Search results for: linear predictive coding
2580 Transcriptomic Analysis of Non-Alcoholic Fatty Liver Disease in Cafeteria Diet Induced Obese Rats
Authors: Mohammad Jamal
Abstract:
Non-alcoholic fatty liver disease (NAFLD) has become one of the most chronic liver diseases, prevalent among people with morbid obesity. NAFLD does not develop clinically significant liver disease, however cirrhosis and liver cancer develop in subset and currently there are no approved therapies for the treatment of NAFLD. The study is aimed to understand the various key genes involved in the mechanism of NAFLD which can be valuable for developing diagnostic and predictive biomarkers based on their histologic stage of liver. The study was conducted on 16 male Sprague Dawley rats. The animals were divided in two groups: control group (n=8) fed on ad libitum normal chow and regular water and the cafeteria group (CAF)) (n=8) fed on high fatty/ carbohydrate diet. The animals received their respective diet from 4 weeks onwards from D.O.B until 25 weeks. Liver was extracted and RT² Profiler PCR Array was used to assess the NAFLD related genes. Histological evaluation was performed using H&E stain in liver tissue sections. Our PCR array results showed that genes involved in anti-inflammatory activity (Ifng, IL10), fatty acid uptake/oxidation (Fabp5), apoptosis (Fas), lipogenesis (Gck and Srebf1), Insulin signalling (Igfbp1) and metabolic pathway (pdk4) were upregulated in the liver of cafeteria fed obese rats. Bloated hepatocytes, displaced nucleus and higher lipid content were seen in the liver of cafeteria fed obese rats. Although Liver biopsies remain the gold standard in evaluating NAFLD, however an approach towards non-invasive markers could be used in understanding the physiology, therapeutic potential, and the targets to combat NAFLD.Keywords: biomarkers, cafeteria diet, obesity, NAFLD
Procedia PDF Downloads 1432579 By-Line Analysis of Determinants Insurance Premiums : Evidence from Tunisian Market
Authors: Nadia Sghaier
Abstract:
In this paper, we aim to identify the determinants of the life and non-life insurance premiums of different lines for the case of the Tunisian insurance market over a recent period from 1997 to 2019. The empirical analysis is conducted using the linear cointegration techniques in the panel data framework, which allow both long and short-run relationships. The obtained results show evidence of long-run relationship between premiums, losses, and financial variables (stock market indices and interest rate). Furthermore, we find that the short-run effect of explanatory variables differs across lines. This finding has important implications for insurance tarification and regulation.Keywords: insurance premiums, lines, Tunisian insurance market, cointegration approach in panel data
Procedia PDF Downloads 1982578 Effect of Short Chain Alcohols on Bending Rigidity of Lipid Bilayer
Authors: Buti Suryabrahmam, V. A. Raghunathan
Abstract:
We study the effect of short chain alcohols on mechanical properties of saturated lipid bilayers in the fluid phase. The Bending rigidity of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membrane was measured at 28 °C by employing Vesicle Fluctuation Analysis technique. The concentration and chain length (n) of alcohol in the buffer solution were varied from 0 to 1.5 M and from 2 to 8 respectively. We observed a non-linear reduction in the bending rigidity from ~17×10⁻²⁰ J to ~10×10⁻²⁰ J, for all chain lengths of alcohols used in our experiment. We observed approximately three orders of the concentration difference between ethanol and octanol, to show the similar reduction in the bending values. We attribute this phenomenon to thinning of the bilayer due to the adsorption of alcohols at the bilayer-water interface.Keywords: alcohols, bending rigidity, DMPC, lipid bilayers
Procedia PDF Downloads 1462577 Matrix Completion with Heterogeneous Cost
Authors: Ilqar Ramazanli
Abstract:
The matrix completion problem has been studied broadly under many underlying conditions. The problem has been explored under adaptive or non-adaptive, exact or estimation, single-phase or multi-phase, and many other categories. In most of these cases, the observation cost of each entry is uniform and has the same cost across the columns. However, in many real-life scenarios, we could expect elements from distinct columns or distinct positions to have a different cost. In this paper, we explore this generalization under adaptive conditions. We approach the problem under two different cost models. The first one is that entries from different columns have different observation costs, but within the same column, each entry has a uniform cost. The second one is any two entry has different observation cost, despite being the same or different columns. We provide complexity analysis of our algorithms and provide tightness guarantees.Keywords: matroid optimization, matrix completion, linear algebra, algorithms
Procedia PDF Downloads 1092576 Modeling Breathable Particulate Matter Concentrations over Mexico City Retrieved from Landsat 8 Satellite Imagery
Authors: Rodrigo T. Sepulveda-Hirose, Ana B. Carrera-Aguilar, Magnolia G. Martinez-Rivera, Pablo de J. Angeles-Salto, Carlos Herrera-Ventosa
Abstract:
In order to diminish health risks, it is of major importance to monitor air quality. However, this process is accompanied by the high costs of physical and human resources. In this context, this research is carried out with the main objective of developing a predictive model for concentrations of inhalable particles (PM10-2.5) using remote sensing. To develop the model, satellite images, mainly from Landsat 8, of the Mexico City’s Metropolitan Area were used. Using historical PM10 and PM2.5 measurements of the RAMA (Automatic Environmental Monitoring Network of Mexico City) and through the processing of the available satellite images, a preliminary model was generated in which it was possible to observe critical opportunity areas that will allow the generation of a robust model. Through the preliminary model applied to the scenes of Mexico City, three areas were identified that cause great interest due to the presumed high concentration of PM; the zones are those that present high plant density, bodies of water and soil without constructions or vegetation. To date, work continues on this line to improve the preliminary model that has been proposed. In addition, a brief analysis was made of six models, presented in articles developed in different parts of the world, this in order to visualize the optimal bands for the generation of a suitable model for Mexico City. It was found that infrared bands have helped to model in other cities, but the effectiveness that these bands could provide for the geographic and climatic conditions of Mexico City is still being evaluated.Keywords: air quality, modeling pollution, particulate matter, remote sensing
Procedia PDF Downloads 1552575 The Determinants of Customer’s Purchase Intention of Islamic Credit Card: Evidence from Pakistan
Authors: Nasir Mehmood, Muhammad Yar Khan, Anam Javeed
Abstract:
This study aims to scrutinize the dynamics which tend to impact customer’s purchasing intention of Islamic credit card and nexus of product’s knowledge and religiosity with the attitude of potential Islamic credit card’s customer. The theory of reasoned action strengthened the idea that intentions due to its proven predictive power are most likely to instigate intended consumer behavior. Particularly, the study examines the relationships of perceived financial cost (PFC), subjective norms (SN), and attitude (ATT) with the intention to purchase Islamic credit cards. Using a convenience sampling approach, data have been collected from 450 customers of banks located in Rawalpindi and Islamabad. A five-point Likert scale self-administered questionnaire was used to collect the data. The data were analyzed using the Statistical Package of Social Sciences (SPSS) through the procedures of principal component and multiple regression analysis. The results suggested that customer’s religiosity and product knowledge are strong indicators of attitude towards buying Islamic credit cards. Likewise, subjective norms, attitude, and perceived financial cost have a significant positive impact on customers’ purchase intent of Islamic bank’s credit cards. This study models a useful path for future researchers to further investigate the underlined phenomenon along with a variety of psychodynamic factors which are still in its infancy, at least in the Pakistani banking sector. The study also provides an insight to the practitioners and Islamic bank managers for directing their efforts toward educating customers regarding the use of Islamic credit cards and other financial products.Keywords: attitude, Islamic credit card, religiosity, subjective norms
Procedia PDF Downloads 1442574 Spline Solution of Singularly Perturbed Boundary Value Problems
Authors: Reza Mohammadi
Abstract:
Using quartic spline, we develop a method for numerical solution of singularly perturbed two-point boundary-value problems. The purposed method is fourth-order accurate and applicable to problems both in singular and non-singular cases. The convergence analysis of the method is given. The resulting linear system of equations has been solved by using a tri-diagonal solver. We applied the presented method to test problems which have been solved by other existing methods in references, for comparison of presented method with the existing methods. Numerical results are given to illustrate the efficiency of our methods.Keywords: second-order ordinary differential equation, singularly-perturbed, quartic spline, convergence analysis
Procedia PDF Downloads 2952573 Entrepreneurship Education and Student Entrepreneurial Intention: A Comprehensive Review, Synthesis of Empirical Findings, and Strategic Insights for Future Research Advancements
Authors: Abdul Waris Jalili, Yanqing Wang, Som Suor
Abstract:
This research paper explores the relationship between entrepreneurship education and students' entrepreneurial intentions. It aims to determine if entrepreneurship education reliably predicts students' intention to become entrepreneurs and how and when this relationship occurs. This study aims to investigate the predictive relationship between entrepreneurship education and student entrepreneurial intentions. The goal is to understand the factors that influence this relationship and to identify any mediating or moderating factors. A thorough and systematic search and review of empirical articles published between 2013 and 2023 were conducted. Three databases, Google Scholar, Science Direct, and PubMed, were explored to gather relevant studies. Criteria such as reporting empirical results, publication in English, and addressing the research questions were used to select 35 papers for analysis. The collective findings of the reviewed studies suggest a generally positive relationship between entrepreneurship education and student entrepreneurial intentions. However, recent findings indicate that this relationship may be more complex than previously thought. Mediators and moderators have been identified, highlighting instances where entrepreneurship education indirectly influences student entrepreneurial intentions. The review also emphasizes the need for more robust research designs to establish causality in this field. This research adds to the existing literature by providing a comprehensive review of the relationship between entrepreneurship education and student entrepreneurial intentions. It highlights the complexity of this relationship and the importance of considering mediators and moderators. The study also calls for future research to explore different facets of entrepreneurship education independently and examine complex relationships more comprehensively.Keywords: entrepreneurship, entrepreneurship education, entrepreneurial intention, entrepreneurial self-efficacy
Procedia PDF Downloads 662572 Numerical Treatment of Block Method for the Solution of Ordinary Differential Equations
Authors: A. M. Sagir
Abstract:
Discrete linear multistep block method of uniform order for the solution of first order Initial Value Problems (IVPs) in Ordinary Differential Equations (ODEs) is presented in this paper. The approach of interpolation and collocation approximation are adopted in the derivation of the method which is then applied to first order ordinary differential equations with associated initial conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. Furthermore, a stability analysis and efficiency of the block method are tested on ordinary differential equations, and the results obtained compared favorably with the exact solution.Keywords: block method, first order ordinary differential equations, hybrid, self-starting
Procedia PDF Downloads 4822571 DNA Polymorphism Studies of β-Lactoglobulin Gene in Native Saudi Goat Breeds
Authors: Amr A. El Hanafy, Muhammad I. Qureshi, Jamal Sabir, Mohamed Mutawakil, Mohamed M. Ahmed, Hassan El Ashmaoui, Hassan Ramadan, Mohamed Abou-Alsoud, Mahmoud Abdel Sadek
Abstract:
β-Lactoglobulin (β-LG) is the dominant non-casein whey protein found in bovine milk and of most ruminants. The amino acid sequence of β-LG along with its 3-dimensional structure illustrates linkage with the lipocalin superfamily. Preliminary studies in goats indicated that milk yield can be influenced by polymorphism in genes coding for whey proteins. The aim of this study is to identify and evaluate the incidence of functional polymorphisms in the exonic and intronic portions of β-LG gene in native Saudi goat breeds (Ardi, Habsi, and Harri). Blood samples were collected from 300 animals (100 for each breed) and genomic DNA was extracted using QIAamp DNA extraction Kit. A fragment of the β-LG gene from exon 7 to 3’ flanking region was amplified with pairs of specific primers. Subsequent digestion with Sac II restriction endonuclease revealed two alleles (A and B) and three different banding patterns or genotypes i.e. AA, AB and BB. The statistical analysis showed that β-LG AA genotype had higher milk yield than β-LG AB and β-LG BB genotypes. Nucleotide sequencing of the selected β-LG fragments was done and submitted to GenBank NCBI (Accession No. KJ544248, KJ588275, KJ588276, KJ783455, KJ783456 and KJ874959). Two already established SNPs in exon 7 (+4601 and +4603) and one fresh SNP in the 3’ UTR region were detected in the β-LG fragments with designated AA genotype. The polymorphisms in exon 7 did not produce any amino acid change. Phylogenetic analysis on the basis of nucleotide sequences of native Saudi goats indicated evolutional similarity with the GenBank reference sequences of goat, Bubalus bubalis and Bos taurus.Keywords: β-Lactoglobulin, Saudi goats, PCR-RFLP, functional polymorphism, nucleotide sequencing, phylogenetic analysis
Procedia PDF Downloads 5012570 Linear Study of Electrostatic Ion Temperature Gradient Mode with Entropy Gradient Drift and Sheared Ion Flows
Authors: M. Yaqub Khan, Usman Shabbir
Abstract:
History of plasma reveals that continuous struggle of experimentalists and theorists are not fruitful for confinement up to now. It needs a change to bring the research through entropy. Approximately, all the quantities like number density, temperature, electrostatic potential, etc. are connected to entropy. Therefore, it is better to change the way of research. In ion temperature gradient mode with the help of Braginskii model, Boltzmannian electrons, effect of velocity shear is studied inculcating entropy in the magnetoplasma. New dispersion relation is derived for ion temperature gradient mode, and dependence on entropy gradient drift is seen. It is also seen velocity shear enhances the instability but in anomalous transport, its role is not seen significantly but entropy. This work will be helpful to the next step of tokamak and space plasmas.Keywords: entropy, velocity shear, ion temperature gradient mode, drift
Procedia PDF Downloads 3882569 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining
Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride
Abstract:
In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning
Procedia PDF Downloads 1342568 Piezoelectric Micro-generator Characterization for Energy Harvesting Application
Authors: José E. Q. Souza, Marcio Fontana, Antonio C. C. Lima
Abstract:
This paper presents analysis and characterization of a piezoelectric micro-generator for energy harvesting application. A low-cost experimental prototype was designed to operate as piezoelectric micro-generator in the laboratory. An input acceleration of 9.8m/s2 using a sine signal (peak-to-peak voltage: 1V, offset voltage: 0V) at frequencies ranging from 10Hz to 160Hz generated a maximum average power of 432.4μW (linear mass position = 25mm) and an average power of 543.3μW (angular mass position = 35°). These promising results show that the prototype can be considered for low consumption load application as an energy harvesting micro-generator.Keywords: piezoelectric, micro-generator, energy harvesting, cantilever beam
Procedia PDF Downloads 4652567 Analysis of ZBTB17 Gene rs10927875 Polymorphism in Relation to Dilated Cardiomyopathy in Slovak Population
Authors: I. Boroňová, J. Bernasovská, J. Kmec, E. Petrejčíková
Abstract:
Dilated cardiomyopathy (DCM) is a primary myocardial disease, it is characterized by progressive systolic dysfunction due to cardiac chamber dilatation and inefficient myocardial contractility with estimated prevalence of 37 in 100 000 people. It is the most frequent cause of heart failure and cardiac transplantation in young adults. About one-third of all patients have a suspected familial disease indicating a genetic basis of DCM. Many candidate gene studies in humans have tested the association of single nucleotide polymorphisms (SNPs) in various genes coding for proteins with a known cardiovascular function. In our study we present the results of ZBTB17 gene rs10927875 polymorphism genotyping in relation to dilated cardiomyopathy in Slovak population. The study included 78 individuals, 39 patients with DCM and 39 healthy control persons. The mean age of patients with DCM was 50.7±11.5 years; the mean age of individuals in control group was 51.3±9.8 years. Risk factors detected at baseline in each group included age, sex, body mass index, smoking status, diabetes and blood pressure. Genomic DNA was extracted from leukocytes by a standard methodology and screened for rs10927875 polymorphism in intron of ZBTB17 gene using Real-time PCR method (Step One Applied Biosystems). The distribution of investigated genotypes for rs10927875 polymorphism in the group of patients with DCM was as follows: CC (89.74%), CT (10.26%), TT (0%), and the distribution in the control group: CC (92.31%), CT (5.13%), and TT (2.56%). Using the chi-square (χ2) test we compared genotype and allele frequencies between patients and controls. There was no difference in genotype or allele frequencies in ZBTB17 gene rs10927875 polymorphism between patients and control group (χ2=3.028, p=0.220; χ2=0.264, p=0.608). Our results represent an initial study, it can be considered as preliminary and first of its kind in Slovak population. Further studies of ZBTB17 gene polymorphisms of more numerous files and additional functional investigations are needed to fully understand the role of genetic associations.Keywords: dilated cardiomyopathy, SNP polymorphism, ZBTB17 gene, bioscience
Procedia PDF Downloads 3842566 Prediction of Antibacterial Peptides against Propionibacterium acnes from the Peptidomes of Achatina fulica Mucus Fractions
Authors: Suwapitch Chalongkulasak, Teerasak E-Kobon, Pramote Chumnanpuen
Abstract:
Acne vulgaris is a common skin disease mainly caused by the Gram–positive pathogenic bacterium, Propionibacterium acnes. This bacterium stimulates inflammation process in human sebaceous glands. Giant African snail (Achatina fulica) is alien species that rapidly reproduces and seriously damages agricultural products in Thailand. There were several research reports on the medical and pharmaceutical benefits of this snail mucus peptides and proteins. This study aimed to in silico predict multifunctional bioactive peptides from A. fulica mucus peptidome using several bioinformatic tools for determination of antimicrobial (iAMPpred), anti–biofilm (dPABBs), cytotoxic (Toxinpred), cell membrane penetrating (CPPpred) and anti–quorum sensing (QSPpred) peptides. Three candidate peptides with the highest predictive score were selected and re-designed/modified to improve the required activities. Structural and physicochemical properties of six anti–P. acnes (APA) peptide candidates were performed by PEP–FOLD3 program and the five aforementioned tools. All candidates had random coiled structure and were named as APA1–ori, APA2–ori, APA3–ori, APA1–mod, APA2–mod and APA3–mod. To validate the APA activity, these peptide candidates were synthesized and tested against six isolates of P. acnes. The modified APA peptides showed high APA activity on some isolates. Therefore, our biomimetic mucus peptides could be useful for preventing acne vulgaris and further examined on other activities important to medical and pharmaceutical applications.Keywords: Propionibacterium acnes, Achatina fulica, peptidomes, antibacterial peptides, snail mucus
Procedia PDF Downloads 1332565 Estimation of Population Mean under Random Non-Response in Two-Phase Successive Sampling
Authors: M. Khalid, G. N. Singh
Abstract:
In this paper, we have considered the problem of estimation for population mean, on current (second) occasion in the presence of random non response in two-occasion successive sampling under two phase set-up. Modified exponential type estimators have been proposed, and their properties are studied under the assumptions that numbers of sampling units follow a distribution due to random non response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners.Keywords: successive sampling, random non-response, auxiliary variable, bias, mean square error
Procedia PDF Downloads 5222564 Construction and Analysis of Samurai Sudoku
Authors: A. Danbaba
Abstract:
Samurai Sudoku consists of five Sudoku square designs each having nine treatments in each row (column or sub-block) only once such the five Sudoku designs overlaps. Two or more Samurai designs can be joint together to give an extended Samurai design. In addition, two Samurai designs, each containing five Sudoku square designs, are mutually orthogonal (Graeco). If we superimpose two Samurai designs and obtained a pair of Latin and Greek letters in each row (column or sub-block) of the five Sudoku designs only once, then we have Graeco Samurai design. In this paper, simple method of constructing Samurai designs and mutually orthogonal Samurai design are proposed. In addition, linear models and methods of data analysis for the designs are proposed.Keywords: samurai design, graeco samurai design, sudoku design, row or column swap
Procedia PDF Downloads 2682563 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria
Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov
Abstract:
This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model
Procedia PDF Downloads 642562 Modeling a Closed Loop Supply Chain with Continuous Price Decrease and Dynamic Deterministic Demand
Authors: H. R. Kamali, A. Sadegheih, M. A. Vahdat-Zad, H. Khademi-Zare
Abstract:
In this paper, a single product, multi-echelon, multi-period closed loop supply chain is surveyed, including a variety of costs, time conditions, and capacities, to plan and determine the values and time of the components procurement, production, distribution, recycling and disposal specially for high-tech products that undergo a decreasing production cost and sale price over time. For this purpose, the mathematic model of the problem that is a kind of mixed integer linear programming is presented, and it is finally proved that the problem belongs to the category of NP-hard problems.Keywords: closed loop supply chain, continuous price decrease, NP-hard, planning
Procedia PDF Downloads 3642561 An Evolutionary Approach for QAOA for Max-Cut
Authors: Francesca Schiavello
Abstract:
This work aims to create a hybrid algorithm, combining Quantum Approximate Optimization Algorithm (QAOA) with an Evolutionary Algorithm (EA) in the place of traditional gradient based optimization processes. QAOA’s were first introduced in 2014, where, at the time, their algorithm performed better than the traditional best known classical algorithm for Max-cut graphs. Whilst classical algorithms have improved since then and have returned to being faster and more efficient, this was a huge milestone for quantum computing, and their work is often used as a benchmarking tool and a foundational tool to explore variants of QAOA’s. This, alongside with other famous algorithms like Grover’s or Shor’s, highlights to the world the potential that quantum computing holds. It also presents the reality of a real quantum advantage where, if the hardware continues to improve, this could constitute a revolutionary era. Given that the hardware is not there yet, many scientists are working on the software side of things in the hopes of future progress. Some of the major limitations holding back quantum computing are the quality of qubits and the noisy interference they generate in creating solutions, the barren plateaus that effectively hinder the optimization search in the latent space, and the availability of number of qubits limiting the scale of the problem that can be solved. These three issues are intertwined and are part of the motivation for using EAs in this work. Firstly, EAs are not based on gradient or linear optimization methods for the search in the latent space, and because of their freedom from gradients, they should suffer less from barren plateaus. Secondly, given that this algorithm performs a search in the solution space through a population of solutions, it can also be parallelized to speed up the search and optimization problem. The evaluation of the cost function, like in many other algorithms, is notoriously slow, and the ability to parallelize it can drastically improve the competitiveness of QAOA’s with respect to purely classical algorithms. Thirdly, because of the nature and structure of EA’s, solutions can be carried forward in time, making them more robust to noise and uncertainty. Preliminary results show that the EA algorithm attached to QAOA can perform on par with the traditional QAOA with a Cobyla optimizer, which is a linear based method, and in some instances, it can even create a better Max-Cut. Whilst the final objective of the work is to create an algorithm that can consistently beat the original QAOA, or its variants, due to either speedups or quality of the solution, this initial result is promising and show the potential of EAs in this field. Further tests need to be performed on an array of different graphs with the parallelization aspect of the work commencing in October 2023 and tests on real hardware scheduled for early 2024.Keywords: evolutionary algorithm, max cut, parallel simulation, quantum optimization
Procedia PDF Downloads 602560 The Theory of the Mystery: Unifying the Quantum and Cosmic Worlds
Authors: Md. Najiur Rahman
Abstract:
This hypothesis reveals a profound and symmetrical connection that goes beyond the boundaries of quantum physics and cosmology, revolutionizing our understanding of the fundamental building blocks of the cosmos, given its name ‘The Theory of the Mystery’. This theory has an elegantly simple equation, “R = ∆r / √∆m” which establishes a beautiful and well-crafted relationship between the radius (R) of an elementary particle or galaxy, the relative change in radius (∆r), and the mass difference (∆m) between related entities. It is fascinating to note that this formula presents a super synchronization, one which involves the convergence of every basic particle and any single celestial entity into perfect alignment with its respective mass and radius. In addition, we have a Supporting equation that defines the mass-radius connection of an entity by the equation: R=√m/N, where N is an empirically established constant, determined to be approximately 42.86 kg/m, representing the proportionality between mass and radius. It provides precise predictions, collects empirical evidence, and explores the far-reaching consequences of theories such as General Relativity. This elegant symmetry reveals a fundamental principle that underpins the cosmos: each component, whether small or large, follows a precise mass-radius relationship to exert gravity by a universal law. This hypothesis represents a transformative process towards a unified theory of physics, and the pursuit of experimental verification will show that each particle and galaxy is bound by gravity and plays a unique but harmonious role in shaping the universe. It promises to reveal the great symphony of the mighty cosmos. The predictive power of our hypothesis invites the exploration of entities at the farthest reaches of the cosmos, providing a bridge between the known and the unknown.Keywords: unified theory, quantum gravity, mass-radius relationship, dark matter, uniform gravity
Procedia PDF Downloads 1052559 A Development of a Simulation Tool for Production Planning with Capacity-Booking at Specialty Store Retailer of Private Label Apparel Firms
Authors: Erika Yamaguchi, Sirawadee Arunyanrt, Shunichi Ohmori, Kazuho Yoshimoto
Abstract:
In this paper, we suggest a simulation tool to make a decision of monthly production planning for maximizing a profit of Specialty store retailer of Private label Apparel (SPA) firms. Most of SPA firms are fabless and make outsourcing deals for productions with factories of their subcontractors. Every month, SPA firms make a booking for production lines and manpower in the factories. The booking is conducted a few months in advance based on a demand prediction and a monthly production planning at that time. However, the demand prediction is updated month by month, and the monthly production planning would change to meet the latest demand prediction. Then, SPA firms have to change the capacities initially booked within a certain range to suit to the monthly production planning. The booking system is called “capacity-booking”. These days, though it is an issue for SPA firms to make precise monthly production planning, many firms are still conducting the production planning by empirical rules. In addition, it is also a challenge for SPA firms to match their products and factories with considering their demand predictabilities and regulation abilities. In this paper, we suggest a model for considering these two issues. An objective is to maximize a total profit of certain periods, which is sales minus costs of production, inventory, and capacity-booking penalty. To make a better monthly production planning at SPA firms, these points should be considered: demand predictabilities by random trends, previous and next month’s production planning of the target month, and regulation abilities of the capacity-booking. To decide matching products and factories for outsourcing, it is important to consider seasonality, volume, and predictability of each product, production possibility, size, and regulation ability of each factory. SPA firms have to consider these constructions and decide orders with several factories per one product. We modeled these issues as a linear programming. To validate the model, an example of several computational experiments with a SPA firm is presented. We suppose four typical product groups: basic, seasonal (Spring / Summer), seasonal (Fall / Winter), and spot product. As a result of the experiments, a monthly production planning was provided. In the planning, demand predictabilities from random trend are reduced by producing products which are different product types. Moreover, priorities to produce are given to high-margin products. In conclusion, we developed a simulation tool to make a decision of monthly production planning which is useful when the production planning is set every month. We considered the features of capacity-booking, and matching of products and factories which have different features and conditions.Keywords: capacity-booking, SPA, monthly production planning, linear programming
Procedia PDF Downloads 5192558 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector
Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh
Abstract:
A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score
Procedia PDF Downloads 1342557 Batteryless DCM Boost Converter for Kinetic Energy Harvesting Applications
Authors: Andrés Gomez-Casseres, Rubén Contreras
Abstract:
In this paper, a bidirectional boost converter operated in Discontinuous Conduction Mode (DCM) is presented as a suitable power conditioning circuit for tuning of kinetic energy harvesters without the need of a battery. A nonlinear control scheme, composed by two linear controllers, is used to control the average value of the input current, enabling the synthesization of complex loads. The converter, along with the control system, is validated through SPICE simulations using the LTspice tool. The converter model and the controller transfer functions are derived. From the simulation results, it was found that the input current distortion increases with the introduced phase shift and that, such distortion, is almost entirely present at the zero-crossing point of the input voltage.Keywords: average current control, boost converter, electrical tuning, energy harvesting
Procedia PDF Downloads 7622556 Effect of Irrigation and Hydrogel on the Water Use Efficiency of Zeto-Tiled Green-Gram Relay System in the Eastern Indo Gangetic-Plain
Authors: Benukar Biswas, S. Banerjee, P. K. Bandhyopadhyaya, S. K. Patra, S. Sarkar
Abstract:
Jute can be sown as relay crop in between the lines of 15-20 days old green gram for additional pulse yield without reducing the yield of jute. The main problem of this system is water use efficiency (WUE). The increase in water productivity and reduction in production cost were reported in the zero-tilled crop. The hydrogel can hold water up to 400 times of its weight and can release 95 % of the retained water. The present field study was carried out during 2015-16 at BCKV (tropical sub-humid, 1560 mm annual rainfall, 22058/ N, 88051/ E, 9.75 m AMSL, sandy loam soil, aeric Haplaquept, pH 6.75, organic carbon 5.4 g kg-1, available N 85 kg ha-1, P2O5 15.3 kg ha-1 and K2O 40 kg ha-1) with four levels of irrigation regimes: no irrigation - RF, cumulative pan evaporation 250mm (CPE250), CPE125 and CPE83 and three levels of hydrogel: no hydrogel (H0), 2.5 kg ha-1 (H2.5) and 5 kg ha-1 (H5). Throughout the crop growing period a linear positive relationship remained between Leaf Area Index (LAI) and evapotranspiration rate. The strength of the relationship between ETa and LAI started increasing and reached its peak at 7 WAS (R2=0.78) when green gram was at its maturity, and both the crops covered the nearly entire base area. This relation starts weakening from 13 WAS due to jute leaf shading. A linear relationship between system yield and ET was also obtained in the present study. The variation in system yield might be predicted 75% with ET alone. Effective rainfall was reduced with increasing irrigation frequency due to enhanced water supply in contrast to hydrogel application due to the difference in water storage capacity. Irrigation contributed a major source of variability of ET. Higher irrigation frequency resulted in higher ET loss ranging from 574 mm in RF to 764 mm in CPE83. Hydrogel application also increased water storage on a sustained basis and supplied to crops resulting higher ET from 639 mm in H0 to 671mm in H5. WUE ranged between 0.4 kg m-3 (RF) to 0.63 kg m-3 (CPE83 H5). WUE increased with increased application of irrigation water from 0.42 kg m-3 in RF to 0.57 kg m-3 in CPE 83. Hydrogel application significantly improves the WUE from 0.45 kg m-3 in H0 to 0.50 in H2.5 and 0.54 in H5. Under relatively dry root zone (RF), both evaporation and transpiration remain at suboptimal level resulting in lower ET as well as lower system yield. Green gram – jute relay system can be water use efficient with 38% higher yield with application of hydrogel @ 2.5 kg ha-1 under deficit irrigation regime of CPE 125 over rainfed system without application of the gel. Application of gel conditioner improved water storage, checked excess water loss from the system, and mitigated ET demand of the relay system for a longer time. Hence, irrigation frequency was reduced from five times at CPE 83 to only three times in CPE 125.Keywords: zero tillage, deficit irrigation, hydrogel, relay system
Procedia PDF Downloads 2332555 X-Ray Analysis and Grain Size of CuInx Ga1-X Se2 Solar Cells
Authors: A. I. Al-Bassam, A. M. El-Nggar
Abstract:
Polycrystalline Cu In I-x GaxSe2 thin films have been fabricated. Some physical properties such as lattice parameters, crystal structure and microstructure of Cu In I-x GaxSe2 were determined using X-ray diffractometry and scanning electron microscopy. X-ray diffraction analysis showed that the films with x ≥ 0.5 have a chalcopyrite structure and the films with x ≤ 0.5 have a zinc blende structure. The lattice parameters were found to vary linearly with composition over a wide range from x = 0 to x =1.0. The variation of lattice parameters with composition was found to obey Vegard's law. The variation of the c/a with composition was also linear. The quality of a wide range of Cu In I-xGaxSe2 thin film absorbers from CuInSe to CuGaSe was evaluated by Photoluminescence (PL) measurements.Keywords: grain size, polycrystalline, solar cells, lattice parameters
Procedia PDF Downloads 5042554 Novel GPU Approach in Predicting the Directional Trend of the S&P500
Authors: A. J. Regan, F. J. Lidgey, M. Betteridge, P. Georgiou, C. Toumazou, K. Hayatleh, J. R. Dibble
Abstract:
Our goal is development of an algorithm capable of predicting the directional trend of the Standard and Poor’s 500 index (S&P 500). Extensive research has been published attempting to predict different financial markets using historical data testing on an in-sample and trend basis, with many authors employing excessively complex mathematical techniques. In reviewing and evaluating these in-sample methodologies, it became evident that this approach was unable to achieve sufficiently reliable prediction performance for commercial exploitation. For these reasons, we moved to an out-of-sample strategy based on linear regression analysis of an extensive set of financial data correlated with historical closing prices of the S&P 500. We are pleased to report a directional trend accuracy of greater than 55% for tomorrow (t+1) in predicting the S&P 500.Keywords: financial algorithm, GPU, S&P 500, stock market prediction
Procedia PDF Downloads 3502553 Optimization of Electric Vehicle (EV) Charging Station Allocation Based on Multiple Data - Taking Nanjing (China) as an Example
Authors: Yue Huang, Yiheng Feng
Abstract:
Due to the global pressure on climate and energy, many countries are vigorously promoting electric vehicles and building charging (public) charging facilities. Faced with the supply-demand gap of existing electric vehicle charging stations and unreasonable space usage in China, this paper takes the central city of Nanjing as an example, establishes a site selection model through multivariate data integration, conducts multiple linear regression SPSS analysis, gives quantitative site selection results, and provides optimization models and suggestions for charging station layout planning.Keywords: electric vehicle, charging station, allocation optimization, urban mobility, urban infrastructure, nanjing
Procedia PDF Downloads 922552 The Inverse Problem in Energy Beam Processes Using Discrete Adjoint Optimization
Authors: Aitor Bilbao, Dragos Axinte, John Billingham
Abstract:
The inverse problem in Energy Beam (EB) Processes consists of defining the control parameters, in particular the 2D beam path (position and orientation of the beam as a function of time), to arrive at a prescribed solution (freeform surface). This inverse problem is well understood for conventional machining, because the cutting tool geometry is well defined and the material removal is a time independent process. In contrast, EB machining is achieved through the local interaction of a beam of particular characteristics (e.g. energy distribution), which leads to a surface-dependent removal rate. Furthermore, EB machining is a time-dependent process in which not only the beam varies with the dwell time, but any acceleration/deceleration of the machine/beam delivery system, when performing raster paths will influence the actual geometry of the surface to be generated. Two different EB processes, Abrasive Water Machining (AWJM) and Pulsed Laser Ablation (PLA), are studied. Even though they are considered as independent different technologies, both can be described as time-dependent processes. AWJM can be considered as a continuous process and the etched material depends on the feed speed of the jet at each instant during the process. On the other hand, PLA processes are usually defined as discrete systems and the total removed material is calculated by the summation of the different pulses shot during the process. The overlapping of these shots depends on the feed speed and the frequency between two consecutive shots. However, if the feed speed is sufficiently slow compared with the frequency, then consecutive shots are close enough and the behaviour can be similar to a continuous process. Using this approximation a generic continuous model can be described for both processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at each single pixel on the surface using a linear model of the process. However, this approach does not always lead to the good solution since linear models are only valid when shallow surfaces are etched. The solution of the inverse problem is improved by using a discrete adjoint optimization algorithm. Moreover, the calculation of the Jacobian matrix consumes less computation time than finite difference approaches. The influence of the dynamics of the machine on the actual movement of the jet is also important and should be taken into account. When the parameters of the controller are not known or cannot be changed, a simple approximation is used for the choice of the slope of a step profile. Several experimental tests are performed for both technologies to show the usefulness of this approach.Keywords: abrasive waterjet machining, energy beam processes, inverse problem, pulsed laser ablation
Procedia PDF Downloads 2752551 Effect of Noise Reducing Headphones on the Short-Term Memory Recall of College Students
Authors: Gregory W. Smith, Paul J. Riccomini
Abstract:
The goal of this empirical inquiry is to explore the effect of noise reducing headphones on the short-term memory recall of college students. Immediately following the presentation (via PowerPoint) of 12 unrelated and randomly selected one- and two-syllable words, students were asked to recall as many words as possible. Using a linear model with conditions marked with binary indicators, we examined the frequency and accuracy of words that were recalled. The findings indicate that for some students, a reduction of noise has a significant positive impact on their ability to recall information. As classrooms become more aurally distracting due to the implementation of cooperative learning activities, these findings highlight the need for a quiet learning environment for some learners.Keywords: auditory distraction, education, instruction, noise, working memory
Procedia PDF Downloads 334