Search results for: hierarchical modeling
2270 Flexible Design of Triboelectric Nanogenerators for Efficient Vibration Energy Harvesting
Authors: Meriam Khelifa
Abstract:
In recent years, many studies have focused on the harvesting of the vibrations energy to produce electrical energy using contact separation (CS) triboelectric nanogenerators (TENG). The simplest design for a TENG consists of a capacitor comprising a single moving electrode. The conversion efficiency of vibration energy into electrical energy can, in principle, reach 100%. But to actually achieve this objective, it is necessary to optimize the parameters of the TENG, such as the dielectric constant and the thickness of the insulator, the load resistance, etc. In particular, the use of a switch which is actioned at optimal times within the TENG cycle is essential. Using numerical modeling and experimental design, we applied a methodology to find the TENG parameters which optimize the energy transfer efficiency (ETE) to almost 100% for any vibration frequency and amplitude. The rather simple design of a TENG is promising as an environment friendly device. It opens the doors for harvesting acoustic vibrations from the environment and to design effective protection against environmental noise.Keywords: vibrations, CS TENG, efficiency, design of experiments
Procedia PDF Downloads 932269 Improving Sales through Inventory Reduction: A Retail Chain Case Study
Authors: M. G. Mattos, J. E. Pécora Jr, T. A. Briso
Abstract:
Today's challenging business environment, with unpredictable demand and volatility, requires a supply chain strategy that handles uncertainty and risks in the right way. Even though inventory models have been previously explored, this paper seeks to apply these concepts on a practical situation. This study involves the inventory replenishment problem, applying techniques that are mainly based on mathematical assumptions and modeling. The primary goal is to improve the retailer’s supply chain processes taking store differences when setting the various target stock levels. Through inventory review policy, picking piece implementation and minimum exposure definition, we were able not only to promote the inventory reduction as well as improve sales results. The inventory management theory from literature review was then tested on a single case study regarding a particular department in one of the largest Latam retail chains.Keywords: inventory, distribution, retail, risk, safety stock, sales, uncertainty
Procedia PDF Downloads 2702268 Effect of Elastic Modulus Varieties on Helical Pile Behavior in Sand
Authors: Javad Shamsi Soosahab, Reza Ziaie Moayed
Abstract:
The compressive and tensile bearing capacity of helical piles in sand is investigated by means of numerical modeling. The analyses are carried out using two-dimensional finite-element software, Optum G2. The load–displacement behavior under compression and tension is compared in different relative densities for constant and various elastic modulus. The criterion used to find the ultimate axial load is the load corresponding to 5% of the helical diameter. The results show that relative density of sand plays an essential role in the response of ultimate capacities towards various condition. Increase in elastic modulus with depth is found to play a relatively more significant role to the increase in ultimate compressive load capacities, however tension bearing capacity decreases.Keywords: helical piles, Optum G2, relative density, constant and various elastic modulus
Procedia PDF Downloads 1562267 Ground Motion Modeling Using the Least Absolute Shrinkage and Selection Operator
Authors: Yildiz Stella Dak, Jale Tezcan
Abstract:
Ground motion models that relate a strong motion parameter of interest to a set of predictive seismological variables describing the earthquake source, the propagation path of the seismic wave, and the local site conditions constitute a critical component of seismic hazard analyses. When a sufficient number of strong motion records are available, ground motion relations are developed using statistical analysis of the recorded ground motion data. In regions lacking a sufficient number of recordings, a synthetic database is developed using stochastic, theoretical or hybrid approaches. Regardless of the manner the database was developed, ground motion relations are developed using regression analysis. Development of a ground motion relation is a challenging process which inevitably requires the modeler to make subjective decisions regarding the inclusion criteria of the recordings, the functional form of the model and the set of seismological variables to be included in the model. Because these decisions are critically important to the validity and the applicability of the model, there is a continuous interest on procedures that will facilitate the development of ground motion models. This paper proposes the use of the Least Absolute Shrinkage and Selection Operator (LASSO) in selecting the set predictive seismological variables to be used in developing a ground motion relation. The LASSO can be described as a penalized regression technique with a built-in capability of variable selection. Similar to the ridge regression, the LASSO is based on the idea of shrinking the regression coefficients to reduce the variance of the model. Unlike ridge regression, where the coefficients are shrunk but never set equal to zero, the LASSO sets some of the coefficients exactly to zero, effectively performing variable selection. Given a set of candidate input variables and the output variable of interest, LASSO allows ranking the input variables in terms of their relative importance, thereby facilitating the selection of the set of variables to be included in the model. Because the risk of overfitting increases as the ratio of the number of predictors to the number of recordings increases, selection of a compact set of variables is important in cases where a small number of recordings are available. In addition, identification of a small set of variables can improve the interpretability of the resulting model, especially when there is a large number of candidate predictors. A practical application of the proposed approach is presented, using more than 600 recordings from the National Geospatial-Intelligence Agency (NGA) database, where the effect of a set of seismological predictors on the 5% damped maximum direction spectral acceleration is investigated. The set of candidate predictors considered are Magnitude, Rrup, Vs30. Using LASSO, the relative importance of the candidate predictors has been ranked. Regression models with increasing levels of complexity were constructed using one, two, three, and four best predictors, and the models’ ability to explain the observed variance in the target variable have been compared. The bias-variance trade-off in the context of model selection is discussed.Keywords: ground motion modeling, least absolute shrinkage and selection operator, penalized regression, variable selection
Procedia PDF Downloads 3312266 Automated Building Internal Layout Design Incorporating Post-Earthquake Evacuation Considerations
Authors: Sajjad Hassanpour, Vicente A. González, Yang Zou, Jiamou Liu
Abstract:
Earthquakes pose a significant threat to both structural and non-structural elements in buildings, putting human lives at risk. Effective post-earthquake evacuation is critical for ensuring the safety of building occupants. However, current design practices often neglect the integration of post-earthquake evacuation considerations into the early-stage architectural design process. To address this gap, this paper presents a novel automated internal architectural layout generation tool that optimizes post-earthquake evacuation performance. The tool takes an initial plain floor plan as input, along with specific requirements from the user/architect, such as minimum room dimensions, corridor width, and exit lengths. Based on these inputs, firstly, the tool randomly generates different architectural layouts. Secondly, the human post-earthquake evacuation behaviour will be thoroughly assessed for each generated layout using the advanced Agent-Based Building Earthquake Evacuation Simulation (AB2E2S) model. The AB2E2S prototype is a post-earthquake evacuation simulation tool that incorporates variables related to earthquake intensity, architectural layout, and human factors. It leverages a hierarchical agent-based simulation approach, incorporating reinforcement learning to mimic human behaviour during evacuation. The model evaluates different layout options and provides feedback on evacuation flow, time, and possible casualties due to earthquake non-structural damage. By integrating the AB2E2S model into the automated layout generation tool, architects and designers can obtain optimized architectural layouts that prioritize post-earthquake evacuation performance. Through the use of the tool, architects and designers can explore various design alternatives, considering different minimum room requirements, corridor widths, and exit lengths. This approach ensures that evacuation considerations are embedded in the early stages of the design process. In conclusion, this research presents an innovative automated internal architectural layout generation tool that integrates post-earthquake evacuation simulation. By incorporating evacuation considerations into the early-stage design process, architects and designers can optimize building layouts for improved post-earthquake evacuation performance. This tool empowers professionals to create resilient designs that prioritize the safety of building occupants in the face of seismic events.Keywords: agent-based simulation, automation in design, architectural layout, post-earthquake evacuation behavior
Procedia PDF Downloads 1092265 Design and Burnback Analysis of Three Dimensional Modified Star Grain
Authors: Almostafa Abdelaziz, Liang Guozhu, Anwer Elsayed
Abstract:
The determination of grain geometry is an important and critical step in the design of solid propellant rocket motor. In this study, the design process involved parametric geometry modeling in CAD, MATLAB coding of performance prediction and 2D star grain ignition experiment. The 2D star grain burnback achieved by creating new surface via each web increment and calculating geometrical properties at each step. The 2D star grain is further modified to burn as a tapered 3D star grain. Zero dimensional method used to calculate the internal ballistic performance. Experimental and theoretical results were compared in order to validate the performance prediction of the solid rocket motor. The results show that the usage of 3D grain geometry will decrease the pressure inside the combustion chamber and enhance the volumetric loading ratio.Keywords: burnback analysis, rocket motor, star grain, three dimensional grains
Procedia PDF Downloads 2462264 Modeling of Wind Loads on Heliostats Installed in South Algeria of Various Pylon Height
Authors: Hakim Merarda, Mounir Aksas, Toufik Arrif, Abd Elfateh Belaid, Amor Gama, Reski Khelifi
Abstract:
Knowledge of wind loads is important to develop a heliostat with good performance. These loads can be calculated by mathematical equations based on several parameters: the density, wind velocity, the aspect ratio of the mirror (height/width) and the coefficient of the height of the tower. Measurement data of the wind velocity and the density of the air are used in a numerical simulation of wind profile that was performed on heliostats with different pylon heights, with 1m^2 mirror areas and with aspect ratio of mirror equal to 1. These measurement data are taken from the meteorological station installed in Ghardaia, Algeria. The main aim of this work is to find a mathematical correlation between the wind loads and the height of the tower.Keywords: heliostat, solar tower power, wind loads simulation, South Algeria
Procedia PDF Downloads 5622263 Childhood Obesity: Future Direction and Education Priorities
Authors: Zahra Ranjbar
Abstract:
Interpretive structural modeling (ISM) is a well-established methodology for identifying relationships among specific variables, which define a problem or an issue. In this study most important variables that have critical role in children obesity problem were introduce by ISM questionnaire technique and their relationships were determine. Our findings suggested that sedentary activities are top level variables and school teachers and administrators, public education and scientific collaborations are bottom level variables in children obesity problem. Control of dietary, Physical education program, parents, government and motivation strategies variables are depend to other variables. They are very sensitive to external variables. Also, physical education program, parents, government, motivation, school teachers and administrators, public education and collaboration variables have strong driving power. They are linkage factors; it means that they can be effective on children obesity problem directly.Keywords: ISM, variable, obesity, physical education, children
Procedia PDF Downloads 4622262 Artificial Neural Network and Satellite Derived Chlorophyll Indices for Estimation of Wheat Chlorophyll Content under Rainfed Condition
Authors: Muhammad Naveed Tahir, Wang Yingkuan, Huang Wenjiang, Raheel Osman
Abstract:
Numerous models used in prediction and decision-making process but most of them are linear in natural environment, and linear models reach their limitations with non-linearity in data. Therefore accurate estimation is difficult. Artificial Neural Networks (ANN) found extensive acceptance to address the modeling of the complex real world for the non-linear environment. ANN’s have more general and flexible functional forms than traditional statistical methods can effectively deal with. The link between information technology and agriculture will become more firm in the near future. Monitoring crop biophysical properties non-destructively can provide a rapid and accurate understanding of its response to various environmental influences. Crop chlorophyll content is an important indicator of crop health and therefore the estimation of crop yield. In recent years, remote sensing has been accepted as a robust tool for site-specific management by detecting crop parameters at both local and large scales. The present research combined the ANN model with satellite-derived chlorophyll indices from LANDSAT 8 imagery for predicting real-time wheat chlorophyll estimation. The cloud-free scenes of LANDSAT 8 were acquired (Feb-March 2016-17) at the same time when ground-truthing campaign was performed for chlorophyll estimation by using SPAD-502. Different vegetation indices were derived from LANDSAT 8 imagery using ERADAS Imagine (v.2014) software for chlorophyll determination. The vegetation indices were including Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Chlorophyll Absorbed Ratio Index (CARI), Modified Chlorophyll Absorbed Ratio Index (MCARI) and Transformed Chlorophyll Absorbed Ratio index (TCARI). For ANN modeling, MATLAB and SPSS (ANN) tools were used. Multilayer Perceptron (MLP) in MATLAB provided very satisfactory results. For training purpose of MLP 61.7% of the data, for validation purpose 28.3% of data and rest 10% of data were used to evaluate and validate the ANN model results. For error evaluation, sum of squares error and relative error were used. ANN model summery showed that sum of squares error of 10.786, the average overall relative error was .099. The MCARI and NDVI were revealed to be more sensitive indices for assessing wheat chlorophyll content with the highest coefficient of determination R²=0.93 and 0.90 respectively. The results suggested that use of high spatial resolution satellite imagery for the retrieval of crop chlorophyll content by using ANN model provides accurate, reliable assessment of crop health status at a larger scale which can help in managing crop nutrition requirement in real time.Keywords: ANN, chlorophyll content, chlorophyll indices, satellite images, wheat
Procedia PDF Downloads 1482261 A Bacterial Foraging Optimization Algorithm Applied to the Synthesis of Polyacrylamide Hydrogels
Authors: Florin Leon, Silvia Curteanu
Abstract:
The Bacterial Foraging Optimization (BFO) algorithm is inspired by the behavior of bacteria such as Escherichia coli or Myxococcus xanthus when searching for food, more precisely the chemotaxis behavior. Bacteria perceive chemical gradients in the environment, such as nutrients, and also other individual bacteria, and move toward or in the opposite direction to those signals. The application example considered as a case study consists in establishing the dependency between the reaction yield of hydrogels based on polyacrylamide and the working conditions such as time, temperature, monomer, initiator, crosslinking agent and inclusion polymer concentrations, as well as type of the polymer added. This process is modeled with a neural network which is included in an optimization procedure based on BFO. An experimental study of BFO parameters is performed. The results show that the algorithm is quite robust and can obtain good results for diverse combinations of parameter values.Keywords: bacterial foraging, hydrogels, modeling and optimization, neural networks
Procedia PDF Downloads 1562260 Modelling Residential Space Heating Energy for Romania
Authors: Ion Smeureanu, Adriana Reveiu, Marian Dardala, Titus Felix Furtuna, Roman Kanala
Abstract:
This paper proposes a linear model for optimizing domestic energy consumption, in Romania. Both techno-economic and consumer behavior approaches have been considered, in order to develop the model. The proposed model aims to reduce the energy consumption, in households, by assembling in a unitary model, aspects concerning: residential lighting, space heating, hot water, and combined space heating – hot water, space cooling, and passenger transport. This paper focuses on space heating domestic energy consumption model, and quantify not only technical-economic issues, but also consumer behavior impact, related to people decision to envelope and insulate buildings, in order to minimize energy consumption.Keywords: consumer behavior, open source energy modeling system (OSeMOSYS), MARKAL/TIMES Romanian energy model, virtual technologies
Procedia PDF Downloads 5452259 Improving Exchange Rate Forecasting Accuracy Using Ensemble Learning Techniques: A Comparative Study
Authors: Gokcen Ogruk-Maz, Sinan Yildirim
Abstract:
Introduction: Exchange rate forecasting is pivotal for informed financial decision-making, encompassing risk management, investment strategies, and international trade planning. However, traditional forecasting models often fail to capture the complexity and volatility of currency markets. This study explores the potential of ensemble learning techniques such as Random Forest, Gradient Boosting, and AdaBoost to enhance the accuracy and robustness of exchange rate predictions. Research Objectives The primary objective is to evaluate the performance of ensemble methods in comparison to traditional econometric models such as Uncovered Interest Rate Parity, Purchasing Power Parity, and Monetary Models. By integrating advanced machine learning techniques with fundamental macroeconomic indicators, this research seeks to identify optimal approaches for predicting exchange rate movements across major currency pairs. Methodology: Using historical exchange rate data and economic indicators such as interest rates, inflation, money supply, and GDP, the study develops forecasting models leveraging ensemble techniques. Comparative analysis is performed against traditional models and hybrid approaches incorporating Facebook Prophet, Artificial Neural Networks, and XGBoost. The models are evaluated using statistical metrics like Mean Squared Error, Theil Ratio, and Diebold-Mariano tests across five currency pairs (JPY to USD, AUD to USD, CAD to USD, GBP to USD, and NZD to USD). Preliminary Results: Results indicate that ensemble learning models consistently outperform traditional methods in predictive accuracy. XGBoost shows the strongest performance among the techniques evaluated, achieving significant improvements in forecast precision with consistently low p-values and Theil Ratios. Hybrid models integrating macroeconomic fundamentals into machine learning frameworks further enhance predictive accuracy. Discussion: The findings show the potential of ensemble methods to address the limitations of traditional models by capturing non-linear relationships and complex dynamics in exchange rate movements. While Random Forest and Gradient Boosting are effective, the superior performance of XGBoost suggests that its capacity for handling sparse and irregular data offers a distinct advantage in financial forecasting. Conclusion and Implications: This research demonstrates that ensemble learning techniques, particularly when combined with traditional macroeconomic fundamentals, provide a robust framework for improving exchange rate forecasting. The study offers actionable insights for financial practitioners and policymakers, emphasizing the value of integrating machine learning approaches into predictive modeling for monetary economics.Keywords: exchange rate forecasting, ensemble learning, financial modeling, machine learning, monetary economics, XGBoost
Procedia PDF Downloads 92258 Integrating System-Level Infrastructure Resilience and Sustainability Based on Fractal: Perspectives and Review
Authors: Qiyao Han, Xianhai Meng
Abstract:
Urban infrastructures refer to the fundamental facilities and systems that serve cities. Due to the global climate change and human activities in recent years, many urban areas around the world are facing enormous challenges from natural and man-made disasters, like flood, earthquake and terrorist attack. For this reason, urban resilience to disasters has attracted increasing attention from researchers and practitioners. Given the complexity of infrastructure systems and the uncertainty of disasters, this paper suggests that studies of resilience could focus on urban functional sustainability (in social, economic and environmental dimensions) supported by infrastructure systems under disturbance. It is supposed that urban infrastructure systems with high resilience should be able to reconfigure themselves without significant declines in critical functions (services), such as primary productivity, hydrological cycles, social relations and economic prosperity. Despite that some methods have been developed to integrate the resilience and sustainability of individual infrastructure components, more work is needed to enable system-level integration. This research presents a conceptual analysis framework for integrating resilience and sustainability based on fractal theory. It is believed that the ability of an ecological system to maintain structure and function in face of disturbance and to reorganize following disturbance-driven change is largely dependent on its self-similar and hierarchical fractal structure, in which cross-scale resilience is produced by the replication of ecosystem processes dominating at different levels. Urban infrastructure systems are analogous to ecological systems because they are interconnected, complex and adaptive, are comprised of interconnected components, and exhibit characteristic scaling properties. Therefore, analyzing resilience of ecological system provides a better understanding about the dynamics and interactions of infrastructure systems. This paper discusses fractal characteristics of ecosystem resilience, reviews literature related to system-level infrastructure resilience, identifies resilience criteria associated with sustainability dimensions, and develops a conceptual analysis framework. Exploration of the relevance of identified criteria to fractal characteristics reveals that there is a great potential to analyze infrastructure systems based on fractal. In the conceptual analysis framework, it is proposed that in order to be resilient, urban infrastructure system needs to be capable of “maintaining” and “reorganizing” multi-scale critical functions under disasters. Finally, the paper identifies areas where further research efforts are needed.Keywords: fractal, urban infrastructure, sustainability, system-level resilience
Procedia PDF Downloads 2762257 GIS Application in Surface Runoff Estimation for Upper Klang River Basin, Malaysia
Authors: Suzana Ramli, Wardah Tahir
Abstract:
Estimation of surface runoff depth is a vital part in any rainfall-runoff modeling. It leads to stream flow calculation and later predicts flood occurrences. GIS (Geographic Information System) is an advanced and opposite tool used in simulating hydrological model due to its realistic application on topography. The paper discusses on calculation of surface runoff depth for two selected events by using GIS with Curve Number method for Upper Klang River basin. GIS enables maps intersection between soil type and land use that later produces curve number map. The results show good correlation between simulated and observed values with more than 0.7 of R2. Acceptable performance of statistical measurements namely mean error, absolute mean error, RMSE, and bias are also deduced in the paper.Keywords: surface runoff, geographic information system, curve number method, environment
Procedia PDF Downloads 2872256 Dam Break Model Using Navier-Stokes Equation
Authors: Alireza Lohrasbi, Alireza Lavaei, Mohammadali M. Shahlaei
Abstract:
The liquid flow and the free surface shape during the initial stage of dam breaking are investigated. A numerical scheme is developed to predict the wave of an unsteady, incompressible viscous flow with free surface. The method involves a two dimensional finite element (2D), in a vertical plan. The Naiver-Stokes equations for conservation of momentum and mass for Newtonian fluids, continuity equation, and full nonlinear kinematic free-surface equation were used as the governing equations. The mapping developed to solve highly deformed free surface problems common in waves formed during wave propagation, transforms the run up model from the physical domain to a computational domain with Arbitrary Lagrangian Eulerian (ALE) finite element modeling technique.Keywords: dam break, Naiver-Stokes equations, free-surface flows, Arbitrary Lagrangian-Eulerian
Procedia PDF Downloads 3442255 Thermo-Aeraulic Studies of a Multizone Building Influence of the Compactness Index
Authors: S. M. A. Bekkouche, T. Benouaz, M. K. Cherier, M. Hamdani, M. R. Yaiche, N. Benamrane
Abstract:
Most codes of building energy simulation neglect the humidity or well represent it with a very simplified method. It is for this reason that we have developed a new approach to the description and modeling of multizone buildings in Saharan climate. The thermal nodal method was used to apprehend thermoaeraulic behavior of air subjected to varied solicitations. In this contribution, analyzing the building geometry introduced the concept of index compactness as "quotient of external walls area and volume of the building". Physical phenomena that we have described in this paper, allow to build the model of the coupled thermoaeraulic behavior. The comparison shows that the found results are to some extent satisfactory. The result proves that temperature and specific humidity depending on compactness and geometric shape. Proper use of compactness index and building geometry parameters will noticeably minimize building energy.Keywords: multizone model, nodal method, compactness index, specific humidity, temperature
Procedia PDF Downloads 4142254 Signature Verification System for a Banking Business Process Management
Authors: A. Rahaf, S. Liyakathunsia
Abstract:
In today’s world, unprecedented operational pressure is faced by banks that test the efficiency, effectiveness, and agility of their business processes. In a typical banking process, a person’s authorization is usually based on his signature on most all of the transactions. Signature verification is considered as one of the highly significant information needed for any bank document processing. Banks usually use Signature Verification to authenticate the identity of individuals. In this paper, a business process model has been proposed in order to increase the quality of the verification process and to reduce time and needed resources. In order to understand the current process, a survey has been conducted and distributed among bank employees. After analyzing the survey, a process model has been created using Bizagi modeler which helps in simulating the process after assigning time and cost of it. The outcomes show that the automation of signature verification process is highly recommended for a banking business process.Keywords: business process management, process modeling, quality, Signature Verification
Procedia PDF Downloads 4322253 Optimization of Three Phase Squirrel Cage Induction Motor
Authors: Tunahan Sapmaz, Harun Etçi, İbrahim Şenol, Yasemin Öner
Abstract:
Rotor bar dimensions have a great influence on the air-gap magnetic flux density. Therefore, poor selection of this parameter during the machine design phase causes the air-gap magnetic flux density to be distorted. Thus, it causes noise, torque fluctuation, and losses in the induction motor. On the other hand, the change in rotor bar dimensions will change the resistance of the conductor, so the current will be affected. Therefore, the increase and decrease of rotor bar current affect operation, starting torque, and efficiency. The aim of this study is to examine the effect of rotor bar dimensions on the electromagnetic performance criteria of the induction motor. Modeling of the induction motor is done by the finite element method (FEM), which is a very powerful tool. In FEM, the results generally focus on performance criteria such as torque, torque fluctuation, efficiency, and current.Keywords: induction motor, finite element method, optimization, rotor bar
Procedia PDF Downloads 1312252 TMBCoI-SIOT: Trust Management System Based on the Community of Interest for the Social Internet of Things
Authors: Oumaima Ben Abderrahim, Mohamed Houcine Elhedhili, Leila Saidane
Abstract:
In this paper, we propose a trust management system based on clustering architecture for the social internet of things called TMBCO-SIOT. The proposed model integrates numerous factors such as direct and indirect trust; transaction factor; precaution factor; and social modeling of trust. The novelty of our approach can be summed up in two aspects. The first aspect concerns the architecture based on the community of interest (CoT) where each community is headed by an administrator (admin). However, the second aspect is the trust management system that tries to prevent On-Off attacks and mitigates dishonest recommendations using the k-means algorithm and guarantor things. The effectiveness of the proposed system is proved by simulation against malicious nodes.Keywords: IoT, trust management system, attacks, trust, dishonest recommendations, K-means algorithm
Procedia PDF Downloads 2152251 Mathematical Modeling of Skin Condensers for Domestic Refrigerator
Authors: Nitin Ghule, S. G. Taji
Abstract:
A mathematical model of hot-wall condensers used in refrigerators is presented. The model predicts the heat transfer characteristics of condenser and the effects of various design and operating parameters on condenser tube length and capacity. A finite element approach was used to model the condenser. The condenser tube is divided into elemental units, with each element consisting of adhesive tape, refrigerant tube and outer metal sheet. The heat transfer characteristics of each section are then analyzed by considering the heat transfer through the tube wall, tape and the outer sheet. Variations in inner heat transfer coefficient and pressure drop are considered depending on temperature, fluid phase, type of flow and orientation of tube. Variation in outer heat transfer coefficient is also taken into account. Various materials were analysed for the tube, tape and outer sheet.Keywords: condenser, domestic refrigerator, heat transfer, mathematical model
Procedia PDF Downloads 4562250 Function Approximation with Radial Basis Function Neural Networks via FIR Filter
Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim
Abstract:
Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended Kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore, the number of centers will be considered since it affects the performance of approximation.Keywords: extended Kalman filter, classification problem, radial basis function networks (RBFN), finite impulse response (FIR) filter
Procedia PDF Downloads 4592249 Experience of Using Expanding Polyurethane Resin for Ground Improvement Under Existing Shallow Foundations on The Arabian Peninsula
Authors: Evgeny N. Zakharin, Bartosz Majewski
Abstract:
Foaming polyurethane is a ground improvement technology that is increasingly used for foundation stabilization with differential settlement and controlled foundation structure lifting. This technology differs from conventional mineral grout due to its injection composition, which provides high-pressure expansion quickly due to a chemical reaction. The technology has proven efficient in the typical geological conditions of the United Arab Emirates. An in-situ trial foundation load test has been proposed to objectively assess the deformative and load-bearing characteristics of the soil after injection. The article provides a detailed description of the experiment carried out in field conditions. Based on the practical experiment's results and its finite element modeling, the deformation modulus of the soil after treatment was determined, which was more than five times higher than the initial value.Keywords: chemical grout, expanding polyurethane resin, foundation remediation, ground improvement
Procedia PDF Downloads 672248 Geometric and Algebraic Properties of the Eigenvalues of Monotone Matrices
Authors: Brando Vagenende, Marie-Anne Guerry
Abstract:
For stochastic matrices of any order, the geometric description of the convex set of eigenvalues is completely known. The purpose of this study is to investigate the subset of the monotone matrices. This type of matrix appears in contexts such as intergenerational occupational mobility, equal-input modeling, and credit ratings-based systems. Monotone matrices are stochastic matrices in which each row stochastically dominates the previous row. The monotonicity property of a stochastic matrix can be expressed by a nonnegative lower-order matrix with the same eigenvalues as the original monotone matrix (except for the eigenvalue 1). Specifically, the aim of this research is to focus on the properties of eigenvalues of monotone matrices. For those matrices up to order 3, there already exists a complete description of the convex set of eigenvalues. For monotone matrices of order at least 4, this study gives, through simulations, more insight into the geometric description of their eigenvalues. Furthermore, this research treats in a geometric and algebraic way the properties of eigenvalues of monotone matrices of order at least 4.Keywords: eigenvalues of matrices, finite Markov chains, monotone matrices, nonnegative matrices, stochastic matrices
Procedia PDF Downloads 842247 The Impact of Environmental Dynamism on Strategic Outsourcing Success
Authors: Mohamad Ghozali Hassan, Abdul Aziz Othman, Mohd Azril Ismail
Abstract:
Adapting quickly to environmental dynamism is essential for an organization to develop outsourcing strategic and management in order to sustain competitive advantage. This research used the Partial Least Squares Structural Equation Modeling (PLS-SEM) tool to investigate the factors of environmental dynamism impact on the strategic outsourcing success among electrical and electronic manufacturing industries in outsourcing management. Statistical results confirm that the inclusion of customer demand, technological change, and competition level as a new combination concept of environmental dynamism, has positive effects on outsourcing success. Additionally, this research demonstrates the acceptability of PLS-SEM as a statistical analysis to furnish a better understanding of environmental dynamism in outsourcing management in Malaysia. A practical finding contributes to academics and practitioners in the field of outsourcing management.Keywords: environmental dynamism, customer demand, technological change, competition level, outsourcing success
Procedia PDF Downloads 5052246 Influence of Different Asymmetric Rolling Processes on Shear Strain
Authors: Alexander Pesin, Denis Pustovoytov, Mikhail Sverdlik
Abstract:
Materials with ultrafine-grained structure and unique physical and mechanical properties can be obtained by methods of severe plastic deformation, which include processes of asymmetric rolling (AR). Asymmetric rolling is a very effective way to create ultrafine-grained structures of metals and alloys. Since the asymmetric rolling is a continuous process, it has great potential for industrial production of ultrafine-grained structure sheets. Basic principles of asymmetric rolling are described in detail in scientific literature. In this work finite element modeling of asymmetric rolling and metal forming processes in multiroll gauge was performed. Parameters of the processes which allow achieving significant values of shear strain were defined. The results of the study will be useful for the research of the evolution of ultra-fine metal structure in asymmetric rolling.Keywords: asymmetric rolling, equivalent strain, FEM, multiroll gauge, profile, severe plastic deformation, shear strain, sheet
Procedia PDF Downloads 2682245 Modeling the Transport of Charge Carriers in the Active Devices MESFET Based of GaInP by the Monte Carlo Method
Authors: N. Massoum, A. Guen. Bouazza, B. Bouazza, A. El Ouchdi
Abstract:
The progress of industry integrated circuits in recent years has been pushed by continuous miniaturization of transistors. With the reduction of dimensions of components at 0.1 micron and below, new physical effects come into play as the standard simulators of two dimensions (2D) do not consider. In fact the third dimension comes into play because the transverse and longitudinal dimensions of the components are of the same order of magnitude. To describe the operation of such components with greater fidelity, we must refine simulation tools and adapted to take into account these phenomena. After an analytical study of the static characteristics of the component, according to the different operating modes, a numerical simulation is performed of field-effect transistor with submicron gate MESFET GaInP. The influence of the dimensions of the gate length is studied. The results are used to determine the optimal geometric and physical parameters of the component for their specific applications and uses.Keywords: Monte Carlo simulation, transient electron transport, MESFET device, GaInP
Procedia PDF Downloads 4222244 Experimental Investigation and Constitutive Modeling of Volume Strain under Uniaxial Strain Rate Jump Test in HDPE
Authors: Rida B. Arieby, Hameed N. Hameed
Abstract:
In this work, tensile tests on high density polyethylene have been carried out under various constant strain rate and strain rate jump tests. The dependency of the true stress and specially the variation of volume strain have been investigated, the volume strain due to the phenomena of damage was determined in real time during the tests by an optical extensometer called Videotraction. A modified constitutive equations, including strain rate and damage effects, are proposed, such a model is based on a non-equilibrium thermodynamic approach called (DNLR). The ability of the model to predict the complex nonlinear response of this polymer is examined by comparing the model simulation with the available experimental data, which demonstrate that this model can represent the deformation behavior of the polymer reasonably well.Keywords: strain rate jump tests, volume strain, high density polyethylene, large strain, thermodynamics approach
Procedia PDF Downloads 2632243 Psychosocial Predictors of Non-Suicidal Self-Injury in Adolescents: Literature Review
Authors: K. Grigoryan, T. Jurcik
Abstract:
Interpersonal and school-related factors, along with individual characteristics, can predict non-suicidal self-injures (NSSI). The objective of this review is to describe psychosocial variables associated with NSSI among adolescents. A better understanding of this phenomenon may facilitate the identification of potentially effective interventions for adolescents. Relevant empirical studies and reviews from clinical, cross-cultural, and social psychology, as well as cognitive psychology literature, were synthesized into two broad topics: social/interpersonal and individual factors. Variables related to the occurrence of NSSI are discussed, including social support, peer modeling, abuse, personality traits, sense of belongingness, self-compassion, and others. Based on these findings, specific clinical recommendations were identified that need to be further evaluated empirically. The systemic interventions recommended in this review may further promote research in circumventing this social and clinical problem.Keywords: non-suicidal self-injury, psychosocial factors, mental health, adolescence
Procedia PDF Downloads 1982242 The Dynamics of Planktonic Crustacean Populations in an Open Access Lagoon, Bordered by Heavy Industry, Southwest, Nigeria
Authors: E. O. Clarke, O. J. Aderinola, O. A. Adeboyejo, M. A. Anetekhai
Abstract:
Aims: The study is aimed at establishing the influence of some physical and chemical parameters on the abundance, distribution pattern and seasonal variations of the planktonic crustacean populations. Place and Duration of Study: A premier investigation into the dynamics of planktonic crustacean populations in Ologe lagoon was carried out from January 2011 to December 2012. Study Design: The study covered identification, temporal abundance, spatial distribution and diversity of the planktonic crustacea. Methodology: Standard techniques were used to collect samples from eleven stations covering five proximal satellite towns (Idoluwo, Oto, Ibiye, Obele, and Gbanko) bordering the lagoon. Data obtained were statistically analyzed using linear regression and hierarchical clustering. Results:Thirteen (13) planktonic crustacean populations were identified. Total percentage abundance was highest for Bosmina species (20%) and lowest for Polyphemus species (0.8%). The Pearson’s correlation coefficient (“r” values) between total planktonic crustacean population and some physical and chemical parameters showed that positive correlations having low level of significance occurred with salinity (r = 0.042) (sig = 0.184) and with surface water dissolved oxygen (r = 0.299) (sig = 0.155). Linear regression plots indicated that, the total population of planktonic crustacea were mainly influenced and only increased with an increase in value of surface water temperature (Rsq = 0.791) and conductivity (Rsq = 0.589). The total population of planktonic crustacea had a near neutral (zero correlation) with the surface water dissolved oxygen and thus, does not significantly change with the level of the surface water dissolved oxygen. The correlations were positive with NO3-N (midstream) at Ibiye (Rsq =0.022) and (downstream) Gbanko (Rsq =0.013), PO4-P at Ibiye (Rsq =0.258), K at Idoluwo (Rsq =0.295) and SO4-S at Oto (Rsq = 0.094) and Gbanko (Rsq = 0.457). The Berger-Parker Dominance Index (BPDI) showed that the most dominant species was Bosmina species (BPDI = 1.000), followed by Calanus species (BPDI = 1.254). Clusters by squared Euclidan distances using average linkage between groups showed proximities, transcending the borders of genera. Conclusion: The results revealed that planktonic crustacean population in Ologe lagoon undergo seasonal perturbations, were highly influenced by nutrient, metal and organic matter inputs from river Owoh, Agbara industrial estate and surrounding farmlands and were patchy in spatial distribution.Keywords: diversity, dominance, perturbations, richness, crustacea, lagoon
Procedia PDF Downloads 7252241 An Introspective look into Hotel Employees Career Satisfaction
Authors: Anastasios Zopiatis, Antonis L. Theocharous
Abstract:
In the midst of a fierce war for talent, the hospitality industry is seeking new and innovative ways to enrich its image as an employer of choice and not a necessity. Historically, the industry’s professions are portrayed as ‘unattractive’ due to their repetitious nature, long and unsocial working schedules, below average remunerations, and the mental and physical demands of the job. Aligning with the industry, hospitality and tourism scholars embarked on a journey to investigate pertinent topics with the aim of enhancing our conceptual understanding of the elements that influence employees at the hospitality world of work. Topics such as job involvement, commitment, job and career satisfaction, and turnover intentions became the focal points in a multitude of relevant empirical and conceptual investigations. Nevertheless, gaps or inconsistencies in existing theories, as a result of both the volatile complexity of the relationships governing human behavior in the hospitality workplace, and the academic community’s unopposed acceptance of theoretical frameworks mainly propounded in the United States and United Kingdom years ago, necessitate our continuous vigilance. Thus, in an effort to enhance and enrich the discourse, we set out to investigate the relationship between intrinsic and extrinsic job satisfaction traits and the individual’s career satisfaction, and subsequent intention to remain in the hospitality industry. Reflecting on existing literature, a quantitative survey was developed and administered, face-to-face, to 650 individuals working as full-time employees in 4- and 5- star hotel establishments in Cyprus, whereas a multivariate statistical analysis method, namely Structural Equation Modeling (SEM), was utilized to determine whether relationships existed between constructs as a means to either accept or reject the hypothesized theory. Findings, of interest to both industry stakeholders and academic scholars, suggest that the individual’s future intention to remain within the industry is primarily associated with extrinsic job traits. Our findings revealed that positive associations exist between extrinsic job traits, and both career satisfaction and future intention. In contrast, when investigating the relationship of intrinsic traits, a positive association was revealed only with career satisfaction. Apparently, the local industry’s environmental factors of seasonality, excessive turnover, overdependence on seasonal, and part-time migrant workers, prohibit industry stakeholders in effectively investing the time and resources in the development and professional growth of their employees. Consequently intrinsic job satisfaction factors such as advancement, growth, and achievement, take backstage to the more materialistic extrinsic factors. Findings from the subsequent mediation analysis support the notion that intrinsic traits can positively influence future intentions indirectly only through career satisfaction, whereas extrinsic traits can positively impact both career satisfaction and future intention both directly and indirectly.Keywords: career satisfaction, Cyprus, hotel employees, structural equation modeling, SEM
Procedia PDF Downloads 291