Search results for: machine learning techniques
11979 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack
Authors: Varun Agarwal
Abstract:
Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images
Procedia PDF Downloads 13011978 Examining the Perceived Usefulness of ICTs for Learning about Indigenous Foods
Authors: Khumbuzile M. Ngcobo, Seraphin D. Eyono Obono
Abstract:
Science and technology has a major impact on many societal domains such as communication, medicine, food, transportation, etc. However, this dominance of modern technology can have a negative unintended impact on indigenous systems, and in particular on indigenous foods. This problem serves as a motivation to this study whose aim is to examine the perceptions of learners on the usefulness of Information and Communication Technologies (ICT's) for learning about indigenous foods. This aim will be subdivided into two types of research objectives. The design and identification of theories and models will be achieved using literature content analysis. The objective on the empirical testing of such theories and models will be achieved through the survey of Hospitality studies learners from different schools in the iLembe and Umgungundlovu Districts of the South African Kwazulu-Natal province. SPSS is used to quantitatively analyse the data collected by the questionnaire of this survey using descriptive statistics and Pearson correlations after the assessment of the validity and the reliability of the data. The main hypothesis behind this study is that there is a connection between the demographics of learners, their perceptions on the usefulness of ICTs for learning about indigenous foods and the following personality an e-learning related theories constructs: computer self-efficacy, trust in ICT systems, and conscientiousness; as suggested by existing studies on learning theories. This hypothesis was fully confirmed by the survey conducted by this study except for the demographic factors where gender and age were not found to be determinant factors of learners’ perceptions on the usefulness of ICT's for learning about indigenous foods.Keywords: e-learning, indigenous foods, information and communication technologies, learning theories, personality
Procedia PDF Downloads 28011977 Professional Competences of E-Learning Lecturers: Case of Russian National Platforms of Open Education
Authors: Polina Pekker
Abstract:
This work analyzes the role of lecturers in e-learning in Russia. It is based on qualitative research of lecturers who conduct courses on Russian national platforms of open education. The platform is based on edx software (provider of massive open online courses). The interviews with e-learning lecturers were conducted: from December 2015 till January 2016 and from April 2016 till May 2016. The results of interviews (face-to-face, telephone, skype) show, firstly, the difference between the role of lecturers in e-learning and in traditional education and, secondly, that the competition between lecturers is high in Russia. The results of interviews in Russia show that e-learning lecturer should have several special professional competences: the ability to keep attention of audiences without real contact, the ability to work on camera and competences related with e-learning course support (test, forum, communication on forum and etc.) It is concluded that lecturers need special course on acting and speech skills and on conducting and organizing of e-learning course in Russia. It is planned to conduct French study. When results from French research will be totally ready, they will be compared to Russian. As well French platform, France Universite Numerique, was launched earlier, in January 2014, so Russian lecturers should get best practice from the French colleagues.Keywords: e-courses lecturer, e-learning, professional competences of lecturers, national Russian and French platforms of open education
Procedia PDF Downloads 19211976 Renovating Language Laboratories for Pedagogical and Technological Advancements in the New Era
Authors: Paul Lam, Chi Him Chan, Alan Tse
Abstract:
Language laboratories have been widely used in language learning, starting in the middle of the last century as one of the earliest forms of educational technology. They are designed to assist students’ language learning with technological innovations. Traditional language laboratories provide individual workstations that allow students to access multimedia language resources. In this type of facility, students can train their listening and speaking abilities, and teachers can also assess the performance of an individual student. Although such a setting promotes a student-centered pedagogy by encouraging students to work at their own pace and according to their own needs, it still favours a traditional, behaviourist language learning pedagogy which focuses on repetitive drilling. The change of pedagogies poses challenges to both the teachers and the facilities. The peer-learning pedagogy advocates that language learning should focus on the social aspect, which emphasizes the importance of everyday communication in language learning. The self-access, individual workstation language laboratories may not be able to provide the flexibility for interaction in the new pedagogies. Modern advancement in technology is another factor that drove our language laboratory renovation. In particular, mobile and wireless technology enabled the use of smaller and more flexible devices, making possible much clever use of space. The Chinese University of Hong Kong (CUHK) renovated nine existing language laboratories to provide lighter and more advanced equipment, movable tables, and round desks. These facilities allow more flexibility and encourage students’ interaction. It is believed that the renovated language laboratories can serve different peer learning activities and thus support peer-learning pedagogies in language teaching and learning. A survey has been conducted to collect comments from the teachers who have used the renovated language laboratories and received forty-four response. The teachers’ comments reveal that they experienced different challenges in using the renovated language laboratories, and there is a need to provide guidance to teachers during the technological and pedagogical transition. For example, teachers need instruction on using the newly installed devices such as touch-monitor and visualizer. They also need advice on planning new teaching and learning activities. Nevertheless, teachers appreciated that the renovated language laboratories are flexible and provide more spaces for different learning activities.Keywords: language laboratories, language learning, peer-learning, student interaction
Procedia PDF Downloads 10711975 Major Depressive Disorder: Diagnosis based on Electroencephalogram Analysis
Authors: Wajid Mumtaz, Aamir Saeed Malik, Syed Saad Azhar Ali, Mohd Azhar Mohd Yasin
Abstract:
In this paper, a technique based on electroencephalogram (EEG) analysis is presented, aiming for diagnosing major depressive disorder (MDD) among a potential population of MDD patients and healthy controls. EEG is recognized as a clinical modality during applications such as seizure diagnosis, index for anesthesia, detection of brain death or stroke. However, its usability for psychiatric illnesses such as MDD is less studied. Therefore, in this study, for the sake of diagnosis, 2 groups of study participants were recruited, 1) MDD patients, 2) healthy people as controls. EEG data acquired from both groups were analyzed involving inter-hemispheric asymmetry and composite permutation entropy index (CPEI). To automate the process, derived quantities from EEG were utilized as inputs to classifier such as logistic regression (LR) and support vector machine (SVM). The learning of these classification models was tested with a test dataset. Their learning efficiency is provided as accuracy of classifying MDD patients from controls, their sensitivities and specificities were reported, accordingly (LR =81.7 % and SVM =81.5 %). Based on the results, it is concluded that the derived measures are indicators for diagnosing MDD from a potential population of normal controls. In addition, the results motivate further exploring other measures for the same purpose.Keywords: major depressive disorder, diagnosis based on EEG, EEG derived features, CPEI, inter-hemispheric asymmetry
Procedia PDF Downloads 54611974 Role-Governed Categorization and Category Learning as a Result from Structural Alignment: The RoleMap Model
Authors: Yolina A. Petrova, Georgi I. Petkov
Abstract:
The paper presents a symbolic model for category learning and categorization (called RoleMap). Unlike the other models which implement learning in a separate working mode, role-governed category learning and categorization emerge in RoleMap while it does its usual reasoning. The model is based on several basic mechanisms known as reflecting the sub-processes of analogy-making. It steps on the assumption that in their everyday life people constantly compare what they experience and what they know. Various commonalities between the incoming information (current experience) and the stored one (long-term memory) emerge from those comparisons. Some of those commonalities are considered to be highly important, and they are transformed into concepts for further use. This process denotes the category learning. When there is missing knowledge in the incoming information (i.e. the perceived object is still not recognized), the model makes anticipations about what is missing, based on the similar episodes from its long-term memory. Various such anticipations may emerge for different reasons. However, with time only one of them wins and is transformed into a category member. This process denotes the act of categorization.Keywords: analogy-making, categorization, category learning, cognitive modeling, role-governed categories
Procedia PDF Downloads 14211973 Detection Method of Federated Learning Backdoor Based on Weighted K-Medoids
Authors: Xun Li, Haojie Wang
Abstract:
Federated learning is a kind of distributed training and centralized training mode, which is of great value in the protection of user privacy. In order to solve the problem that the model is vulnerable to backdoor attacks in federated learning, a backdoor attack detection method based on a weighted k-medoids algorithm is proposed. First of all, this paper collates the update parameters of the client to construct a vector group, then uses the principal components analysis (PCA) algorithm to extract the corresponding feature information from the vector group, and finally uses the improved k-medoids clustering algorithm to identify the normal and backdoor update parameters. In this paper, the backdoor is implanted in the federation learning model through the model replacement attack method in the simulation experiment, and the update parameters from the attacker are effectively detected and removed by the defense method proposed in this paper.Keywords: federated learning, backdoor attack, PCA, k-medoids, backdoor defense
Procedia PDF Downloads 11411972 Performance Evaluation of Production Schedules Based on Process Mining
Authors: Kwan Hee Han
Abstract:
External environment of enterprise is rapidly changing majorly by global competition, cost reduction pressures, and new technology. In these situations, production scheduling function plays a critical role to meet customer requirements and to attain the goal of operational efficiency. It deals with short-term decision making in the production process of the whole supply chain. The major task of production scheduling is to seek a balance between customer orders and limited resources. In manufacturing companies, this task is so difficult because it should efficiently utilize resource capacity under the careful consideration of many interacting constraints. At present, many computerized software solutions have been utilized in many enterprises to generate a realistic production schedule to overcome the complexity of schedule generation. However, most production scheduling systems do not provide sufficient information about the validity of the generated schedule except limited statistics. Process mining only recently emerged as a sub-discipline of both data mining and business process management. Process mining techniques enable the useful analysis of a wide variety of processes such as process discovery, conformance checking, and bottleneck analysis. In this study, the performance of generated production schedule is evaluated by mining event log data of production scheduling software system by using the process mining techniques since every software system generates event logs for the further use such as security investigation, auditing and error bugging. An application of process mining approach is proposed for the validation of the goodness of production schedule generated by scheduling software systems in this study. By using process mining techniques, major evaluation criteria such as utilization of workstation, existence of bottleneck workstations, critical process route patterns, and work load balance of each machine over time are measured, and finally, the goodness of production schedule is evaluated. By using the proposed process mining approach for evaluating the performance of generated production schedule, the quality of production schedule of manufacturing enterprises can be improved.Keywords: data mining, event log, process mining, production scheduling
Procedia PDF Downloads 27911971 Exploiting SLMail Server with a Developed Buffer Overflow with Kali Linux
Authors: Senesh Wijayarathne
Abstract:
This study focuses on how someone could develop a Buffer Overflow and could use that to exploit the SLMail Server. This study uses a Kali Linux V2018.4 Virtual Machine and Windows 7 - Internet Explorer V8 Virtual Machine (IPv4 Address - 192.168.56.107). This study starts by sending continued bytes to the SLMail Server to find the crashing point range and creating a unique pattern of the length of the crashing point range to control the Extended Instruction Pointer (EIP). Then by sending all characters to SLMail Server, we could observe and find which characters are not rendered properly by the software, also known as Bad Characters. By finding the ‘Jump to the ESP register (JMP ESP) and with the help of ‘Mona Modules’, we could use msfvenom to create a non-stage windows reverse shell payload. By including all the details gathered previously on one script, we could get a system-level reverse shell of the Windows 7 PC. The end of this paper will discuss how to mitigate this vulnerability.Keywords: slmail server, extended instruction pointer, jump to the esp register, bad characters, virtual machine, windows 7, kali Linux, buffer overflow, Seattle lab, vulnerability
Procedia PDF Downloads 16511970 Complex Learning Tasks and Their Impact on Cognitive Engagement for Undergraduate Engineering Students
Authors: Anastassis Kozanitis, Diane Leduc, Alain Stockless
Abstract:
This paper presents preliminary results from a two-year funded research program looking to analyze and understand the relationship between high cognitive engagement, higher order cognitive processes employed in situations of complex learning tasks, and the use of active learning pedagogies in engineering undergraduate programs. A mixed method approach was used to gauge student engagement and their cognitive processes when accomplishing complex tasks. Quantitative data collected from the self-report cognitive engagement scale shows that deep learning approach is positively correlated with high levels of complex learning tasks and the level of student engagement, in the context of classroom active learning pedagogies. Qualitative analyses of in depth face-to-face interviews reveal insights into the mechanisms influencing students’ cognitive processes when confronted with open-ended problem resolution. Findings also support evidence that students will adjust their level of cognitive engagement according to the specific didactic environment.Keywords: cognitive engagement, deep and shallow strategies, engineering programs, higher order cognitive processes
Procedia PDF Downloads 32411969 Intelligent Rheumatoid Arthritis Identification System Based Image Processing and Neural Classifier
Authors: Abdulkader Helwan
Abstract:
Rheumatoid joint inflammation is characterized as a perpetual incendiary issue which influences the joints by hurting body tissues Therefore, there is an urgent need for an effective intelligent identification system of knee Rheumatoid arthritis especially in its early stages. This paper is to develop a new intelligent system for the identification of Rheumatoid arthritis of the knee utilizing image processing techniques and neural classifier. The system involves two principle stages. The first one is the image processing stage in which the images are processed using some techniques such as RGB to gryascale conversion, rescaling, median filtering, background extracting, images subtracting, segmentation using canny edge detection, and features extraction using pattern averaging. The extracted features are used then as inputs for the neural network which classifies the X-ray knee images as normal or abnormal (arthritic) based on a backpropagation learning algorithm which involves training of the network on 400 X-ray normal and abnormal knee images. The system was tested on 400 x-ray images and the network shows good performance during that phase, resulting in a good identification rate 97%.Keywords: rheumatoid arthritis, intelligent identification, neural classifier, segmentation, backpropoagation
Procedia PDF Downloads 53211968 Critical Analysis of Different Actuation Techniques for a Micro Cantilever
Authors: B. G. Sheeparamatti, Prashant Hanasi, Vanita Abbigeri
Abstract:
The objective of this work is to carry out a critical comparison of different actuation mechanisms like electrostatic, thermal, piezoelectric, and magnetic with reference to a microcantilever. The relevant parameters like force generated, displacement are compared in actuation methods. With these results, they help in choosing the best actuation method for a particular application. In this study, Comsol/Multiphysics software is used. Modeling and simulation are done by considering the microcantilever of same dimensions as an actuator using all the above-mentioned actuation techniques. In addition to their small size, micro actuators consume very little power and are capable of accurate results. In this work, a comparison of actuation mechanisms is done to decide the efficient system in the micro domain.Keywords: actuation techniques, microswitch, micro actuator, microsystems
Procedia PDF Downloads 40911967 Smart Services for Easy and Retrofittable Machine Data Collection
Authors: Till Gramberg, Erwin Gross, Christoph Birenbaum
Abstract:
This paper presents the approach of the Easy2IoT research project. Easy2IoT aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. It focuses on the development of physical hardware and software to easily capture machine activities from on a sawing machine, benefiting various stakeholders in the SME value chain, including machine operators, tool manufacturers and service providers. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements and potential solutions for smart services are derived. The focus is on providing actionable recommendations, competencies and easy integration through no-/low-code applications to facilitate implementation and connectivity within production networks. At the core of the project is a novel, non-invasive measurement and analysis system that can be easily deployed and made IIoT-ready. This system collects machine data without interfering with the machines themselves. It does this by non-invasively measuring the tension on a sawing machine. The collected data is then connected and analyzed using artificial intelligence (AI) to provide smart services through a platform-based application. Three Smart Services are being developed within Easy2IoT to provide immediate benefits to users: Wear part and product material condition monitoring and predictive maintenance for sawing processes. The non-invasive measurement system enables the monitoring of tool wear, such as saw blades, and the quality of consumables and materials. Service providers and machine operators can use this data to optimize maintenance and reduce downtime and material waste. Optimize Overall Equipment Effectiveness (OEE) by monitoring machine activity. The non-invasive system tracks machining times, setup times and downtime to identify opportunities for OEE improvement and reduce unplanned machine downtime. Estimate CO2 emissions for connected machines. CO2 emissions are calculated for the entire life of the machine and for individual production steps based on captured power consumption data. This information supports energy management and product development decisions. The key to Easy2IoT is its modular and easy-to-use design. The non-invasive measurement system is universally applicable and does not require specialized knowledge to install. The platform application allows easy integration of various smart services and provides a self-service portal for activation and management. Innovative business models will also be developed to promote the sustainable use of the collected machine activity data. The project addresses the digitalization gap between large enterprises and SME. Easy2IoT provides SME with a concrete toolkit for IIoT adoption, facilitating the digital transformation of smaller companies, e.g. through retrofitting of existing machines.Keywords: smart services, IIoT, IIoT-platform, industrie 4.0, big data
Procedia PDF Downloads 7311966 Prediction of Gully Erosion with Stochastic Modeling by using Geographic Information System and Remote Sensing Data in North of Iran
Authors: Reza Zakerinejad
Abstract:
Gully erosion is a serious problem that threading the sustainability of agricultural area and rangeland and water in a large part of Iran. This type of water erosion is the main source of sedimentation in many catchment areas in the north of Iran. Since in many national assessment approaches just qualitative models were applied the aim of this study is to predict the spatial distribution of gully erosion processes by means of detail terrain analysis and GIS -based logistic regression in the loess deposition in a case study in the Golestan Province. This study the DEM with 25 meter result ion from ASTER data has been used. The Landsat ETM data have been used to mapping of land use. The TreeNet model as a stochastic modeling was applied to prediction the susceptible area for gully erosion. In this model ROC we have set 20 % of data as learning and 20 % as learning data. Therefore, applying the GIS and satellite image analysis techniques has been used to derive the input information for these stochastic models. The result of this study showed a high accurate map of potential for gully erosion.Keywords: TreeNet model, terrain analysis, Golestan Province, Iran
Procedia PDF Downloads 53511965 Collaboration and Automatic Tutoring as a Learning Strategy: A Case Study in Programming Courses
Authors: Luis H. Gonzalez-Guerra, Armandina J. Leal-Flores
Abstract:
Students attending classrooms nowadays are habituated to use digital devices all the time and for multiple things. They have been familiar with digital technology throughout their lives so they have developed skills that should be naturally adopted as part of their study strategies. New learning styles require taking in consideration the use of models that support and promote student motivation for learning and development of their creative thinking skills. To achieve student learning in programming courses, different strategies are used. One of them is a collaboration between students, which is a tool which faculty can take advantage of when teaching these kinds of courses. Moreover, cooperation is an essential skill that society should reinforce in order to promote a healthy social environment and cohabitation. Nevertheless, students will still require support and advice to get a complete and correct programming solution to successfully address and solve the problems given throughout the course. This paper present a model where collaboration between students is associated with an automatic tutoring platform providing an excellent approach for the individual learning in collaborative activities in programming courses, and also motivates students to increase their knowledge regarding the topics covered in the classroom.Keywords: automatic tutoring, collaboration learning, creative thinking, motivation
Procedia PDF Downloads 27211964 Tools and Techniques in Risk Assessment in Public Risk Management Organisations
Authors: Atousa Khodadadyan, Gabe Mythen, Hirbod Assa, Beverley Bishop
Abstract:
Risk assessment and the knowledge provided through this process is a crucial part of any decision-making process in the management of risks and uncertainties. Failure in assessment of risks can cause inadequacy in the entire process of risk management, which in turn can lead to failure in achieving organisational objectives as well as having significant damaging consequences on populations affected by the potential risks being assessed. The choice of tools and techniques in risk assessment can influence the degree and scope of decision-making and subsequently the risk response strategy. There are various available qualitative and quantitative tools and techniques that are deployed within the broad process of risk assessment. The sheer diversity of tools and techniques available to practitioners makes it difficult for organisations to consistently employ the most appropriate methods. This tools and techniques adaptation is rendered more difficult in public risk regulation organisations due to the sensitive and complex nature of their activities. This is particularly the case in areas relating to the environment, food, and human health and safety, when organisational goals are tied up with societal, political and individuals’ goals at national and international levels. Hence, recognising, analysing and evaluating different decision support tools and techniques employed in assessing risks in public risk management organisations was considered. This research is part of a mixed method study which aimed to examine the perception of risk assessment and the extent to which organisations practise risk assessment’ tools and techniques. The study adopted a semi-structured questionnaire with qualitative and quantitative data analysis to include a range of public risk regulation organisations from the UK, Germany, France, Belgium and the Netherlands. The results indicated the public risk management organisations mainly use diverse tools and techniques in the risk assessment process. The primary hazard analysis; brainstorming; hazard analysis and critical control points were described as the most practiced risk identification techniques. Within qualitative and quantitative risk analysis, the participants named the expert judgement, risk probability and impact assessment, sensitivity analysis and data gathering and representation as the most practised techniques.Keywords: decision-making, public risk management organisations, risk assessment, tools and techniques
Procedia PDF Downloads 28211963 Design and Finite Element Analysis of Clamp Cylinder for Capacity Augmentation of Injection Moulding Machine
Authors: Vimal Jasoliya, Purnank Bhatt, Mit Shah
Abstract:
The Injection Moulding is one of the principle methods of conversions of plastics into various end products using a very wide range of plastics materials from commodity plastics to specialty engineering plastics. Injection Moulding Machines are rated as per the tonnage force applied. The work present includes Design & Finite Element Analysis of a structure component of injection moulding machine i.e. clamp cylinder. The work of the project is to upgrade the 1300T clamp cylinder to 1500T clamp cylinder for injection moulding machine. The design of existing clamp cylinder of 1300T is checked. Finite Element analysis is carried out for 1300T clamp cylinder in ANSYS Workbench, and the stress values are compared with acceptance criteria and theoretical calculation. The relation between the clamp cylinder diameter and the tonnage capacity has been derived and verified for 1300T clamp cylinder. The same correlation is used to find out the thickness for 1500T clamp cylinder. The detailed design of 1500T cylinder is carried out based on calculated thickness.Keywords: clamp cylinder, fatigue analysis, finite element analysis, injection moulding machines
Procedia PDF Downloads 33511962 Diagnosis of Intermittent High Vibration Peaks in Industrial Gas Turbine Using Advanced Vibrations Analysis
Authors: Abubakar Rashid, Muhammad Saad, Faheem Ahmed
Abstract:
This paper provides a comprehensive study pertaining to diagnosis of intermittent high vibrations on an industrial gas turbine using detailed vibrations analysis, followed by its rectification. Engro Polymer & Chemicals Limited, a Chlor-Vinyl complex located in Pakistan has a captive combined cycle power plant having two 28 MW gas turbines (make Hitachi) & one 15 MW steam turbine. In 2018, the organization faced an issue of high vibrations on one of the gas turbines. These high vibration peaks appeared intermittently on both compressor’s drive end (DE) & turbine’s non-drive end (NDE) bearing. The amplitude of high vibration peaks was between 150-170% on the DE bearing & 200-300% on the NDE bearing from baseline values. In one of these episodes, the gas turbine got tripped on “High Vibrations Trip” logic actuated at 155µm. Limited instrumentation is available on the machine, which is monitored with GE Bently Nevada 3300 system having two proximity probes installed at Turbine NDE, Compressor DE &at Generator DE & NDE bearings. Machine’s transient ramp-up & steady state data was collected using ADRE SXP & DSPI 408. Since only 01 key phasor is installed at Turbine high speed shaft, a derived drive key phasor was configured in ADRE to obtain low speed shaft rpm required for data analysis. By analyzing the Bode plots, Shaft center line plot, Polar plot & orbit plots; rubbing was evident on Turbine’s NDE along with increased bearing clearance of Turbine’s NDE radial bearing. The subject bearing was then inspected & heavy deposition of carbonized coke was found on the labyrinth seals of bearing housing with clear rubbing marks on shaft & housing covering at 20-25 degrees on the inner radius of labyrinth seals. The collected coke sample was tested in laboratory & found to be the residue of lube oil in the bearing housing. After detailed inspection & cleaning of shaft journal area & bearing housing, new radial bearing was installed. Before assembling the bearing housing, cleaning of bearing cooling & sealing air lines was also carried out as inadequate flow of cooling & sealing air can accelerate coke formation in bearing housing. The machine was then taken back online & data was collected again using ADRE SXP & DSPI 408 for health analysis. The vibrations were found in acceptable zone as per ISO standard 7919-3 while all other parameters were also within vendor defined range. As a learning from subject case, revised operating & maintenance regime has also been proposed to enhance machine’s reliability.Keywords: ADRE, bearing, gas turbine, GE Bently Nevada, Hitachi, vibration
Procedia PDF Downloads 14611961 Advantages and Disadvantages of Distance Learning in Comparison with Full-time Teaching from the Perspective of Chinese University Students
Authors: Daniel Ecler
Abstract:
The aim of this paper was to find out how Chinese university students perceive distance learning compared to full-time teaching, to reveal its advantages and disadvantages, and to try to find what elements could be implemented in regular full-time teaching in order to make it more effective. Recent events have shown that online teaching has a significant role to play in the field of education and needs to be given increased attention and scrutiny. For this purpose, a research survey was conducted using semi-structured questionnaires, which aimed to determine the attitudes of Chinese university students to the phenomenon of distance learning. The results of this survey revealed that most students prefer distance learning to full-time teaching, mainly because it gives them more freedom to participate in teaching, regardless of the environment in which they are currently located. In conclusion, it is necessary to mention that the possibility to participate virtually in teaching from anywhere is a huge advantage that could become part of regular teaching in the future. However, further research into this issue will be necessary.Keywords: distance learning, full-time teaching, Chinese college students, cultural background
Procedia PDF Downloads 17611960 A Qualitative Study About a Former Professional Baseball Player with Dyslexia
Authors: Matthias Grunke
Abstract:
In this qualitative study, we interviewed a young man with learning disabilities who played professional baseball for two years. Individuals with severe academic challenges constitute one of the most vulnerable groups of our society. Science has to find ways on how to arm them against life’s challenges and help them to cope with the many risk factors that they are usually confronted with. Team sports like baseball seem to be a suitable means for that purpose. In the interview, our participant talked about his life as a student with severe learning difficulties and related how his career in baseball made his academic challenges appear much less significant. He gave some meaningful insights into what helped him to build a happy and fulfilling life for himself, not only in spite of his challenges but also because of what he's learning disabilities taught him. Support from significant others, a sense of purpose, his fighting spirit ignited by sports, and the success that he experienced on the baseball field were among the most relevant factors. Overall, this study highlights the importance of finding an outlet for young people with learning disabilities where their academic difficulties retreat into the background and their talents are validated.Keywords: baseball, inclusion, learning disabilities, resilience
Procedia PDF Downloads 9711959 Learning on the Go: Practicing Vocabulary with Mobile Apps
Authors: Shoba Bandi-Rao
Abstract:
The lack of college readiness is one of the major contributors to low graduation rates at community colleges, especially among educationally and financially disadvantaged students. About 45% of underprepared high school graduates are required to complete ‘remedial’ reading/writing courses before they can begin taking college-level courses. Mobile apps present ‘bite-size’ learning materials that can be useful for practicing certain literacy skills, such as vocabulary learning. The convenience of mobile phones is ideal for a majority of students at community colleges who hold full or part-time jobs. Mobile apps allow students to learn during small ‘chunks’ of time available to them outside of the class—during subway commute, between classes, etc. Learning with mobile apps is a relatively new area in research, and their effectiveness for learning new words has been inconclusive. Using Mishra & Koehler’s TPCK theoretical framework, this study explored the effectiveness of the mobile app (Quizlet) for learning one hundred common college-level words in ‘remedial’ writing class over one semester. Each week, before coming to class, students studied a list of 10-15 words presented in context within sentences. Students came across these words in the article they read in class making their learning more meaningful. A pre and post-test measured the number of words students knew, learned and remembered. Statistical analysis shows that students performed better by 41% on the post-test indicating that the mobile app was helpful for learning words. Students also completed a short survey each week that sought to determine the amount of time students spent on the vocabulary app. A positive correlation was found between the amount of time spent on the mobile app and the number of words learned. The goal of this research is to capitalize on the convenience of smartphones to (1) better prepare them for college-level course work, and (2) contribute to current literature on mobile learning.Keywords: mobile learning, vocabulary learning, literacy skills, Quizlet
Procedia PDF Downloads 22411958 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification
Authors: Samiah Alammari, Nassim Ammour
Abstract:
When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on HSI dataset Indian Pines. The results confirm the capability of the proposed method.Keywords: continual learning, data reconstruction, remote sensing, hyperspectral image segmentation
Procedia PDF Downloads 26611957 Assessment of the Readiness of Institutions and Undergraduates’ Attitude to Online Learning Mode in Nigerian Universities
Authors: Adedolapo Taiwo Adeyemi, Success Ayodeji Fasanmi
Abstract:
The emergence of the coronavirus pandemic and the rate of the spread affected a lot of activities across the world. This led to the introduction of online learning modes in several countries after institutions were shut down. Unfortunately, most public universities in Nigeria could not switch to the online mode because they were not prepared for it, as they do not have the technological capacity to support a full online learning mode. This study examines the readiness of university and the attitude of undergraduates towards online learning mode in Obafemi Awolowo University (OAU), Ile Ife. It investigated the skills and competencies of students for online learning as well as the university’s readiness towards online learning mode; the effort was made to identify challenges of online teaching and learning in the study area, and suggested solutions were advanced. OAU was selected because it is adjudged to be the leading Information and Communication Technology (ICT) driven institution in Nigeria. The descriptive survey research design was used for the study. A total of 256 academic staff and 1503 undergraduates were selected across six faculties out of the thirteen faculties in the University. Two set of questionnaires were used to get responses from the selected respondents. The result showed that students have the skills and competence to operate e-learning facilities but are faced with challenges such as high data cost, erratic power supply, and lack of gadgets, among others. The study found out that the university was not prepared for online learning mode as it lacks basic technological facilities to support it. The study equally showed that while lecturers possess certain skills in using some e-learning applications, they were limited by the unavailability of online support gadgets, poor internet connectivity, and unstable power supply. Furthermore, the assessment of student attitude towards online learning mode shows that the students found the online learning mode very challenging as they had to bear the huge cost of data. Lecturers also faced the same challenge as they had to pay a lot to buy data, and the networks were sometimes unstable. The study recommended that adequate funding needs to be provided to public universities by the government while the management of institutions must build technological capacities to support online learning mode in the hybrid form and on a full basis in case of future emergencies.Keywords: universities, online learning, undergraduates, attitude
Procedia PDF Downloads 9511956 Learning Mathematics Online: Characterizing the Contribution of Online Learning Environment’s Components to the Development of Mathematical Knowledge and Learning Skills
Authors: Atara Shriki, Ilana Lavy
Abstract:
Teaching for the first time an online course dealing with the history of mathematics, we were struggling with questions related to the design of a proper learning environment (LE). Thirteen high school mathematics teachers, M.Ed. students, attended the course. The teachers were engaged in independent reading of mathematical texts, a task that is recognized as complex due to the unique characteristics of such texts. In order to support the learning processes and develop skills that are essential for succeeding in learning online (e.g. self-regulated learning skills, meta-cognitive skills, reflective ability, and self-assessment skills), the LE comprised of three components aimed at “scaffolding” the learning: (1) An online "self-feedback" questionnaires that included drill-and-practice questions. Subsequent to responding the questions the online system provided a grade and the teachers were entitled to correct their answers; (2) Open-ended questions aimed at stimulating critical thinking about the mathematical contents; (3) Reflective questionnaires designed to assist the teachers in steering their learning. Using a mixed-method methodology, an inquiry study examined the learning processes, the learners' difficulties in reading the mathematical texts and on the unique contribution of each component of the LE to the ability of teachers to comprehend the mathematical contents, and support the development of their learning skills. The results indicate that the teachers found the online feedback as most helpful in developing self-regulated learning skills and ability to reflect on deficiencies in knowledge. Lacking previous experience in expressing opinion on mathematical ideas, the teachers had troubles in responding open-ended questions; however, they perceived this assignment as nurturing cognitive and meta-cognitive skills. The teachers also attested that the reflective questionnaires were useful for steering the learning. Although in general the teachers found the LE as supportive, most of them indicated the need to strengthen instructor-learners and learners-learners interactions. They suggested to generate an online forum to enable them receive direct feedback from the instructor, share ideas with other learners, and consult with them about solutions. Apparently, within online LE, supporting learning merely with respect to cognitive aspects is not sufficient. Leaners also need an emotional support and sense a social presence.Keywords: cognitive and meta-cognitive skills, independent reading of mathematical texts, online learning environment, self-regulated learning skills
Procedia PDF Downloads 62111955 Lifelong Learning in Applied Fields (LLAF) Tempus Funded Project: A Case Study of Problem-Based Learning
Authors: Nirit Raichel, Dorit Alt
Abstract:
Although university teaching is claimed to have a special task to support students in adopting ways of thinking and producing new knowledge anchored in scientific inquiry practices, it is argued that students' habits of learning are still overwhelmingly skewed toward passive acquisition of knowledge from authority sources rather than from collaborative inquiry activities. In order to overcome this critical inadequacy between current educational goals and instructional methods, the LLAF consortium is aimed at developing updated instructional practices that put a premium on adaptability to the emerging requirements of present society. LLAF has created a practical guide for teachers containing updated pedagogical strategies based on the constructivist approach for learning, arranged along Delors’ four theoretical ‘pillars’ of education: Learning to know, learning to do, learning to live together, and learning to be. This presentation will be limited to problem-based learning (PBL), as a strategy introduced in the second pillar. PBL leads not only to the acquisition of technical skills, but also allows the development of skills like problem analysis and solving, critical thinking, cooperation and teamwork, decision- making and self-regulation that can be transferred to other contexts. This educational strategy will be exemplified by a case study conducted in the pre-piloting stage of the project. The case describes a three-fold process implemented in a postgraduate course for in-service teachers, including: (1) learning about PBL (2) implementing PBL in the participants' classes, and (3) qualitatively assessing the contributions of PBL to students' outcomes. An example will be given regarding the ways by which PBL was applied and assessed in civic education for high-school students. Two 9th-grade classes have participated the study; both included several students with learning disability. PBL was applied only in one class whereas traditional instruction was used in the other. Results showed a robust contribution of PBL to students' affective and cognitive outcomes as reflected in their motivation to engage in learning activities, and to further explore the subject. However, students with learning disability were less favorable with this "active" and "annoying" environment. Implications of these findings for the LLAF project will be discussed.Keywords: problem-based learning, higher education, pedagogical strategies
Procedia PDF Downloads 33411954 English and Information and Communication Technology: Zones of Exclusion in Education in Low-Income Countries
Authors: Ram A. Giri, Amna Bedri, Abdou Niane
Abstract:
Exclusion in education on the basis of language in multilingual contexts operates at multiple levels. Learners of diverse ethnolinguistic backgrounds are often expected to learn through English and are pushed further down the learning ladder if they also have to access education through Information and Communication Technology (ICT). The paper explores marginalized children’s lived experiences in accessing technology and English in four low-income countries in Africa and Asia. Based on the findings of the first phase of a multinational qualitative research study, we report on the factors or barriers that affect children’s access, opportunities and motivation for learning through technology and English. ICT and English - the language of ICT and education - can enhance learning and can even be essential. However, these two important keys to education can also function as barriers to accessing quality education, and therefore as zones of exclusion. This paper looks into how marginalized children (aged 13-15) engage in learning through ICT and English and to what extent the restrictive access and opportunities contribute to the widening of the already existing gap in education. By applying the conceptual frameworks of “access and accessibility of learning” and “zones of exclusion,” the paper elucidates how the barriers prevent children’s effective engagement with learning and addresses such questions as to how marginalized children access technology and English for learning; whether the children value English, and what their motivation and opportunity to learn it are. In addition, the paper will point out policy and pedagogic implications.Keywords: exclusion, inclusion, inclusive education, marginalization
Procedia PDF Downloads 23011953 In-situ Acoustic Emission Analysis of a Polymer Electrolyte Membrane Water Electrolyser
Authors: M. Maier, I. Dedigama, J. Majasan, Y. Wu, Q. Meyer, L. Castanheira, G. Hinds, P. R. Shearing, D. J. L. Brett
Abstract:
Increasing the efficiency of electrolyser technology is commonly seen as one of the main challenges on the way to the Hydrogen Economy. There is a significant lack of understanding of the different states of operation of polymer electrolyte membrane water electrolysers (PEMWE) and how these influence the overall efficiency. This in particular means the two-phase flow through the membrane, gas diffusion layers (GDL) and flow channels. In order to increase the efficiency of PEMWE and facilitate their spread as commercial hydrogen production technology, new analytic approaches have to be found. Acoustic emission (AE) offers the possibility to analyse the processes within a PEMWE in a non-destructive, fast and cheap in-situ way. This work describes the generation and analysis of AE data coming from a PEM water electrolyser, for, to the best of our knowledge, the first time in literature. Different experiments are carried out. Each experiment is designed so that only specific physical processes occur and AE solely related to one process can be measured. Therefore, a range of experimental conditions is used to induce different flow regimes within flow channels and GDL. The resulting AE data is first separated into different events, which are defined by exceeding the noise threshold. Each acoustic event consists of a number of consequent peaks and ends when the wave diminishes under the noise threshold. For all these acoustic events the following key attributes are extracted: maximum peak amplitude, duration, number of peaks, peaks before the maximum, average intensity of a peak and time till the maximum is reached. Each event is then expressed as a vector containing the normalized values for all criteria. Principal Component Analysis is performed on the resulting data, which orders the criteria by the eigenvalues of their covariance matrix. This can be used as an easy way of determining which criteria convey the most information on the acoustic data. In the following, the data is ordered in the two- or three-dimensional space formed by the most relevant criteria axes. By finding spaces in the two- or three-dimensional space only occupied by acoustic events originating from one of the three experiments it is possible to relate physical processes to certain acoustic patterns. Due to the complex nature of the AE data modern machine learning techniques are needed to recognize these patterns in-situ. Using the AE data produced before allows to train a self-learning algorithm and develop an analytical tool to diagnose different operational states in a PEMWE. Combining this technique with the measurement of polarization curves and electrochemical impedance spectroscopy allows for in-situ optimization and recognition of suboptimal states of operation.Keywords: acoustic emission, gas diffusion layers, in-situ diagnosis, PEM water electrolyser
Procedia PDF Downloads 15611952 Chinese Vocabulary Acquisition and Mobile Assisted Language Learning
Authors: Yuqing Sun
Abstract:
Chinese has been regarded as one of the most difficult languages in learning due to its complex spelling structure, difficult pronunciation, as well as its varying forms. Since vocabulary acquisition is the basic process to acquire a language, to express yourself, to compose a sentence, and to conduct a communication, so learning the vocabulary is of great importance. However, the vocabulary contains pronunciation, spelling, recognition and application which may seem as a huge work. This may pose a question for the language teachers (language teachers in China who teach Chinese to the foreign students): How to teach them in an effective way? Traditionally, teachers have no choice but teach it all by themselves, then with the development of technology, they can use computer as a tool to help them (Computer Assisted Language Learning or CALL). Now, they move into the Mobile Assisted Language Learning (MALL) method to guide their teaching, upon which the appraisal is convincing. It diversifies the learning material and the way of output, which can activate learners’ curiosity and accelerate their understanding. This paper will focus on actual case studies occurring in the universities in China of teaching the foreign students to learn Chinese, and the analysis of the utilization of WeChat channel as an example of MALL model to explore the active role of MALL to enhance the effectiveness of Chinese vocabulary acquisition.Keywords: Chinese, vocabulary acquisition, MALL, case
Procedia PDF Downloads 41411951 Arabic Light Word Analyser: Roles with Deep Learning Approach
Authors: Mohammed Abu Shquier
Abstract:
This paper introduces a word segmentation method using the novel BP-LSTM-CRF architecture for processing semantic output training. The objective of web morphological analysis tools is to link a formal morpho-syntactic description to a lemma, along with morpho-syntactic information, a vocalized form, a vocalized analysis with morpho-syntactic information, and a list of paradigms. A key objective is to continuously enhance the proposed system through an inductive learning approach that considers semantic influences. The system is currently under construction and development based on data-driven learning. To evaluate the tool, an experiment on homograph analysis was conducted. The tool also encompasses the assumption of deep binary segmentation hypotheses, the arbitrary choice of trigram or n-gram continuation probabilities, language limitations, and morphology for both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), which provide justification for updating this system. Most Arabic word analysis systems are based on the phonotactic morpho-syntactic analysis of a word transmitted using lexical rules, which are mainly used in MENA language technology tools, without taking into account contextual or semantic morphological implications. Therefore, it is necessary to have an automatic analysis tool taking into account the word sense and not only the morpho-syntactic category. Moreover, they are also based on statistical/stochastic models. These stochastic models, such as HMMs, have shown their effectiveness in different NLP applications: part-of-speech tagging, machine translation, speech recognition, etc. As an extension, we focus on language modeling using Recurrent Neural Network (RNN); given that morphological analysis coverage was very low in dialectal Arabic, it is significantly important to investigate deeply how the dialect data influence the accuracy of these approaches by developing dialectal morphological processing tools to show that dialectal variability can support to improve analysis.Keywords: NLP, DL, ML, analyser, MSA, RNN, CNN
Procedia PDF Downloads 4211950 Using Neural Networks for Click Prediction of Sponsored Search
Authors: Afroze Ibrahim Baqapuri, Ilya Trofimov
Abstract:
Sponsored search is a multi-billion dollar industry and makes up a major source of revenue for search engines (SE). Click-through-rate (CTR) estimation plays a crucial role for ads selection, and greatly affects the SE revenue, advertiser traffic and user experience. We propose a novel architecture of solving CTR prediction problem by combining artificial neural networks (ANN) with decision trees. First, we compare ANN with respect to other popular machine learning models being used for this task. Then we go on to combine ANN with MatrixNet (proprietary implementation of boosted trees) and evaluate the performance of the system as a whole. The results show that our approach provides a significant improvement over existing models.Keywords: neural networks, sponsored search, web advertisement, click prediction, click-through rate
Procedia PDF Downloads 572