Search results for: moisture transfer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3701

Search results for: moisture transfer

1481 Double-Diffusive Natural Convection with Various Partially Heated and Salted Sources Arrangements in an Open Cavity

Authors: Norazam Arbin, Habibis Saleh, Ammar Alsabery, Ishak Hashim

Abstract:

Double-diffusive natural convection in an open top cavity with partial vertical heating and salting sources is investigated numerically. Different temperatures and concentrations are applied at the source location on the right and left walls while the other remains adiabatic except at the open top surface. Various combinations of sources arrangements are imposed at the vertical walls in order to observe the significant impact to the convection. An iterative finite different method is used to solve the dimensionless governing equations. The effects of Marangoni number and sources arrangements on the contours of streamlines, isotherms, and concentrations are visualized as the outcome of the numerical solutions. The average Nusselt and Sherwood number are presented for various sources arrangements. It is clearly observed that the sources arrangements gave major impact on the heat and mass transfer rates. A horizontal-like pattern is found for sources arrangements that near the top-free surface.

Keywords: double-diffusive, Marangoni effect, partial heating, salting

Procedia PDF Downloads 405
1480 English Language Acquisition and Flipped Classroom

Authors: Yuqing Sun

Abstract:

Nowadays, English has been taught in many countries as a second language. One of the major ways to learn this language is through the class teaching. As in the field of second language acquisition, there are many factors to affect its acquisition processes, such as the target language itself, a learner’s personality, cognitive factor, language transfer, and the outward factors (teaching method, classroom, environmental factor, teaching policy, social environment and so on). Flipped Classroom as a newly developed classroom model has been widely used in language teaching classroom, which was, to some extent, accepted by teachers and students for its effect. It distinguishes itself from the traditional classroom for its focus on the learner and its great importance attaching to the personal learning process and the application of technology. The class becomes discussion-targeted, and the class order is somewhat inverted since the teaching process is carried out outside the class, while the class is only for knowledge-internalization. This paper will concentrate on the influences of the flipped classroom, as a classroom affecting factor, on the the process of English acquisition by the way of case studies (English teaching class in China), and the analysis of the mechanism of the flipped classroom itself to propose some feasible advice of promoting the the effectiveness of English acquisition.

Keywords: second language acquisition, English, flipped classroom, case

Procedia PDF Downloads 401
1479 Feasibility Study of Plant Design with Biomass Direct Chemical Looping Combustion for Power Generation

Authors: Reza Tirsadi Librawan, Tara Vergita Rakhma

Abstract:

The increasing demand for energy and concern of global warming are intertwined issues of critical importance. With the pressing needs of clean, efficient and cost-effective energy conversion processes, an alternative clean energy source is needed. Biomass is one of the preferable options because it is clean and renewable. The efficiency for biomass conversion is constrained by the relatively low energy density and high moisture content from biomass. This study based on bio-based resources presents the Biomass Direct Chemical Looping Combustion Process (BDCLC), an alternative process that has a potential to convert biomass in thermal cracking to produce electricity and CO2. The BDCLC process using iron-based oxygen carriers has been developed as a biomass conversion process with in-situ CO2 capture. The BDCLC system cycles oxygen carriers between two reactor, a reducer reactor and combustor reactor in order to convert coal for electric power generation. The reducer reactor features a unique design: a gas-solid counter-current moving bed configuration to achieve the reduction of Fe2O3 particles to a mixture of Fe and FeO while converting the coal into CO2 and steam. The combustor reactor is a fluidized bed that oxidizes the reduced particles back to Fe2O3 with air. The oxidation of iron is an exothermic reaction and the heat can be recovered for electricity generation. The plant design’s objective is to obtain 5 MW of electricity with the design of the reactor in 900 °C, 2 ATM for the reducer and 1200 °C, 16 ATM for the combustor. We conduct process simulation and analysis to illustrate the individual reactor performance and the overall mass and energy management scheme of BDCLC process that developed by Aspen Plus software. Process simulation is then performed based on the reactor performance data obtained in multistage model.

Keywords: biomass, CO2 capture, direct chemical looping combustion, power generation

Procedia PDF Downloads 509
1478 Effect of Citric Acid on Hydrogen-Bond Interactions and Tensile Retention Properties of Citric Acid Modified Thermoplastic Starch Biocomposites

Authors: Da-Wei Wang, Liang Yang, Xuan-Long Peng, Mei-Chuan Kuo, Jen-Taut Yeh

Abstract:

The tensile retention and waterproof properties of thermoplastic starch (TPS) resins were significantly enhanced by modifying with proper amounts of citric acid (CA) and by melt-blending with poly(lactic acid) (PLA), although no distinguished chemical reaction occurred between CA and starch molecules. As evidenced by Fourier transform infrared spectroscopy and Solid-state 13C Nuclear Magnetic Resonance analyses, disruption of intra and interhydrogen-bondings within starch molecules did occur during the modification processes of CA modified TPS (i.e. TPS100CAx) specimens. The tensile strength (σf) retention values of TPS specimens reduced rapidly from 27.8 to 20.5 and 0.4 MPa, respectively, as the conditioning time at 20°C/50% relative humidity (RH) increased from 0 to 7 and 70 days, respectively. While the elongation at break (εf) retention values of TPS specimens increased rapidly from 5.9 to 6.5 and 34.8%, respectively, as the conditioning time increased from 0 to 7 and 70 days. After conditioning at 20°C/50% RH for 70 days, the σf and εf retention values of the best prepared (TPS100CA0.1)30PLA70 specimen are equivalent to 85% and 167% of its initial σf and εf values, respectively, and are more than 105 times higher but 48% lower than those of TPS specimens conditioned at 20°C/50% RH for the same amount of time. Demarcated diffraction peaks, new melting endotherms of recrystallized starch crystals and distinguished ductile characteristics with drawn debris were found for many conditioned TPS specimens, however, only slight retrogradation effect and much less drawn debris was found for most conditioned TPS100CAx and/or (TPS100CA0.1)xPLAy specimens. The significantly improved water proof, tensile retention properties and relatively unchanged in retrogradation effect found for most conditioned TPS100CAx and/or (TPS100CA0.1)xPLAy specimens are apparently due to the efficient blocking of the moisture-absorbing hydroxyl groups (free or hydrogen bonded) by hydrogen-bonding CA with starch molecules during their modification processes.

Keywords: thermoplastic starch, hydrogen-bonding, water proof, strength retention

Procedia PDF Downloads 306
1477 Improving Human Hand Localization in Indoor Environment by Using Frequency Domain Analysis

Authors: Wipassorn Vinicchayakul, Pichaya Supanakoon, Sathaporn Promwong

Abstract:

A human’s hand localization is revised by using radar cross section (RCS) measurements with a minimum root mean square (RMS) error matching algorithm on a touchless keypad mock-up model. RCS and frequency transfer function measurements are carried out in an indoor environment on the frequency ranged from 3.0 to 11.0 GHz to cover federal communications commission (FCC) standards. The touchless keypad model is tested in two different distances between the hand and the keypad. The initial distance of 19.50 cm is identical to the heights of transmitting (Tx) and receiving (Rx) antennas, while the second distance is 29.50 cm from the keypad. Moreover, the effects of Rx angles relative to the hand of human factor are considered. The RCS input parameters are compared with power loss parameters at each frequency. From the results, the performance of the RCS input parameters with the second distance, 29.50 cm at 3 GHz is better than the others.

Keywords: radar cross section, fingerprint-based localization, minimum root mean square (RMS) error matching algorithm, touchless keypad model

Procedia PDF Downloads 342
1476 A Support Vector Machine Learning Prediction Model of Evapotranspiration Using Real-Time Sensor Node Data

Authors: Waqas Ahmed Khan Afridi, Subhas Chandra Mukhopadhyay, Bandita Mainali

Abstract:

The research paper presents a unique approach to evapotranspiration (ET) prediction using a Support Vector Machine (SVM) learning algorithm. The study leverages real-time sensor node data to develop an accurate and adaptable prediction model, addressing the inherent challenges of traditional ET estimation methods. The integration of the SVM algorithm with real-time sensor node data offers great potential to improve spatial and temporal resolution in ET predictions. In the model development, key input features are measured and computed using mathematical equations such as Penman-Monteith (FAO56) and soil water balance (SWB), which include soil-environmental parameters such as; solar radiation (Rs), air temperature (T), atmospheric pressure (P), relative humidity (RH), wind speed (u2), rain (R), deep percolation (DP), soil temperature (ST), and change in soil moisture (∆SM). The one-year field data are split into combinations of three proportions i.e. train, test, and validation sets. While kernel functions with tuning hyperparameters have been used to train and improve the accuracy of the prediction model with multiple iterations. This paper also outlines the existing methods and the machine learning techniques to determine Evapotranspiration, data collection and preprocessing, model construction, and evaluation metrics, highlighting the significance of SVM in advancing the field of ET prediction. The results demonstrate the robustness and high predictability of the developed model on the basis of performance evaluation metrics (R2, RMSE, MAE). The effectiveness of the proposed model in capturing complex relationships within soil and environmental parameters provide insights into its potential applications for water resource management and hydrological ecosystem.

Keywords: evapotranspiration, FAO56, KNIME, machine learning, RStudio, SVM, sensors

Procedia PDF Downloads 70
1475 Error Analysis in English Essays Writing of Thai Students with Different English Language Experiences

Authors: Sirirat Choophan Atthaphonphiphat

Abstract:

The objective of the study is to analyze errors in English essay writing of Thai (Suratthani Rajabhat University)’s students with different English language experiences. 16 subjects were divided into 2 groups depending on their English language experience. The data were collected from English essay writing about 'My daily life'. The finding shows that 275 tokens of errors were found from 240 English sentences. The errors were categorized into 4 types based on frequency counts: grammatical errors, mechanical errors, lexical errors, and structural errors, respectively. The findings support all of the researcher’s hypothesizes, i.e. 1) the students with low English language experience made more errors than those with high English language experience; 2) all errors in English essay writing of Suratthani Rajabhat University’s students, the interlingual errors are more than the intralingual ones; 3) systemic and structural differences between English (target language) and Thai (mother-tongue language) lead to the errors in English essays writing of Suratthani Rajabhat University’s students.

Keywords: applied linguistics, error analysis, interference, language transfer

Procedia PDF Downloads 622
1474 Multi-Classification Deep Learning Model for Diagnosing Different Chest Diseases

Authors: Bandhan Dey, Muhsina Bintoon Yiasha, Gulam Sulaman Choudhury

Abstract:

Chest disease is one of the most problematic ailments in our regular life. There are many known chest diseases out there. Diagnosing them correctly plays a vital role in the process of treatment. There are many methods available explicitly developed for different chest diseases. But the most common approach for diagnosing these diseases is through X-ray. In this paper, we proposed a multi-classification deep learning model for diagnosing COVID-19, lung cancer, pneumonia, tuberculosis, and atelectasis from chest X-rays. In the present work, we used the transfer learning method for better accuracy and fast training phase. The performance of three architectures is considered: InceptionV3, VGG-16, and VGG-19. We evaluated these deep learning architectures using public digital chest x-ray datasets with six classes (i.e., COVID-19, lung cancer, pneumonia, tuberculosis, atelectasis, and normal). The experiments are conducted on six-classification, and we found that VGG16 outperforms other proposed models with an accuracy of 95%.

Keywords: deep learning, image classification, X-ray images, Tensorflow, Keras, chest diseases, convolutional neural networks, multi-classification

Procedia PDF Downloads 93
1473 Analysis of Different Resins in Web-to-Flange Joints

Authors: W. F. Ribeiro, J. L. N. Góes

Abstract:

The industrial process adds to engineering wood products features absent in solid wood, with homogeneous structure and reduced defects, improved physical and mechanical properties, bio-deterioration, resistance and better dimensional stability, improving quality and increasing the reliability of structures wood. These features combined with using fast-growing trees, make them environmentally ecological products, ensuring a strong consumer market. The wood I-joists are manufactured by the industrial profiles bonding flange and web, an important aspect of the production of wooden I-beams is the adhesive joint that bonds the web to the flange. Adhesives can effectively transfer and distribute stresses, thereby increasing the strength and stiffness of the composite. The objective of this study is to evaluate different resins in a shear strain specimens with the aim of analyzing the most efficient resin and possibility of using national products, reducing the manufacturing cost. First was conducted a literature review, where established the geometry and materials generally used, then established and analyzed 8 national resins and produced six specimens for each.

Keywords: engineered wood products, structural resin, wood i-joist, Pinus taeda

Procedia PDF Downloads 279
1472 Reaction Rate of Olive Stone during Combustion in a Bubbling Fluidized Bed

Authors: A. Soria-Verdugo, M. Rubio-Rubio, J. Arrieta, N. García-Hernando

Abstract:

Combustion of biomass is a promising alternative to reduce the high pollutant emission levels associated to the combustion of fossil flues due to the net null emission of CO2 attributed to biomass. However, the biomass selected should also have low contents of nitrogen and sulfur to limit the NOx and SOx emissions derived from its combustion. In this sense, olive stone is an excellent fuel to power combustion reactors with reduced levels of pollutant emissions. In this work, the combustion of olive stone particles is analyzed experimentally in a thermogravimetric analyzer (TGA) and in a bubbling fluidized bed reactor (BFB). The bubbling fluidized bed reactor was installed over a scale, conforming a macro-TGA. In both equipment, the evolution of the mass of the samples was registered as the combustion process progressed. The results show a much faster combustion process in the bubbling fluidized bed reactor compared to the thermogravimetric analyzer measurements, due to the higher heat transfer coefficient and the abrasion of the fuel particles by the bed material in the BFB reactor.

Keywords: olive stone, combustion, reaction rate, fluidized bed

Procedia PDF Downloads 201
1471 Analysis of the Interference from Risk-Determining Factors of Cooperative and Conventional Construction Contracts

Authors: E. Harrer, M. Mauerhofer, T. Werginz

Abstract:

As a result of intensive competition, the building sector is suffering from a high degree of rivalry. Furthermore, there can be observed an unbalanced distribution of project risks. Clients are aimed to shift their own risks into the sphere of the constructors or planners. The consequence of this is that the number of conflicts between the involved parties is inordinately high or even increasing; an alternative approach to counter on that developments are cooperative project forms in the construction sector. This research compares conventional contract models and models with partnering agreements to examine the influence on project risks by an early integration of the involved parties. The goal is to show up deviations in different project stages from the design phase to the project transfer phase. These deviations are evaluated by a survey of experts from the three spheres: clients, contractors and planners. By rating the influence of the participants on specific risk factors it is possible to identify factors which are relevant for a smooth project execution.

Keywords: building projects, contract models, partnering, project risks

Procedia PDF Downloads 276
1470 Influence of Water Hardness on Column Adsorption of Paracetamol by Biomass of Babassu Coconut Shell

Authors: O. M. Couto Junior, I. Matos, I. M. Fonseca, P. A. Arroyo, E. A. Silva, M. A. S. D. Barros

Abstract:

This study was the adsorption of paracetamol from aqueous solutions on fixed beds of activated carbon from babassy coconut shell. Several operation conditions on the shape of breakthrough curves were investigated and proposed model is successfully validated with the literature data and obtained experimental data. The initial paracetamol concentration increases from 20 to 50 mg.L-1, and the break point time decreases, tb, from 18.00 to 10.50 hours. The fraction of unused bed length, HUNB, at break-through point is obtained in the range of 1.62 to 2.81 for 20 to 50 mg.L-1 of initial paracetamol concentration. The presence of Ca+2 and Mg+2 are responsible for increasing the hardness of the water, affects significantly the adsorption kinetics, and lower removal efficiency by adsorption of paracetamol on activated carbons. The axial dispersion coefficients, DL, was constants for concentrated feed solution, but this parameter has different values for deionized and hardness water. The mass transfer coefficient, Ks, was increasing with concentrated feed solution.

Keywords: paracetamol, adsorption, water hardness, activated carbon.

Procedia PDF Downloads 322
1469 Modeling and Analysis of a Cycling Prosthetic

Authors: John Tolentino, Yong Seok Park

Abstract:

There are currently many people living with limb loss in the USA. The main causes for amputation can range from vascular disease, to trauma, or cancer. This number is expected increase over the next decade. Many patients have a single prosthetic for the first year but end up getting a second one to accommodate their changing physique. Afterwards, the prosthesis gets replaced every three to five years depending on how often it is used. This could cost the patient up to $500,000 throughout their lifetime. Complications do not end there, however. Due to the absence of nerves, it becomes more difficult to traverse terrain with a prosthetic. Moving on an incline or decline becomes difficult, thus curbs and stairs can be a challenge. Certain physical activities, such as cycling, could be even more strenuous. It will need to be relearned to accommodate for the change in weight, center of gravity, and transfer of energy from the leg to the pedal. The purpose of this research project is to develop a new, alternate below-knee cycling prosthetic using Dieter & Schmidt’s design process approach. It will be subjected to fatigue analysis under dynamic loading to observe the limitations as well as the strengths and weaknesses of the prosthetic. Benchmark comparisons will be made between existing prosthetics and the proposed one, examining the benefits and disadvantages. The resulting prosthetic will be 3D printed using acrylonitrile butadiene styrene (ABS) or polycarbonate (PC) plastic.

Keywords: 3D Printing, Cycling, Prosthetic design, Synthetic design.

Procedia PDF Downloads 144
1468 Influence of Multi-Walled Carbon Nanotube on Interface Fracture of Sandwich Composite

Authors: Alak Kumar Patra, Nilanjan Mitra

Abstract:

Interface fracture toughness of glass-epoxy (G/E) PVC core sandwich composite with and without MWCNT has been investigated through experimental methods. Results demonstrate an improvement in interface fracture toughness values (GC) of samples with a certain percentages of MWCNT. In addition, dispersion of MWCNT in epoxy resin through sonication followed by mixing of hardener and vacuum assisted resin transfer method (VARTM) used in this study is an easy and cost effective methodology in comparison to previously adopted other methods limited to laminated composites. The study also identifies the optimum weight percentage of MWCNT addition in the resin system for maximum performance gain in interfacial fracture toughness. The results are supported by high resolution transmission electron microscope (HRTEM) analysis and fracture micrograph of field emission scanning electron microscope (FESEM) investigation.

Keywords: carbon nanotube, foam, glass-epoxy, interfacial fracture, sandwich composite

Procedia PDF Downloads 431
1467 Information Technologies in Human Resources Management - Selected Examples

Authors: A. Karasek

Abstract:

Rapid growth of Information Technologies (IT) has had huge influence on enterprises, and it has contributed to its promotion and increasingly extensive use in enterprises. Information Technologies have to a large extent determined the processes taking place in a enterprise; what is more, IT development has brought the need to adopt a brand new approach to human resources management in an enterprise. The use of IT in Human Resource Management (HRM) is of high importance due to the growing role of information and information technologies. The aim of this paper is to evaluate the use of information technologies in human resources management in enterprises. These practices will be presented in the following areas: Recruitment and selection, development and training, employee assessment, motivation, talent management, personnel service. Results of conducted survey show diversity of solutions applied in particular areas of human resource management. In the future, further development in this area should be expected, as well as integration of individual HRM areas, growing mobile-enabled HR processes and their transfer into the cloud. Presented IT solutions applied in HRM are highly innovative, which is of great significance due to their possible implementation in other enterprises.

Keywords: e-HR, human resources management, HRM practices, HRMS, information technologies

Procedia PDF Downloads 354
1466 Characteristics of a Dye-Entrapped Polypyrrole Film Prepared in the Presence of a Different Dye

Authors: M. Mominul Haque, Danny KY. Wong

Abstract:

In this paper, we will demonstrate the feasibility of selectively removing the azo dye, Acid Red 1, in the presence of a second dye, Indigo Carmine, at conducting polypyrrole films. A long-term goal of this work is to develop an efficient and effective electrochemical treatment of textile effluents that does not yield any toxic by-products. Specifically, pyrrole was initially electrochemically oxidised in the presence of Acid Red 1 to prepare an Acid Red 1-entrapped polypyrrole film. Next, the Acid Red 1 entrapped film was electrochemically reduced to expel the dye from the film. The film was then ready for use in removing the dye in an Acid Red 1 solution. The entrapment efficiency of the film was then studied by spectroscopically determining the change in the absorbance of the dye solution. These experiments were repeated using Indigo Carmine or a mixture of Acid Red 1 and Indigo Carmine, in place of Acid Red 1. Therefore, this has given rise to an environmentally friendly treatment method for textile effluents. In our work, we have also studied the characteristics of Acid Red 1- and Indigo Carmine-entrapped polypyrrole films by scanning electron microscopy, X-ray diffraction and Fourier transfer infrared spectroscopy.

Keywords: azo dye, electrochemical treatment, polypyrrole, Acid Red 1

Procedia PDF Downloads 407
1465 Numerical Modeling of Air Pollution with PM-Particles and Dust

Authors: N. Gigauri, A. Surmava, L. Intskirveli, V. Kukhalashvili, S. Mdivani

Abstract:

The subject of our study is atmospheric air pollution with numerical modeling. In the presented article, as the object of research, there is chosen city Tbilisi, the capital of Georgia, with a population of one and a half million and a difficult terrain. The main source of pollution in Tbilisi is currently vehicles and construction dust. The concentrations of dust and PM (Particulate Matter) were determined in the air of Tbilisi and in its vicinity. There are estimated their monthly maximum, minimum, and average concentrations. Processes of dust propagation in the atmosphere of the city and its surrounding territory are modelled using a 3D regional model of atmospheric processes and an admixture transfer-diffusion equation. There were taken figures of distribution of the polluted cloud and dust concentrations in different areas of the city at different heights and at different time intervals with the background stationary westward and eastward wind. It is accepted that the difficult terrain and mountain-bar circulation affect the deformation of the cloud and its spread, there are determined time periods when the dust concentration in the city is greater than MAC (Maximum Allowable Concentration, MAC=0.5 mg/m³).

Keywords: air pollution, dust, numerical modeling, PM-particles

Procedia PDF Downloads 141
1464 Enhancement of Thermal Performance of Latent Heat Solar Storage System

Authors: Rishindra M. Sarviya, Ashish Agrawal

Abstract:

Solar energy is available abundantly in the world, but it is not continuous and its intensity also varies with time. Due to above reason the acceptability and reliability of solar based thermal system is lower than conventional systems. A properly designed heat storage system increases the reliability of solar thermal systems by bridging the gap between the energy demand and availability. In the present work, two dimensional numerical simulation of the melting of heat storage material is presented in the horizontal annulus of double pipe latent heat storage system. Longitudinal fins were used as a thermal conductivity enhancement. Paraffin wax was used as a heat-storage or phase change material (PCM). Constant wall temperature is applied to heat transfer tube. Presented two-dimensional numerical analysis shows the movement of melting front in the finned cylindrical annulus for analyzing the thermal behavior of the system during melting.

Keywords: latent heat, numerical study, phase change material, solar energy

Procedia PDF Downloads 311
1463 Investigation the Effect of Velocity Inlet and Carrying Fluid on the Flow inside Coronary Artery

Authors: Mohammadreza Nezamirad, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi

Abstract:

In this study OpenFOAM 4.4.2 was used to investigate flow inside the coronary artery of the heart. This step is the first step of our future project, which is to include conjugate heat transfer of the heart with three main coronary arteries. Three different velocities were used as inlet boundary conditions to see the effect of velocity increase on velocity, pressure, and wall shear of the coronary artery. Also, three different fluids, namely the University of Wisconsin solution, gelatin, and blood was used to investigate the effect of different fluids on flow inside the coronary artery. A code based on Reynolds Stress Navier Stokes (RANS) equations was written and implemented with the real boundary condition that was calculated based on MRI images. In order to improve the accuracy of the current numerical scheme, hex dominant mesh is utilized. When the inlet velocity increases to 0.5 m/s, velocity, wall shear stress, and pressure increase at the narrower parts.

Keywords: CFD, simulation, OpenFOAM, heart

Procedia PDF Downloads 151
1462 Comparative Study of Antimicrobial, Antioxidant and Physicochemical Properties of Four Culinary Herbs Grown in Sri Lanka

Authors: Thilini Kananke

Abstract:

Culinary herbs have long been considered as significant dietary sources of many potential health-promoting compounds. The present research focused on analysis of antimicrobial, antioxidant and physicochemical properties in selected four culinary herbs namely Murraya koenigii (Curry leaves), Pandanus amaryllifolius (Pandan leaves), Cymbopogon citrates (Lemon grass leaves), and Mentha Piperita (Minchi leaves) obtained from several market sites in Ratnapura District, Sri Lanka. The antimicrobial activity of ethanolic, chloroform and distilled water extracts of culinary herbs were evaluated against the strains of Staphylococcus aureus, Salmonella typhi and Shigella spp. Total phenolic content and the radical scavenging activity (using DPPH assay) of culinary herbs were determined. Four heavy metals (Cu, Cd, Pb and Fe) were analyzed in the selected culinary herbs using the atomic absorption spectroscopy (AAS). Proximate compositions of the selected herbs were analyzed using AOAC official methods. Antimicrobial activity of all selected culinary herbs showed relativity high inhibition zones against S. aureus. Pandan leaves showed the least antimicrobial activity against selected bacterial strains compared with other culinary herbs. Both the highest radical scavenging activity (lower IC50 value) and the total phenolic content (25.57 ±3.54µg GAE/100g) were reported in Mentha piperita extract. The highest concentrations of Cu, Fe and Cd were reported in Curry leaves (29.15 mg/kg), Lemon grass leaves (257.98 mg/kg) and Pandan leaves (6.05 mg/kg) respectively. The heavy metal contents detected in all culinary herbs were below the permitted limits set by WHO/FAO, except Cd. The highest moisture (85.00±0.00%) and fiber (10.66± 2.00%) contents were found in Pandan leaves, while the highest protein (8.94±0.29%), fat (12.3± 2.52%) and ash (3.50± 0.17%) contents were reported in curry leaves. The information obtained from this study highlights the importance of further investigation of other antioxidant, antimicrobial and health promoting compounds of culinary herbs available in Sri Lanka for a detailed comparison.

Keywords: antimicrobial, antioxidant, culinary herbs, proximate analysis

Procedia PDF Downloads 181
1461 Comparison of Storage Facilities on Different Varieties of Orange Fleshed Sweet Potato Grown in Rwanda

Authors: Jean Paul Hategekimana, Dukuzumuremyi Yvonne, Mukeshimana Marthe, Alexandre Niyonshima

Abstract:

Sweet potato (Ipomoea batatas) is a very important staple food crop in Rwanda due to its high growth and consumption in all parts of the country. The effect of seven different storage conditions on the quality and nutritional composition of the three most grown and consumed varieties of orange-fleshed sweet potato (OFSP), namely Kabode, Terimbere, and Vita, were studied over a period of six weeks at Postharvest Service and Training Center of University Rwanda, Busogo Campus. The potato stored under the following conditions (zero energy cooling chamber, ground washed sweet potato, ground unwashed sweet potato, perforated washed sweet potato, perforated unwashed sweet potato, non-perforated washed sweet potato, and non-perforated unwashed sweet potato) were assessed in this study. These storage conditions are the modifications of existing methods currently used in Rwanda for suitable local climatic conditions. Hence, 30kgs of freshly harvested OFSP for each variety were bought from farmers of Gakenke and Rulindo districts and then transported to the postharvest training and service center UR-CAVM, Busogo Campus. 2.5kg of each potato sample was selected and stored under the above-mentioned storage conditions after pretreatment. Data were collected for six weeks on percent weight loss, shrinkability and the general appearance at interval of three days. The stored samples were also analyzed for moisture, crude ash, crude fiber, and reduced sugar levels during the entire storage period. Results showed the difference among the various storage conditions. It was shown that ZECC and non-perforated sacs (in the open air) storage techniques had good potential for storage of orange flesh sweet potato for up to six weeks without considerable change in physical and nutritional parameters compared to other considered conditions and, therefore, can be recommended as more useful for OSFP at farm level and during transport and market storage.

Keywords: ZECC, orange fleshed sweet potato, perforated sacs, storage conditions

Procedia PDF Downloads 68
1460 Study of Ground Level Electric Field under 800 kV HVDC Unipolar Laboratory level Transmission line

Authors: K. Urukundu, K. A. Aravind, Pradeep M. Nirgude, K. Sandhya

Abstract:

Transmission of bulk power over a long distance through HVDC transmission lines is gaining importance. This is because the transfer of bulk power through HVDC, from generating stations to load centers over long distances is more economical. However, these HVDC transmission lines create environmental and interference effects under the right of way of the line due to the ionization of the surrounding atmosphere in the vicinity of HVDC lines. The measurement of ground-level electric field and ionic current density is essential for the evaluation of human effects due to electromagnetic interference of the HVDC transmission line. In this paper, experimental laboratory results of the ground-level electric field under the miniature model of 800 kV monopole HVDC line of length 8 meters are presented in lateral configuration with different heights of the conductor from the ground plane. The results are compared with the simulated test results obtained through Finite Element based software.

Keywords: bundle, conductor, hexagonal, transmission line, ground-level electric field

Procedia PDF Downloads 226
1459 Cellular Architecture of Future Wireless Communication Networks

Authors: Mohammad Yahaghifar

Abstract:

Nowadays Wireless system designers have been facing the continuously increasing demand for high data rates and mobility required by new wireless applications. Evolving future communication network generation cellular wireless networks are envisioned to overcome the fundamental challenges of existing cellular networks, for example, higher data rates, excellent end-to-end performance, and user coverage in hot-spots and crowded areas with lower latency,energy consumption and cost per information transfer. In this paper we propose a potential cellular architecture that separates indoor and outdoor scenarios and discuss various promising technologies for future wireless communication systemssystems, such as massive MIMO, energy-efficient communications,cognitive radio networks, and visible light communications and we disscuse about 5G that is next generation of wireless networks.

Keywords: future challenges in networks, cellur architecture, visible light communication, 5G wireless technologies, spatial modulation, massiva mimo, cognitive radio network, green communications

Procedia PDF Downloads 489
1458 A Neurosymbolic Learning Method for Uplink LTE-A Channel Estimation

Authors: Lassaad Smirani

Abstract:

In this paper we propose a Neurosymbolic Learning System (NLS) as a channel estimator for Long Term Evolution Advanced (LTE-A) uplink. The proposed system main idea based on Neural Network has modules capable of performing bidirectional information transfer between symbolic module and connectionist module. We demonstrate various strengths of the NLS especially the ability to integrate theoretical knowledge (rules) and experiential knowledge (examples), and to make an initial knowledge base (rules) converted into a connectionist network. Also to use empirical knowledge witch by learning will have the ability to revise the theoretical knowledge and acquire new one and explain it, and finally the ability to improve the performance of symbolic or connectionist systems. Compared with conventional SC-FDMA channel estimation systems, The performance of NLS in terms of complexity and quality is confirmed by theoretical analysis and simulation and shows that this system can make the channel estimation accuracy improved and bit error rate decreased.

Keywords: channel estimation, SC-FDMA, neural network, hybrid system, BER, LTE-A

Procedia PDF Downloads 394
1457 A Numerical and Experimental Study on Fast Pyrolysis of Single Wood Particle

Authors: Hamid Rezaei, Xiaotao Bi, C. Jim Lim, Anthony Lau, Shahab Sokhansanj

Abstract:

A one-dimensional heat transfer model coupled with the kinetic information has been used to predict the overall pyrolysis mass loss of a single wood particle. The kinetic parameters were determined experimentally and the regime and characteristics of the conversion were evaluated in terms of the particle size and reactor temperature. The order of overall mass loss changed from n=1 at temperatures lower than 350 °C to n=0.5 at temperatures higher that 350 °C. Conversion time analysis showed that particles larger than 0.5 mm were controlled by internal thermal resistances. The valid range of particle size to use the simplified lumped model depends on the fluid temperature around the particles. The critical particle size was 0.6-0.7 mm for the fluid temperature of 500 °C and 0.9-1.0 mm for the fluid temperature of 100 °C. Experimental pyrolysis of moist particles did not show distinct drying and pyrolysis stages. The process was divided into two hypothetical drying and pyrolysis dominated zones and empirical correlations are developed to predict the rate of mass loss in each zone.

Keywords: pyrolysis, kinetics, model, single particle

Procedia PDF Downloads 321
1456 Vibration Propagation in Structures Through Structural Intensity Analysis

Authors: Takhchi Jamal, Ouisse Morvan, Sadoulet-Reboul Emeline, Bouhaddi Noureddine, Gagliardini Laurent, Bornet Frederic, Lakrad Faouzi

Abstract:

Structural intensity is a technique that can be used to indicate both the magnitude and direction of power flow through a structure from the excitation source to the dissipation sink. However, current analysis is limited to the low frequency range. At medium and high frequencies, a rotational component appear in the field, masking the energy flow and make its understanding difficult or impossible. The objective of this work is to implement a methodology to filter out the rotational components of the structural intensity field in order to fully understand the energy flow in complex structures. The approach is based on the Helmholtz decomposition. It allows to decompose the structural intensity field into rotational, irrotational, and harmonic components. Only the irrotational component is needed to describe the net power flow from a source to a dissipative zone in the structure. The methodology has been applied on academic structures, and it allows a good analysis of the energy transfer paths.

Keywords: structural intensity, power flow, helmholt decomposition, irrotational intensity

Procedia PDF Downloads 180
1455 Tree Resistance to Wind Storm: The Effects of Soil Saturation on Tree Anchorage of Young Pinus pinaster

Authors: P. Defossez, J. M. Bonnefond, D. Garrigou, P. Trichet, F. Danjon

Abstract:

Windstorm damage to European forests has ecological, social and economic consequences of major importance. Most trees during storms are uprooted. While a large amount of work has been done over the last decade on understanding the aerial tree response to turbulent wind flow, much less is known about the root-soil interface, and the impact of soil moisture and root-soil system fatiguing on tree uprooting. Anchorage strength is expected to be reduced by water-logging and heavy rain during storms due to soil strength decrease with soil water content. Our paper is focused on the maritime pine cultivated on sandy soil, as a representative species of the Forêt des Landes, the largest cultivated forest in Europe. This study aims at providing knowledge on the effects of soil saturation on root anchorage. Pulling experiments on trees were performed to characterize the resistance to wind by measuring the critical bending moment (Mc). Pulling tests were performed on 12 maritime pines of 13-years old for two unsaturated soil conditions that represent the soil conditions expected in winter when wind storms occur in France (w=11.46 to 23.34 % gg⁻¹). A magnetic field digitizing technique was used to characterize the three-dimensional architecture of root systems. The soil mechanical properties as function of soil water content were characterized by laboratory mechanical measurements as function of soil water content and soil porosity on remolded samples using direct shear tests at low confining pressure ( < 15 kPa). Remarkably Mc did not depend on w but mainly on the root system morphology. We suggested that the importance of soil water conditions on tree anchorage depends on the tree size. This study gives a new insight on young tree anchorage: roots may sustain by themselves anchorage, whereas adhesion between roots and surrounding soil may be negligible in sandy soil.

Keywords: roots, sandy soil, shear strength, tree anchorage, unsaturated soil

Procedia PDF Downloads 293
1454 Seismic Response and Sensitivity Analysis of Circular Shallow Tunnels

Authors: Siti Khadijah Che Osmi, Mohammed Ahmad Syed

Abstract:

Underground tunnels are one of the most popular public facilities for various applications such as transportation, water transfer, network utilities and etc. Experience from the past earthquake reveals that the underground tunnels also become vulnerable components and may damage at certain percentage depending on the level of ground shaking and induced phenomena. In this paper a numerical analysis is conducted in evaluating the sensitivity of two types of circular shallow tunnel lining models to wide ranging changes in the geotechnical design parameter. Critical analysis has been presented about the current methods of analysis, structural typology, ground motion characteristics, effect of soil conditions and associated uncertainties on the tunnel integrity. The response of the tunnel is evaluated through 2D non-linear finite element analysis, which critically assesses the impact of increasing levels of seismic loads. The finding from this study offer significant information on improving methods to assess the vulnerability of underground structures.

Keywords: geotechnical design parameter, seismic response, sensitivity analysis, shallow tunnel

Procedia PDF Downloads 442
1453 Assessment of Rangeland Condition in a Dryland System Using UAV-Based Multispectral Imagery

Authors: Vistorina Amputu, Katja Tielboerger, Nichola Knox

Abstract:

Primary productivity in dry savannahs is constraint by moisture availability and under increasing anthropogenic pressure. Thus, considering climate change and the unprecedented pace and scale of rangeland deterioration, methods for assessing the status of such rangelands should be easy to apply, yield reliable and repeatable results that can be applied over large spatial scales. Global and local scale monitoring of rangelands through satellite data and labor-intensive field measurements respectively, are limited in accurately assessing the spatiotemporal heterogeneity of vegetation dynamics to provide crucial information that detects degradation in its early stages. Fortunately, newly emerging techniques such as unmanned aerial vehicles (UAVs), associated miniaturized sensors and improving digital photogrammetric software provide an opportunity to transcend these limitations. Yet, they have not been extensively calibrated in natural systems to encompass their complexities if they are to be integrated for long-term monitoring. Limited research using drone technology has been conducted in arid savannas, for example to assess the health status of this dynamic two-layer vegetation ecosystem. In our study, we fill this gap by testing the relationship between UAV-estimated cover of rangeland functional attributes and field data collected in discrete sample plots in a Namibian dryland savannah along a degradation gradient. The first results are based on a supervised classification performed on the ultra-high resolution multispectral imagery to distinguish between rangeland functional attributes (bare, non-woody, and woody), with a relatively good match to the field observations. Integrating UAV-based observations to improve rangeland monitoring could greatly assist in climate-adapted rangeland management.

Keywords: arid savannah, degradation gradient, field observations, narrow-band sensor, supervised classification

Procedia PDF Downloads 137
1452 Estimation of Fouling in a Cross-Flow Heat Exchanger Using Artificial Neural Network Approach

Authors: Rania Jradi, Christophe Marvillet, Mohamed Razak Jeday

Abstract:

One of the most frequently encountered problems in industrial heat exchangers is fouling, which degrades the thermal and hydraulic performances of these types of equipment, leading thus to failure if undetected. And it occurs due to the accumulation of undesired material on the heat transfer surface. So, it is necessary to know about the heat exchanger fouling dynamics to plan mitigation strategies, ensuring a sustainable and safe operation. This paper proposes an Artificial Neural Network (ANN) approach to estimate the fouling resistance in a cross-flow heat exchanger by the collection of the operating data of the phosphoric acid concentration loop. The operating data of 361 was used to validate the proposed model. The ANN attains AARD= 0.048%, MSE= 1.811x10⁻¹¹, RMSE= 4.256x 10⁻⁶ and r²=99.5 % of accuracy which confirms that it is a credible and valuable approach for industrialists and technologists who are faced with the drawbacks of fouling in heat exchangers.

Keywords: cross-flow heat exchanger, fouling, estimation, phosphoric acid concentration loop, artificial neural network approach

Procedia PDF Downloads 199