Search results for: data security
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26828

Search results for: data security

24608 An Encapsulation of a Navigable Tree Position: Theory, Specification, and Verification

Authors: Nicodemus M. J. Mbwambo, Yu-Shan Sun, Murali Sitaraman, Joan Krone

Abstract:

This paper presents a generic data abstraction that captures a navigable tree position. The mathematical modeling of the abstraction encapsulates the current tree position, which can be used to navigate and modify the tree. The encapsulation of the tree position in the data abstraction specification avoids the use of explicit references and aliasing, thereby simplifying verification of (imperative) client code that uses the data abstraction. To ease the tasks of such specification and verification, a general tree theory, rich with mathematical notations and results, has been developed. The paper contains an example to illustrate automated verification ramifications. With sufficient tree theory development, automated proving seems plausible even in the absence of a special-purpose tree solver.

Keywords: automation, data abstraction, maps, specification, tree, verification

Procedia PDF Downloads 166
24607 Accurate Position Electromagnetic Sensor Using Data Acquisition System

Authors: Z. Ezzouine, A. Nakheli

Abstract:

This paper presents a high position electromagnetic sensor system (HPESS) that is applicable for moving object detection. The authors have developed a high-performance position sensor prototype dedicated to students’ laboratory. The challenge was to obtain a highly accurate and real-time sensor that is able to calculate position, length or displacement. An electromagnetic solution based on a two coil induction principal was adopted. The HPESS converts mechanical motion to electric energy with direct contact. The output signal can then be fed to an electronic circuit. The voltage output change from the sensor is captured by data acquisition system using LabVIEW software. The displacement of the moving object is determined. The measured data are transmitted to a PC in real-time via a DAQ (NI USB -6281). This paper also describes the data acquisition analysis and the conditioning card developed specially for sensor signal monitoring. The data is then recorded and viewed using a user interface written using National Instrument LabVIEW software. On-line displays of time and voltage of the sensor signal provide a user-friendly data acquisition interface. The sensor provides an uncomplicated, accurate, reliable, inexpensive transducer for highly sophisticated control systems.

Keywords: electromagnetic sensor, accurately, data acquisition, position measurement

Procedia PDF Downloads 285
24606 Possibilities and Prospects for the Development of the Agricultural Insurance Market (The Example of Georgia)

Authors: Nino Damenia

Abstract:

The agricultural sector plays an important role in the development of Georgia's economy, it contributes to employment and food security. It faces various types of risks that may lead to heavy financial losses. Agricultural insurance is one of the means of combating agricultural risks. The paper discusses the agricultural insurance experience of those countries (European countries and the USA) that have successfully implemented the agricultural insurance program. Analysis of international cases shows that a well-designed and implemented agri-insurance system can bring significant benefits to farmers, insurance companies and the economy as a whole. In the background of all this, the Government of Georgia recognized the importance of agro-insurance and took important steps for its development. In 2014, in cooperation with insurance companies, an agro-insurance program was introduced, the purpose of which is to increase the availability of insurance for farmers and stimulate the agro-insurance market. Despite such a step forward, challenges remain such as awareness of farmers, insufficient infrastructure for data collection and risk assessment, involvement of insurance companies and other important factors. With the support of the government and stakeholders, it is possible to overcome the existing challenges and establish a strong and effective agro-insurance system. Objectives. The purpose of the research is to analyze the development trends of the agricultural insurance market, to identify the main factors affecting its growth, and to further develop recommendations for development prospects for Georgia. Methodologies. The research uses mixed methods, which combine qualitative and quantitative research techniques. The qualitative method includes the study of the literature of Georgian and foreign economists, which allows us to get acquainted with the challenges, opportunities, legislative and regulatory frameworks of agricultural insurance. Quantitative analysis involves collecting data from stakeholders and then analyzing it. The paper also uses the methods of synthesis, comparison and statistical analysis of the agricultural insurance market in Georgia, Europe and the USA. Conclusions. As the main results of the research, we can consider that the analysis of the insurance market has been made and its main functions have been identified; The essence, features and functions of agricultural insurance are analyzed; European and US agricultural insurance market is researched; The stages of formation and development of the agricultural insurance market of Georgia are studied, its importance for the agricultural sector of Georgia is determined; The role of the state for the development of agro-insurance is analyzed and development prospects are established based on the study of the current trends of the agro-insurance market of Georgia.

Keywords: agricultural insurance, agriculture, agricultural insurance program, risk

Procedia PDF Downloads 59
24605 The Quality of the Presentation Influence the Audience Perceptions

Authors: Gilang Maulana, Dhika Rahma Qomariah, Yasin Fadil

Abstract:

Purpose: This research meant to measure the magnitude of the influence of the quality of the presentation to the targeted audience perception in catching information presentation. Design/Methodology/Approach: This research uses a quantitative research method. The kind of data that uses in this research is the primary data. The population in this research are students the economics faculty of Semarang State University. The sampling techniques uses in this research is purposive sampling. The retrieving data uses questionnaire on 30 respondents. The data analysis uses descriptive analysis. Result: The quality of presentation influential positive against perception of the audience. This proved that the more qualified presentation will increase the perception of the audience. Limitation: Respondents were limited to only 30 people.

Keywords: quality of presentation, presentation, audience, perception, semarang state university

Procedia PDF Downloads 392
24604 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights

Authors: Julian Wise

Abstract:

Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.

Keywords: mineral technology, big data, machine learning operations, data lake

Procedia PDF Downloads 112
24603 Examining Statistical Monitoring Approach against Traditional Monitoring Techniques in Detecting Data Anomalies during Conduct of Clinical Trials

Authors: Sheikh Omar Sillah

Abstract:

Introduction: Monitoring is an important means of ensuring the smooth implementation and quality of clinical trials. For many years, traditional site monitoring approaches have been critical in detecting data errors but not optimal in identifying fabricated and implanted data as well as non-random data distributions that may significantly invalidate study results. The objective of this paper was to provide recommendations based on best statistical monitoring practices for detecting data-integrity issues suggestive of fabrication and implantation early in the study conduct to allow implementation of meaningful corrective and preventive actions. Methodology: Electronic bibliographic databases (Medline, Embase, PubMed, Scopus, and Web of Science) were used for the literature search, and both qualitative and quantitative studies were sought. Search results were uploaded into Eppi-Reviewer Software, and only publications written in the English language from 2012 were included in the review. Gray literature not considered to present reproducible methods was excluded. Results: A total of 18 peer-reviewed publications were included in the review. The publications demonstrated that traditional site monitoring techniques are not efficient in detecting data anomalies. By specifying project-specific parameters such as laboratory reference range values, visit schedules, etc., with appropriate interactive data monitoring, statistical monitoring can offer early signals of data anomalies to study teams. The review further revealed that statistical monitoring is useful to identify unusual data patterns that might be revealing issues that could impact data integrity or may potentially impact study participants' safety. However, subjective measures may not be good candidates for statistical monitoring. Conclusion: The statistical monitoring approach requires a combination of education, training, and experience sufficient to implement its principles in detecting data anomalies for the statistical aspects of a clinical trial.

Keywords: statistical monitoring, data anomalies, clinical trials, traditional monitoring

Procedia PDF Downloads 75
24602 An ALM Matrix Completion Algorithm for Recovering Weather Monitoring Data

Authors: Yuqing Chen, Ying Xu, Renfa Li

Abstract:

The development of matrix completion theory provides new approaches for data gathering in Wireless Sensor Networks (WSN). The existing matrix completion algorithms for WSN mainly consider how to reduce the sampling number without considering the real-time performance when recovering the data matrix. In order to guarantee the recovery accuracy and reduce the recovery time consumed simultaneously, we propose a new ALM algorithm to recover the weather monitoring data. A lot of experiments have been carried out to investigate the performance of the proposed ALM algorithm by using different parameter settings, different sampling rates and sampling models. In addition, we compare the proposed ALM algorithm with some existing algorithms in the literature. Experimental results show that the ALM algorithm can obtain better overall recovery accuracy with less computing time, which demonstrate that the ALM algorithm is an effective and efficient approach for recovering the real world weather monitoring data in WSN.

Keywords: wireless sensor network, matrix completion, singular value thresholding, augmented Lagrange multiplier

Procedia PDF Downloads 384
24601 Understanding the Endogenous Impact of Tropical Cyclones Floods and Sustainable Landscape Management Innovations on Farm Productivity in Malawi

Authors: Innocent Pangapanga, Eric Mungatana

Abstract:

Tropical cyclones–related floods (TCRFs) in Malawi have devastating effects on smallholder agriculture, thereby threatening the food security agenda, which is already constrained by poor agricultural innovations, low use of improved varieties, and unaffordable inorganic fertilizers, and fragmenting landholding sizes. Accordingly, households have engineered and indigenously implemented sustainable landscape management (SLM) innovations to contain the adverse effects of TCRFs on farm productivity. This study, therefore, interrogated the efficacy of SLM adoption on farm productivity under varying TCRFs, while controlling for the potential selection bias and unobservable heterogeneity through the application of the Endogenous Switching Regression Model. In this study, we further investigated factors driving SLM adoption. Substantively, we found TCRFs reducing farm productivity by 31 percent, on the one hand, and influencing the adoption of SLM innovations by 27 percent, on the other hand. The study also observed that households that interacted SLM with TCRFs were more likely to enhance farm productivity by 24 percent than their counterparts. Interestingly, the study results further demonstrated that multiple adoptions of SLM-related innovations, including intercropping, agroforestry, and organic manure, enhanced farm productivity by 126 percent, suggesting promoting SLM adoption as a package to appropriately inform existing sustainable development goals’ agricultural productivity initiatives under intensifying TCRFs in the country.

Keywords: tropical cyclones–related floods, sustainable landscape management innovations, farm productivity, endogeneity, endogenous switching regression model, panel data, smallholder agriculture

Procedia PDF Downloads 116
24600 Error Detection and Correction for Onboard Satellite Computers Using Hamming Code

Authors: Rafsan Al Mamun, Md. Motaharul Islam, Rabana Tajrin, Nabiha Noor, Shafinaz Qader

Abstract:

In an attempt to enrich the lives of billions of people by providing proper information, security and a way of communicating with others, the need for efficient and improved satellites is constantly growing. Thus, there is an increasing demand for better error detection and correction (EDAC) schemes, which are capable of protecting the data onboard the satellites. The paper is aimed towards detecting and correcting such errors using a special algorithm called the Hamming Code, which uses the concept of parity and parity bits to prevent single-bit errors onboard a satellite in Low Earth Orbit. This paper focuses on the study of Low Earth Orbit satellites and the process of generating the Hamming Code matrix to be used for EDAC using computer programs. The most effective version of Hamming Code generated was the Hamming (16, 11, 4) version using MATLAB, and the paper compares this particular scheme with other EDAC mechanisms, including other versions of Hamming Codes and Cyclic Redundancy Check (CRC), and the limitations of this scheme. This particular version of the Hamming Code guarantees single-bit error corrections as well as double-bit error detections. Furthermore, this version of Hamming Code has proved to be fast with a checking time of 5.669 nanoseconds, that has a relatively higher code rate and lower bit overhead compared to the other versions and can detect a greater percentage of errors per length of code than other EDAC schemes with similar capabilities. In conclusion, with the proper implementation of the system, it is quite possible to ensure a relatively uncorrupted satellite storage system.

Keywords: bit-flips, Hamming code, low earth orbit, parity bits, satellite, single error upset

Procedia PDF Downloads 130
24599 Field Production Data Collection, Analysis and Reporting Using Automated System

Authors: Amir AlAmeeri, Mohamed Ibrahim

Abstract:

Various data points are constantly being measured in the production system, and due to the nature of the wells, these data points, such as pressure, temperature, water cut, etc.., fluctuations are constant, which requires high frequency monitoring and collection. It is a very difficult task to analyze these parameters manually using spreadsheets and email. An automated system greatly enhances efficiency, reduce errors, the need for constant emails which take up disk space, and frees up time for the operator to perform other critical tasks. Various production data is being recorded in an oil field, and this huge volume of data can be seen as irrelevant to some, especially when viewed on its own with no context. In order to fully utilize all this information, it needs to be properly collected, verified and stored in one common place and analyzed for surveillance and monitoring purposes. This paper describes how data is recorded by different parties and departments in the field, and verified numerous times as it is being loaded into a repository. Once it is loaded, a final check is done before being entered into a production monitoring system. Once all this is collected, various calculations are performed to report allocated production. Calculated production data is used to report field production automatically. It is also used to monitor well and surface facility performance. Engineers can use this for their studies and analyses to ensure field is performing as it should be, predict and forecast production, and monitor any changes in wells that could affect field performance.

Keywords: automation, oil production, Cheleken, exploration and production (E&P), Caspian Sea, allocation, forecast

Procedia PDF Downloads 156
24598 Time Series Regression with Meta-Clusters

Authors: Monika Chuchro

Abstract:

This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.

Keywords: clustering, data analysis, data mining, predictive models

Procedia PDF Downloads 466
24597 Python Implementation for S1000D Applicability Depended Processing Model - SALERNO

Authors: Theresia El Khoury, Georges Badr, Amir Hajjam El Hassani, Stéphane N’Guyen Van Ky

Abstract:

The widespread adoption of machine learning and artificial intelligence across different domains can be attributed to the digitization of data over several decades, resulting in vast amounts of data, types, and structures. Thus, data processing and preparation turn out to be a crucial stage. However, applying these techniques to S1000D standard-based data poses a challenge due to its complexity and the need to preserve logical information. This paper describes SALERNO, an S1000d AppLicability dEpended pRocessiNg mOdel. This python-based model analyzes and converts the XML S1000D-based files into an easier data format that can be used in machine learning techniques while preserving the different logic and relationships in files. The model parses the files in the given folder, filters them, and extracts the required information to be saved in appropriate data frames and Excel sheets. Its main idea is to group the extracted information by applicability. In addition, it extracts the full text by replacing internal and external references while maintaining the relationships between files, as well as the necessary requirements. The resulting files can then be saved in databases and used in different models. Documents in both English and French languages were tested, and special characters were decoded. Updates on the technical manuals were taken into consideration as well. The model was tested on different versions of the S1000D, and the results demonstrated its ability to effectively handle the applicability, requirements, references, and relationships across all files and on different levels.

Keywords: aeronautics, big data, data processing, machine learning, S1000D

Procedia PDF Downloads 156
24596 Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines

Authors: Xiaogang Li, Jieqiong Miao

Abstract:

As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square error

Keywords: Grey prediction model, trigonometric functions, support vector machines, genetic algorithms, root mean square error

Procedia PDF Downloads 461
24595 An Analysis of Brand-Building Characteristics in the Iran Airline Websites

Authors: Pedram Behyar, Zahra Bayat

Abstract:

The internet and web are changing ways of “far reaching scope and potential for transformation of the marketing functions”. The web is developing in a faster rate than any previous new communication medium. The website of destination has become a crucial branding channel, that is why all businesses are changing their way to communicate with their customers to encounter their needs and wants in better ways. Website provides numerous opportunities for businesses to strengthen their relationship with their customers. One of these opportunities is website component that enables internet users to make two-way communication with the businesses.

Keywords: marketing communication, brand image, usability, privacy and security, personalization and customization, responsiveness, customer online web experience

Procedia PDF Downloads 504
24594 Analysis of Citation Rate and Data Reuse for Openly Accessible Biodiversity Datasets on Global Biodiversity Information Facility

Authors: Nushrat Khan, Mike Thelwall, Kayvan Kousha

Abstract:

Making research data openly accessible has been mandated by most funders over the last 5 years as it promotes reproducibility in science and reduces duplication of effort to collect the same data. There are evidence that articles that publicly share research data have higher citation rates in biological and social sciences. However, how and whether shared data is being reused is not always intuitive as such information is not easily accessible from the majority of research data repositories. This study aims to understand the practice of data citation and how data is being reused over the years focusing on biodiversity since research data is frequently reused in this field. Metadata of 38,878 datasets including citation counts were collected through the Global Biodiversity Information Facility (GBIF) API for this purpose. GBIF was used as a data source since it provides citation count for datasets, not a commonly available feature for most repositories. Analysis of dataset types, citation counts, creation and update time of datasets suggests that citation rate varies for different types of datasets, where occurrence datasets that have more granular information have higher citation rates than checklist and metadata-only datasets. Another finding is that biodiversity datasets on GBIF are frequently updated, which is unique to this field. Majority of the datasets from the earliest year of 2007 were updated after 11 years, with no dataset that was not updated since creation. For each year between 2007 and 2017, we compared the correlations between update time and citation rate of four different types of datasets. While recent datasets do not show any correlations, 3 to 4 years old datasets show weak correlation where datasets that were updated more recently received high citations. The results are suggestive that it takes several years to cumulate citations for research datasets. However, this investigation found that when searched on Google Scholar or Scopus databases for the same datasets, the number of citations is often not the same as GBIF. Hence future aim is to further explore the citation count system adopted by GBIF to evaluate its reliability and whether it can be applicable to other fields of studies as well.

Keywords: data citation, data reuse, research data sharing, webometrics

Procedia PDF Downloads 178
24593 Significance of Transient Data and Its Applications in Turbine Generators

Authors: Chandra Gupt Porwal, Preeti C. Porwal

Abstract:

Transient data reveals much about the machine's condition that steady-state data cannot. New technologies make this information much more available for evaluating the mechanical integrity of a machine train. Recent surveys at various stations indicate that simplicity is preferred over completeness in machine audits throughout the power generation industry. This is most clearly shown by the number of rotating machinery predictive maintenance programs in which only steady-state vibration amplitude is trended while important transient vibration data is not even acquired. Efforts have been made to explain what transient data is, its importance, the types of plots used for its display, and its effective utilization for analysis. In order to demonstrate the value of measuring transient data and its practical application in rotating machinery for resolving complex and persistent issues with turbine generators, the author presents a few case studies that highlight the presence of rotor instabilities due to the shaft moving towards the bearing centre in a 100 MM LMZ unit located in the Northern Capital Region (NCR), heavy misalignment noticed—especially after 2993 rpm—caused by loose coupling bolts, which prevented the machine from being synchronized for more than four months in a 250 MW KWU unit in the Western Region (WR), and heavy preload noticed at Intermediate pressure turbine (IPT) bearing near HP- IP coupling, caused by high points on coupling faces at a 500 MW KWU unit in the Northern region (NR), experienced at Indian power plants.

Keywords: transient data, steady-state-data, intermediate -pressure-turbine, high-points

Procedia PDF Downloads 69
24592 Geographic Information System for District Level Energy Performance Simulations

Authors: Avichal Malhotra, Jerome Frisch, Christoph van Treeck

Abstract:

The utilization of semantic, cadastral and topological data from geographic information systems (GIS) has exponentially increased for building and urban-scale energy performance simulations. Urban planners, simulation scientists, and researchers use virtual 3D city models for energy analysis, algorithms and simulation tools. For dynamic energy simulations at city and district level, this paper provides an overview of the available GIS data models and their levels of detail. Adhering to different norms and standards, these models also intend to describe building and construction industry data. For further investigations, CityGML data models are considered for simulations. Though geographical information modelling has considerably many different implementations, extensions of virtual city data can also be made for domain specific applications. Highlighting the use of the extended CityGML models for energy researches, a brief introduction to the Energy Application Domain Extension (ADE) along with its significance is made. Consequently, addressing specific input simulation data, a workflow using Modelica underlining the usage of GIS information and the quantification of its significance over annual heating energy demand is presented in this paper.

Keywords: CityGML, EnergyADE, energy performance simulation, GIS

Procedia PDF Downloads 168
24591 Visual Analytics in K 12 Education: Emerging Dimensions of Complexity

Authors: Linnea Stenliden

Abstract:

The aim of this paper is to understand emerging learning conditions, when a visual analytics is implemented and used in K 12 (education). To date, little attention has been paid to the role visual analytics (digital media and technology that highlight visual data communication in order to support analytical tasks) can play in education, and to the extent to which these tools can process actionable data for young students. This study was conducted in three public K 12 schools, in four social science classes with students aged 10 to 13 years, over a period of two to four weeks at each school. Empirical data were generated using video observations and analyzed with help of metaphors by Latour. The learning conditions are found to be distinguished by broad complexity characterized by four dimensions. These emerge from the actors’ deeply intertwined relations in the activities. The paper argues in relation to the found dimensions that novel approaches to teaching and learning could benefit students’ knowledge building as they work with visual analytics, analyzing visualized data.

Keywords: analytical reasoning, complexity, data use, problem space, visual analytics, visual storytelling, translation

Procedia PDF Downloads 376
24590 Cybersecurity Challenges in Africa

Authors: Chimmoe Fomo Michelle Larissa

Abstract:

The challenges of cybersecurity in Africa are increasingly significant as the continent undergoes rapid digital transformation. With the rise of internet connectivity, mobile phone usage, and digital financial services, Africa faces unique cybersecurity threats. The significance of this study lies in understanding these threats and the multifaceted challenges that hinder effective cybersecurity measures across the continent. The methodologies employed in this study include a comprehensive analysis of existing cybersecurity frameworks in various African countries, surveys of key stakeholders in the digital ecosystem, and case studies of cybersecurity incidents. These methodologies aim to provide a detailed understanding of the current cybersecurity landscape, identify gaps in existing policies, and evaluate the effectiveness of implemented security measures. Major findings of the study indicate that Africa faces numerous cybersecurity challenges, including inadequate regulatory frameworks, insufficient cybersecurity awareness, and a shortage of skilled professionals. Additionally, the prevalence of cybercrime, such as financial fraud, data breaches, and ransomware attacks, exacerbates the situation. The study also highlights the role of international cooperation and regional collaboration in addressing these challenges and improving overall cybersecurity resilience. In conclusion, addressing cybersecurity challenges in Africa requires a multifaceted approach that involves strengthening regulatory frameworks, enhancing public awareness, and investing in cybersecurity education and training. The study underscores the importance of regional and international collaboration in building a robust cybersecurity infrastructure capable of mitigating the risks associated with the continent's digital growth.

Keywords: Africa, cybersecurity, challenges, digital infrastructure, cybercrime

Procedia PDF Downloads 40
24589 Achieving High Renewable Energy Penetration in Western Australia Using Data Digitisation and Machine Learning

Authors: A. D. Tayal

Abstract:

The energy industry is undergoing significant disruption. This research outlines that, whilst challenging; this disruption is also an emerging opportunity for electricity utilities. One such opportunity is leveraging the developments in data analytics and machine learning. As the uptake of renewable energy technologies and complimentary control systems increases, electricity grids will likely transform towards dense microgrids with high penetration of renewable generation sources, rich in network and customer data, and linked through intelligent, wireless communications. Data digitisation and analytics have already impacted numerous industries, and its influence on the energy sector is growing, as computational capabilities increase to manage big data, and as machines develop algorithms to solve the energy challenges of the future. The objective of this paper is to address how far the uptake of renewable technologies can go given the constraints of existing grid infrastructure and provides a qualitative assessment of how higher levels of renewable energy penetration can be facilitated by incorporating even broader technological advances in the fields of data analytics and machine learning. Western Australia is used as a contextualised case study, given its abundance and diverse renewable resources (solar, wind, biomass, and wave) and isolated networks, making a high penetration of renewables a feasible target for policy makers over coming decades.

Keywords: data, innovation, renewable, solar

Procedia PDF Downloads 364
24588 Design and Implementation of Wireless Syncronized AI System for Security

Authors: Saradha Priya

Abstract:

Developing virtual human is very important to meet the challenges occurred in many applications where human find difficult or risky to perform the task. A robot is a machine that can perform a task automatically or with guidance. Robotics is generally a combination of artificial intelligence and physical machines (motors). Computational intelligence involves the programmed instructions. This project proposes a robotic vehicle that has a camera, PIR sensor and text command based movement. It is specially designed to perform surveillance and other few tasks in the most efficient way. Serial communication has been occurred between a remote Base Station, GUI Application, and PC.

Keywords: Zigbee, camera, pirsensor, wireless transmission, DC motor

Procedia PDF Downloads 348
24587 A New Paradigm to Make Cloud Computing Greener

Authors: Apurva Saxena, Sunita Gond

Abstract:

Demand of computation, data storage in large amount are rapidly increases day by day. Cloud computing technology fulfill the demand of today’s computation but this will lead to high power consumption in cloud data centers. Initiative for Green IT try to reduce power consumption and its adverse environmental impacts. Paper also focus on various green computing techniques, proposed models and efficient way to make cloud greener.

Keywords: virtualization, cloud computing, green computing, data center

Procedia PDF Downloads 554
24586 Soil Composition in Different Agricultural Crops under Application of Swine Wastewater

Authors: Ana Paula Almeida Castaldelli Maciel, Gabriela Medeiros, Amanda de Souza Machado, Maria Clara Pilatti, Ralpho Rinaldo dos Reis, Silvio Cesar Sampaio

Abstract:

Sustainable agricultural systems are crucial to ensuring global food security and the long-term production of nutritious food. Comprehensive soil and water management practices, including nutrient management, balanced fertilizer use, and appropriate waste management, are essential for sustainable agriculture. Swine wastewater (SWW) treatment has become a significant focus due to environmental concerns related to heavy metals, antibiotics, resistant pathogens, and nutrients. In South America, small farms use soil to dispose of animal waste, a practice that is expected to increase with global pork production. The potential of SWW as a nutrient source is promising, contributing to global food security, nutrient cycling, and mineral fertilizer reduction. Short- and long-term studies evaluated the effects of SWW on soil and plant parameters, such as nutrients, heavy metals, organic matter (OM), cation exchange capacity (CEC), and pH. Although promising results have been observed in short- and medium-term applications, long-term applications require more attention due to heavy metal concentrations. Organic soil amendment strategies, due to their economic and ecological benefits, are commonly used to reduce the bioavailability of heavy metals. However, the rate of degradation and initial levels of OM must be monitored to avoid changes in soil pH and release of metals. The study aimed to evaluate the long-term effects of SWW application on soil fertility parameters, focusing on calcium (Ca), magnesium (Mg), and potassium (K), in addition to CEC and OM. Experiments were conducted at the Universidade Estadual do Oeste do Paraná, Brazil, using 24 drainage lysimeters for nine years, with different application rates of SWW and mineral fertilization. Principal Component Analysis (PCA) was then conducted to summarize the composite variables, known as principal components (PC), and limit the dimensionality to be evaluated. The retained PCs were then correlated with the original variables to identify the level of association between each variable and each PC. Data were interpreted using Analysis of Variance - ANOVA for general linear models (GLM). As OM was not measured in the 2007 soybean experiment, it was assessed separately from PCA to avoid loss of information. PCA and ANOVA indicated that crop type, SWW, and mineral fertilization significantly influenced soil nutrient levels. Soybeans presented higher concentrations of Ca, Mg, and CEC. The application of SWW influenced K levels, with higher concentrations observed in SWW from biodigesters and higher doses of swine manure. Variability in nutrient concentrations in SWW due to factors such as animal age and feed composition makes standard recommendations challenging. OM levels increased in SWW-treated soils, improving soil fertility and structure. In conclusion, the application of SWW can increase soil fertility and crop productivity, reducing environmental risks. However, careful management and long-term monitoring are essential to optimize benefits and minimize adverse effects.

Keywords: contamination, water research, biodigester, nutrients

Procedia PDF Downloads 59
24585 Cryptocurrency-Based Mobile Payments with Near-Field Communication-Enabled Devices

Authors: Marko Niinimaki

Abstract:

Cryptocurrencies are getting increasingly popular, but very few of them can be conveniently used in daily mobile phone purchases. To solve this problem, we demonstrate how to build a functional prototype of a mobile cryptocurrency-based e-commerce application the communicates with Near-Field Communication (NFC) tags. Using the system, users are able to purchase physical items with an NFC tag that contains an e-commerce URL. The payment is done simply by touching the tag with a mobile device and accepting the payment. Our method is constructive: we describe the design and technologies used in the implementation and evaluate the security and performance of the solution. Our main finding is that the analysis and measurements show that our solution is feasible for e-commerce.

Keywords: cryptocurrency, e-commerce, NFC, mobile devices

Procedia PDF Downloads 184
24584 The Regionalism Paradox in the Fight against Human Trafficking: Indonesia and the Limits of Regional Cooperation in ASEAN

Authors: Nur Iman Subono, Meidi Kosandi

Abstract:

This paper examines the role of regional cooperation in the Association of Southeast Asian Nations (ASEAN) in the fight against human trafficking for Indonesia. Many among scholars suggest that regional cooperation is necessary for combating human trafficking for its transnational and organized character as a crime against humanity. ASEAN members have been collectively active in responding transnational security issues with series of talks and collaboration agreement since early 2000s. Lately in 2015, ASEAN agreed on ASEAN Convention against Trafficking in Persons, particularly Women and Children (ACTIP) that requires each member to collaborate in information sharing and providing effective safeguard and protection of victims. Yet, the frequency of human trafficking crime occurrence remains high and tend to increase in Indonesian in 2017-2018. The objective of this paper is to examine the effectiveness and success of ACTIP implementation in the fight against human trafficking in Indonesia. Based on two years of research (2017-2018) in three provinces with the largest number of victims in Indonesia, this paper shows the tendency of persisting crime despite the implementation of regional and national anti-trafficking policies. The research was conducted by archive study, literature study, discourse analysis, and depth interviews with local government officials, police, prosecutors, victims, and traffickers. This paper argues that the relative success of ASEAN in establishing convention at the high-level meetings has not been followed with the success in its implementation in the society. Three main factors have contributed to the ineffectiveness of the agreements, i.e. (1) ASEAN institutional arrangement as a collection of sovereign states instead of supranational organization with binding authority; (2) the lack of commitment of ASEAN sovereign member-states to the agreements; and (3) the complexity and variety of the nature of the crime in each member-state. In effect, these factors have contributed to generating the regionalism paradox in ASEAN where states tend to revert to national policies instead of seeking regional collective solution.

Keywords: human trafficking, transnational security, regionalism, anti trafficking policy

Procedia PDF Downloads 161
24583 Physiological Action of Anthraquinone-Containing Preparations

Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina, Evgenii N. Kojaev

Abstract:

In review the generalized data about biological activity of anthraquinone-containing plants and specimens on their basis is presented. Data of traditional medicine, results of bioscreening and clinical researches of specimens are analyzed.

Keywords: anthraquinones, physiologically active substances, phytopreparation, Ramon

Procedia PDF Downloads 376
24582 China Global Policy through the Shanghai Cooperation Organization

Authors: Enayatollah Yazdani

Abstract:

In the post-Cold War era, the world is facing a new emerging global order with the rise of multiple actors in the international arena. China, as a rising global power, has great leverage in internal relations. In particular, during the last two decades, China has rapidly transformed its economy into a global leader in advanced technologies. As a rising power and as one of the two major founding members of the Shanghai Cooperation Organization (SCO), China has tried to use this regional organization, which has the potential to become an important political and security organization of the major states located in the vast Eurasian landmass, for its “go global” strategy. In fact, for Beijing, the SCO represents a new and unique cooperation model, reflecting its vision of a multipolar world order. China has used the SCO umbrella as a multilateral platform to address external threats posed by non-state actors on its vulnerable western border; to gain a strong economic and political foothold in Central Asia without putting the Sino-Russian strategic partnership at risk; and to enhance its energy security through large-scale infrastructure investment in, and trade with, the Central Asian member states. In other words, the SCO is one of the successful outcomes of Chines foreign policy in the post-Cold War era. The expansion of multilateral ties all over the world by dint of pursuing institutional strategies as SCO identifies China as a more constructive power. SCO became a new model of cooperation that was formed on the remains of collapsed Soviet system and predetermined China's geopolitical role in the region. As the fast developing effective regional mechanism, SCO now has more of an external impact on the international system and forms a new type of interaction for promoting China's grand strategy of 'peaceful rise.' This paper aims to answer this major question: How the Chinese government has manipulated the SCO for its foreign policy and global and regional influence? To answer this question, the main discussion is that with regard to the SCO capabilities and politico-economic potential, this organization has been used by China as a platform to expand influence beyond its borders.

Keywords: China, the Shanghai Cooperation Organization (SCO), Central Asia, global policy, foreign policy

Procedia PDF Downloads 65
24581 Personal Data Protection: A Legal Framework for Health Law in Turkey

Authors: Veli Durmus, Mert Uydaci

Abstract:

Every patient who needs to get a medical treatment should share health-related personal data with healthcare providers. Therefore, personal health data plays an important role to make health decisions and identify health threats during every encounter between a patient and caregivers. In other words, health data can be defined as privacy and sensitive information which is protected by various health laws and regulations. In many cases, the data are an outcome of the confidential relationship between patients and their healthcare providers. Globally, almost all nations have own laws, regulations or rules in order to protect personal data. There is a variety of instruments that allow authorities to use the health data or to set the barriers data sharing across international borders. For instance, Directive 95/46/EC of the European Union (EU) (also known as EU Data Protection Directive) establishes harmonized rules in European borders. In addition, the General Data Protection Regulation (GDPR) will set further common principles in 2018. Because of close policy relationship with EU, this study provides not only information on regulations, directives but also how they play a role during the legislative process in Turkey. Even if the decision is controversial, the Board has recently stated that private or public healthcare institutions are responsible for the patient call system, for doctors to call people waiting outside a consultation room, to prevent unlawful processing of personal data and unlawful access to personal data during the treatment. In Turkey, vast majority private and public health organizations provide a service that ensures personal data (i.e. patient’s name and ID number) to call the patient. According to the Board’s decision, hospital or other healthcare institutions are obliged to take all necessary administrative precautions and provide technical support to protect patient privacy. However, this application does not effectively and efficiently performing in most health services. For this reason, it is important to draw a legal framework of personal health data by stating what is the main purpose of this regulation and how to deal with complicated issues on personal health data in Turkey. The research is descriptive on data protection law for health care setting in Turkey. Primary as well as secondary data has been used for the study. The primary data includes the information collected under current national and international regulations or law. Secondary data include publications, books, journals, empirical legal studies. Consequently, privacy and data protection regimes in health law show there are some obligations, principles and procedures which shall be binding upon natural or legal persons who process health-related personal data. A comparative approach presents there are significant differences in some EU member states due to different legal competencies, policies, and cultural factors. This selected study provides theoretical and practitioner implications by highlighting the need to illustrate the relationship between privacy and confidentiality in Personal Data Protection in Health Law. Furthermore, this paper would help to define the legal framework for the health law case studies on data protection and privacy.

Keywords: data protection, personal data, privacy, healthcare, health law

Procedia PDF Downloads 224
24580 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based on Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling

Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König

Abstract:

As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focuses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.

Keywords: auto-ID, construction logistic, fuzzy, monitoring, RFID, scheduling

Procedia PDF Downloads 513
24579 Smart Campus Digital Twin: Basic Framework - Current State, Trends and Challenges

Authors: Enido Fabiano de Ramos, Ieda Kanashiro Makiya, Francisco I. Giocondo Cesar

Abstract:

This study presents an analysis of the Digital Twin concept applied to the academic environment, focusing on the development of a Digital Twin Smart Campus Framework. Using bibliometric analysis methodologies and literature review, the research investigates the evolution and applications of the Digital Twin in educational contexts, comparing these findings with the advances of Industry 4.0. It was identified gaps in the existing literature and highlighted the need to adapt Digital Twin principles to meet the specific demands of a smart campus. By integrating Industry 4.0 concepts such as automation, Internet of Things, and real-time data analytics, we propose an innovative framework for the successful implementation of the Digital Twin in academic settings. The results of this study provide valuable insights for university campus managers, allowing for a better understanding of the potential applications of the Digital Twin for operations, security, and user experience optimization. In addition, our framework offers practical guidance for transitioning from a digital campus to a digital twin smart campus, promoting innovation and efficiency in the educational environment. This work contributes to the growing literature on Digital Twins and Industry 4.0, while offering a specific and tailored approach to transforming university campuses into smart and connected spaces, high demanded by Society 5.0 trends. It is hoped that this framework will serve as a basis for future research and practical implementations in the field of higher education and educational technology.

Keywords: smart campus, digital twin, industry 4.0, education trends, society 5.0

Procedia PDF Downloads 58