machine with the warranty that matches the customer requirement. To understand the future fatigue behavior of the used machine components, it is important to investigate the possible causes of machine parts failure through design, surface, and material inspections. In this study, the failure modes of the shaft of the rotary draw bending machine are inspected. Furthermore, stress and deflection analysis of the shaft subjected to combined torsion and bending loads are carried out by an analytical method and compared with a finite element analysis method. The theoretical fatigue strength, correction factors, and fatigue life sustained by the shaft before damaged are estimated by creating a stress-cycle (S-N) diagram. In conclusion, it is seen that the shaft can work in the second life, but it needs some surface treatments to increase the reliability and fatigue life.

Keywords: failure analysis, fatigue life, FEM analysis, shaft, stress analysis

Procedia PDF Downloads 311
5304 Simulation of Wet Scrubbers for Flue Gas Desulfurization

Authors: Anders Schou Simonsen, Kim Sorensen, Thomas Condra

Abstract:

Wet scrubbers are used for flue gas desulfurization by injecting water directly into the flue gas stream from a set of sprayers. The water droplets will flow freely inside the scrubber, and flow down along the scrubber walls as a thin wall film while reacting with the gas phase to remove SO₂. This complex multiphase phenomenon can be divided into three main contributions: the continuous gas phase, the liquid droplet phase, and the liquid wall film phase. This study proposes a complete model, where all three main contributions are taken into account and resolved using OpenFOAM for the continuous gas phase, and MATLAB for the liquid droplet and wall film phases. The 3D continuous gas phase is composed of five species: CO₂, H₂O, O₂, SO₂, and N₂, which are resolved along with momentum, energy, and turbulence. Source terms are present for four species, energy and momentum, which are affecting the steady-state solution. The liquid droplet phase experiences breakup, collisions, dynamics, internal chemistry, evaporation and condensation, species mass transfer, energy transfer and wall film interactions. Numerous sub-models have been implemented and coupled to realise the above-mentioned phenomena. The liquid wall film experiences impingement, acceleration, atomization, separation, internal chemistry, evaporation and condensation, species mass transfer, and energy transfer, which have all been resolved using numerous sub-models as well. The continuous gas phase has been coupled with the liquid phases using source terms by an approach, where the two software packages are couples using a link-structure. The complete CFD model has been verified using 16 experimental tests from an existing scrubber installation, where a gradient-based pattern search optimization algorithm has been used to tune numerous model parameters to match the experimental results. The CFD model needed to be fast for evaluation in order to apply this optimization routine, where approximately 1000 simulations were needed. The results show that the complex multiphase phenomena governing wet scrubbers can be resolved in a single model. The optimization routine was able to tune the model to accurately predict the performance of an existing installation. Furthermore, the study shows that a coupling between OpenFOAM and MATLAB is realizable, where the data and source term exchange increases the computational requirements by approximately 5%. This allows for exploiting the benefits of both software programs.

Keywords: desulfurization, discrete phase, scrubber, wall film

Procedia PDF Downloads 275
5303 Numerical Analysis of Liquid Metal Magnetohydrodynamic Flows in a Manifold with Three Sub-Channels

Authors: Meimei Wen, Chang Nyung Kim

Abstract:

In the current study, three-dimensional liquid metal (LM) magneto-hydrodynamic (MHD) flows in a manifold with three sub-channels under a uniform magnetic field are numerically investigated. In the manifold, the electrical current can cross channel walls, thus having influence on the flow distribution in each sub-channel. A case with various arrangements of electric conductivity for different parts of channel walls is considered, yielding different current distributions as well as flow distributions in each sub-channel. Here, the imbalance of mass flow rates in the three sub-channels is addressed. Meanwhile, predicted are detailed behaviors of the flow velocity, pressure, current and electric potential of LM MHD flows with three sub-channels. Commercial software CFX is used for the numerical simulation of LM MHD flows.

Keywords: CFX, liquid metal, manifold, MHD flow

Procedia PDF Downloads 348
5302 A Collaborative Teaching and Learning Model between Academy and Industry for Multidisciplinary Engineering Education

Authors: Moon-Soo Kim

Abstract:

In order to cope with the increasing demand for multidisciplinary learning between academy and industry, a collaborative teaching and learning model and related operational tools enabling applications to engineering education are essential. This study proposes a web-based collaborative framework for interactive teaching and learning between academy and industry as an initial step for the development of a web- and mobile-based integrated system for both engineering students and industrial practitioners. The proposed web-based collaborative teaching and learning framework defines several entities such as learner, solver and supporter or sponsor for industrial problems, and also has a systematic architecture to build information system including diverse functions enabling effective interaction among the defined entities regardless of time and places. Furthermore, the framework, which includes knowledge and information self-reinforcing mechanism, focuses on the previous problem-solving records as well as subsequent learners’ creative reusing in solving process of new problems.

Keywords: collaborative teaching and learning model, academy and industry, web-based collaborative framework, self-reinforcing mechanism

Procedia PDF Downloads 326
5301 Development and Metrological Validation of a Control Strategy in Embedded Island Grids Using Battery-Hybrid-Systems

Authors: L. Wilkening, G. Ackermann, T. T. Do

Abstract:

This article presents an approach for stand-alone and grid-connected mode of a German low-voltage grid with high share of photovoltaic. For this purpose, suitable dynamic system models have been developed. This allows the simulation of dynamic events in very small time ranges and the operation management over longer periods of time. Using these simulations, suitable control parameters could be identified, and their effects on the grid can be analyzed. In order to validate the simulation results, a LV-grid test bench has been implemented at the University of Technology Hamburg. The developed control strategies are to be validated using real inverters, generators and different realistic loads. It is shown that a battery hybrid system installed next to a voltage transformer makes it possible to operate the LV-grid in stand-alone mode without using additional information and communication technology and without intervention in the existing grid units. By simulating critical days of the year, suitable control parameters for stable stand-alone operations are determined and set point specifications for different control strategies are defined.

Keywords: battery, e-mobility, photovoltaic, smart grid

Procedia PDF Downloads 147
5300 Observatory of Sustainability of the Algarve Region for Tourism: Proposal for Environmental and Sociocultural Indicators

Authors: Miguel José Oliveira, Fátima Farinha, Elisa M. J. da Silva, Rui Lança, Manuel Duarte Pinheiro, Cátia Miguel

Abstract:

The Observatory of Sustainability of the Algarve Region for Tourism (OBSERVE) will be a valuable tool to assess the sustainability of this region. The OBSERVE tool is designed to provide data and maintain an up-to-date, consistent set of indicators defined to describe the region on the environmental, sociocultural, economic and institutional domains. This ongoing two-year project has the active participation of the Algarve’s stakeholders, since they were consulted and asked to participate in the discussion for the indicators proposal. The environmental and sociocultural indicators chosen must indicate the characteristics of the region and should be in alignment with other global systems used to monitor the sustainability. This paper presents a review of sustainability indicators systems that support the first proposal for the environmental and sociocultural indicators. Others constraints are discussed, namely the existing data and the data available in digital platforms in a format suitable for automatic importation to the platform of OBSERVE. It is intended that OBSERVE will be a valuable tool to assess the sustainability of the region of Algarve.

Keywords: Algarve, development, environmental indicators, observatory, sociocultural indicators, sustainability, tourism

Procedia PDF Downloads 183
5299 Wideband Performance Analysis of C-FDTD Based Algorithms in the Discretization Impoverishment of a Curved Surface

Authors: Lucas L. L. Fortes, Sandro T. M. Gonçalves

Abstract:

In this work, it is analyzed the wideband performance with the mesh discretization impoverishment of the Conformal Finite Difference Time-Domain (C-FDTD) approaches developed by Raj Mittra, Supriyo Dey and Wenhua Yu for the Finite Difference Time-Domain (FDTD) method. These approaches are a simple and efficient way to optimize the scattering simulation of curved surfaces for Dielectric and Perfect Electric Conducting (PEC) structures in the FDTD method, since curved surfaces require dense meshes to reduce the error introduced due to the surface staircasing. Defined, on this work, as D-FDTD-Diel and D-FDTD-PEC, these approaches are well-known in the literature, but the improvement upon their application is not quantified broadly regarding wide frequency bands and poorly discretized meshes. Both approaches bring improvement of the accuracy of the simulation without requiring dense meshes, also making it possible to explore poorly discretized meshes which bring a reduction in simulation time and the computational expense while retaining a desired accuracy. However, their applications present limitations regarding the mesh impoverishment and the frequency range desired. Therefore, the goal of this work is to explore the approaches regarding both the wideband and mesh impoverishment performance to bring a wider insight over these aspects in FDTD applications. The D-FDTD-Diel approach consists in modifying the electric field update in the cells intersected by the dielectric surface, taking into account the amount of dielectric material within the mesh cells edges. By taking into account the intersections, the D-FDTD-Diel provides accuracy improvement at the cost of computational preprocessing, which is a fair trade-off, since the update modification is quite simple. Likewise, the D-FDTD-PEC approach consists in modifying the magnetic field update, taking into account the PEC curved surface intersections within the mesh cells and, considering a PEC structure in vacuum, the air portion that fills the intersected cells when updating the magnetic fields values. Also likewise to D-FDTD-Diel, the D-FDTD-PEC provides a better accuracy at the cost of computational preprocessing, although with a drawback of having to meet stability criterion requirements. The algorithms are formulated and applied to a PEC and a dielectric spherical scattering surface with meshes presenting different levels of discretization, with Polytetrafluoroethylene (PTFE) as the dielectric, being a very common material in coaxial cables and connectors for radiofrequency (RF) and wideband application. The accuracy of the algorithms is quantified, showing the approaches wideband performance drop along with the mesh impoverishment. The benefits in computational efficiency, simulation time and accuracy are also shown and discussed, according to the frequency range desired, showing that poorly discretized mesh FDTD simulations can be exploited more efficiently, retaining the desired accuracy. The results obtained provided a broader insight over the limitations in the application of the C-FDTD approaches in poorly discretized and wide frequency band simulations for Dielectric and PEC curved surfaces, which are not clearly defined or detailed in the literature and are, therefore, a novelty. These approaches are also expected to be applied in the modeling of curved RF components for wideband and high-speed communication devices in future works.

Keywords: accuracy, computational efficiency, finite difference time-domain, mesh impoverishment

Procedia PDF Downloads 138
5298 Aerodynamic Analysis of a Frontal Deflector for Vehicles

Authors: C. Malça, N. Alves, A. Mateus

Abstract:

This work was one of the tasks of the Manufacturing2Client project, whose objective was to develop a frontal deflector to be commercialized in the automotive industry, using new project and manufacturing methods. In this task, in particular, it was proposed to develop the ability to predict computationally the aerodynamic influence of flow in vehicles, in an effort to reduce fuel consumption in vehicles from class 3 to 8. With this aim, two deflector models were developed and their aerodynamic performance analyzed. The aerodynamic study was done using the Computational Fluid Dynamics (CFD) software Ansys CFX and allowed the calculation of the drag coefficient caused by the vehicle motion for the different configurations considered. Moreover, the reduction of diesel consumption and carbon dioxide (CO2) emissions associated with the optimized deflector geometry could be assessed.

Keywords: erodynamic analysis, CFD, CO2 emissions, drag coefficient, frontal deflector, fuel consumption

Procedia PDF Downloads 412
5297 Reviewing the Public Participation Criteria in Traditional Cities: To Achieve Social Sustainability

Authors: Najmeh Malekpour Bahabadi

Abstract:

Small fast-developing Iranian cities with a historical background have no defined criteria for their social sustainability. However, their traditional architecture is well-known as a socially and environmentally sustainable role model. In today's cities, citizens' participation has been considered an effective strategy to achieve social sustainability. By scrutinizing the extent and manner of public participation in traditional Iranian cities, taking Yazd's historical context as a case study, this study examines how these criteria can be applied to developing parts of the city. The paper first reviews the concepts, levels, and approaches of public participation to analyze different modes of citizen participation. Then, exploring social behavior and activities in Yazd, using the qualitative-analytical methodology, the paper compares diverse elements influencing participation with contemporary approaches. The findings of this study would lead to suggestions for the developing parts of the city to enhance their socially sustainable development.

Keywords: citizen participation, social behaviors, traditional city, built environment, social sustainability

Procedia PDF Downloads 131
5296 A Three Tier Secure KQML Interface with Novel Performatives

Authors: Dimple Juneja, Aarti Singh, Renu Hooda

Abstract:

Knowledge Query Manipulation Language (KQML) and FIPA ACL are two prime communication languages existing in multi agent systems (MAS). Both languages are more or less similar in terms of semantics (based on speech act theory) and offer cutting edge competition while establishing agent communication across Internet. In contrast to the fact that software agents operating on the internet are required to be more safeguarded from their counter-peer, both protocols lack security performatives. The paper proposes a three tier security interface with few novel security related performatives enhancing the basic architecture of KQML. The three levels are attestation, certification and trust establishment which enforces a tight security and hence reduces the security breeches.

Keywords: multiagent systems, KQML, FIPA ACL, performatives

Procedia PDF Downloads 414
5295 Isotype and Logical Positivism: A Critical Understanding through Intersemiotic Translation

Authors: Satya Girish Goparaju, Sushmita Pareek

Abstract:

This paper examines two sets of pictograms published in Neurath’s books Basic by Isotype and International Pictorial Language in order to investigate the reasons for pictorial language having become an end in itself despite its potential to be relevant, especially in the 21st century digital age of heightened interlingual engagement. ISOTYPE was developed by Otto Neurath to be an ‘international language’ (pictorial) in the late 1920s. It was derived from the philosophy of logical positivism (of the Vienna Circle), which believed that language can be reduced to sets of direct experiences as bare symbols, devoid of the emotive and expressive functions. In his book International Picture Language, Neurath noted that any language is less clear-cut in one or the other way, and hence the pictorial language was justified. However, Isotype, as an ambitious version of logical positivism in practice distanced itself from the semiotic theories of language, and therefore his pictograms were defined as an independent set of signs rather than signs as a part of the language. This paper attempts to investigate intersemiotic translation in the form of Isotypes and trace the effects of logical positivism on Neurath’s concept of isotypes; the ‘international language’.

Keywords: intersemiotic translation, isotype, logical positivism, Otto Neurath, translation studies

Procedia PDF Downloads 255
5294 Fundamental Solutions for Discrete Dynamical Systems Involving the Fractional Laplacian

Authors: Jorge Gonzalez Camus, Valentin Keyantuo, Mahamadi Warma

Abstract:

In this work, we obtain representation results for solutions of a time-fractional differential equation involving the discrete fractional Laplace operator in terms of generalized Wright functions. Such equations arise in the modeling of many physical systems, for example, chain processes in chemistry and radioactivity. The focus is on the linear problem of the simplified Moore - Gibson - Thompson equation, where the discrete fractional Laplacian and the Caputo fractional derivate of order on (0,2] are involved. As a particular case, we obtain the explicit solution for the discrete heat equation and discrete wave equation. Furthermore, we show the explicit solution for the equation involving the perturbed Laplacian by the identity operator. The main tool for obtaining the explicit solution are the Laplace and discrete Fourier transforms, and Stirling's formula. The methodology mainly is to apply both transforms in the equation, to find the inverse of each transform, and to prove that this solution is well defined, using Stirling´s formula.

Keywords: discrete fractional Laplacian, explicit representation of solutions, fractional heat and wave equations, fundamental

Procedia PDF Downloads 210
5293 Multi-Dimensional Experience of Processing Textual and Visual Information: Case Study of Allocations to Places in the Mind’s Eye Based on Individual’s Semantic Knowledge Base

Authors: Joanna Wielochowska, Aneta Wielochowska

Abstract:

Whilst the relationship between scientific areas such as cognitive psychology, neurobiology and philosophy of mind has been emphasized in recent decades of scientific research, concepts and discoveries made in both fields overlap and complement each other in their quest for answers to similar questions. The object of the following case study is to describe, analyze and illustrate the nature and characteristics of a certain cognitive experience which appears to display features of synaesthesia, or rather high-level synaesthesia (ideasthesia). The following research has been conducted on the subject of two authors, monozygotic twins (both polysynaesthetes) experiencing involuntary associations of identical nature. Authors made attempts to identify which cognitive and conceptual dependencies may guide this experience. Operating on self-introduced nomenclature, the described phenomenon- multi-dimensional processing of textual and visual information- aims to define a relationship that involuntarily and immediately couples the content introduced by means of text or image a sensation of appearing in a certain place in the mind’s eye. More precisely: (I) defining a concept introduced by means of textual content during activity of reading or writing, or (II) defining a concept introduced by means of visual content during activity of looking at image(s) with simultaneous sensation of being allocated to a given place in the mind’s eye. A place can be then defined as a cognitive representation of a certain concept. During the activity of processing information, a person has an immediate and involuntary feel of appearing in a certain place themselves, just like a character of a story, ‘observing’ a venue or a scenery from one or more perspectives and angles. That forms a unique and unified experience, constituting a background mental landscape of text or image being looked at. We came to a conclusion that semantic allocations to a given place could be divided and classified into the categories and subcategories and are naturally linked with an individual’s semantic knowledge-base. A place can be defined as a representation one’s unique idea of a given concept that has been established in their semantic knowledge base. A multi-level structure of selectivity of places in the mind’s eye, as a reaction to a given information (one stimuli), draws comparisons to structures and patterns found in botany. Double-flowered varieties of flowers and a whorl system (arrangement) which is characteristic to components of some flower species were given as an illustrative example. A composition of petals that fan out from one single point and wrap around a stem inspired an idea that, just like in nature, in philosophy of mind there are patterns driven by the logic specific to a given phenomenon. The study intertwines terms perceived through the philosophical lens, such as definition of meaning, subjectivity of meaning, mental atmosphere of places, and others. Analysis of this rare experience aims to contribute to constantly developing theoretical framework of the philosophy of mind and influence the way human semantic knowledge base and processing given content in terms of distinguishing between information and meaning is researched.

Keywords: information and meaning, information processing, mental atmosphere of places, patterns in nature, philosophy of mind, selectivity, semantic knowledge base, senses, synaesthesia

Procedia PDF Downloads 130
5292 Stabilization of Displaced Periodic Orbit Using Feedback Linearization Control Scheme

Authors: Arun Kumar Yadav, Badam Singh Kushvah

Abstract:

In the present work, we investigated displaced periodic orbits in the linear order in the circular restricted three-body Sun-Jupiter system, where the third mass-less body utilizes solar electric sail. The electric solar sail is a new space propulsion concept which uses the solar wind momentum for producing thrust, and it is somewhat like to the more well-known solar radiation pressure sail which is often called simply the solar sail. Moreover, we implement the feedback linearization control scheme to perform the stabilization and trajectory tracking for the nonlinear system. Further, we derived periodic orbits analytically in linear order by introducing a first order approximation. These approximate analytic solutions are utilized in a numerical search to determine displaced periodic orbit in the full nonlinear model. We found the displaced periodic orbit for the defined non-linear model and stabilized the model.

Keywords: solar electric sail, circular restricted three-body problem (CRTBP), displaced orbit, feedback linearization control

Procedia PDF Downloads 193
5291 Study on the Demolition Waste Management in Malaysia Construction Industry

Authors: Gunalan Vasudevan

Abstract:

The Malaysia construction industry generates a large quantity of construction and demolition waste nowadays. In the handbook for demolition work only comprised small portion of demolition waste management. It is important to study and determine the ways to provide a practical guide for the professional in the building industry about handling the demolition waste. In general, demolition defined as tearing down or wrecking of structural work or architectural work of the building and other infrastructures work such as road, bridge and etc. It’s a common misconception that demolition is nothing more than taking down a structure and carrying the debris to a landfill. On many projects, 80-90% of the structure is kept for reuse or recycling which help the owner to save cost. Demolition contractors required a lot of knowledge and experience to minimize the impact of demolition work to the existing surrounding area. For data collecting method, postal questionnaires and interviews have been selected to collect data. Questionnaires have distributed to 80 respondents from the construction industry in Klang Valley. 67 of 80 respondents have replied the questionnaire while 4 people have interviewed. Microsoft Excel and Statistical Package for Social Science version 17.0 were used to analyze the data collected.

Keywords: demolition, waste management, construction material, Malaysia

Procedia PDF Downloads 446
5290 Deep Learning Based Polarimetric SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry

Procedia PDF Downloads 98