Search results for: surface deformations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6650

Search results for: surface deformations

4460 The Influence of Step and Fillet Shape on Nozzle Endwall Heat Transfer

Authors: Jeong Ju Kim, Hee Yoon Chung, Dong Ho Rhee, Hyung Hee Cho

Abstract:

There is a gap at combustor-turbine interface where leakage flow comes out to prevent hot gas ingestion into the gas turbine nozzle platform. The leakage flow protects the nozzle endwall surface from the hot gas coming from combustor exit. For controlling flow’s stream, the gap’s geometry is transformed by changing fillet radius size. During the operation, step configuration is occurred that was unintended between combustor-turbine platform interface caused by thermal expansion or mismatched assembly. In this study, CFD simulations were performed to investigate the effect of the fillet and step on heat transfer and film cooling effectiveness on the nozzle platform. The Reynolds-averaged Navier-stokes equation was solved with turbulence model, SST k-omega. With the fillet configuration, predicted film cooling effectiveness results indicated that fillet radius size influences to enhance film cooling effectiveness. Predicted film cooling effectiveness results at forward facing step configuration indicated that step height influences to enhance film cooling effectiveness. We suggested that designer change a combustor-turbine interface configuration which was varied by fillet radius size near endwall gap when there was a step at combustor-turbine interface. Gap shape was modified by increasing fillet radius size near nozzle endwall. Also, fillet radius and step height were interacted with the film cooling effectiveness and heat transfer on endwall surface.

Keywords: gas turbine, film cooling effectiveness, endwall, fillet

Procedia PDF Downloads 351
4459 Visual Inspection of Road Conditions Using Deep Convolutional Neural Networks

Authors: Christos Theoharatos, Dimitris Tsourounis, Spiros Oikonomou, Andreas Makedonas

Abstract:

This paper focuses on the problem of visually inspecting and recognizing the road conditions in front of moving vehicles, targeting automotive scenarios. The goal of road inspection is to identify whether the road is slippery or not, as well as to detect possible anomalies on the road surface like potholes or body bumps/humps. Our work is based on an artificial intelligence methodology for real-time monitoring of road conditions in autonomous driving scenarios, using state-of-the-art deep convolutional neural network (CNN) techniques. Initially, the road and ego lane are segmented within the field of view of the camera that is integrated into the front part of the vehicle. A novel classification CNN is utilized to identify among plain and slippery road textures (e.g., wet, snow, etc.). Simultaneously, a robust detection CNN identifies severe surface anomalies within the ego lane, such as potholes and speed bumps/humps, within a distance of 5 to 25 meters. The overall methodology is illustrated under the scope of an integrated application (or system), which can be integrated into complete Advanced Driver-Assistance Systems (ADAS) systems that provide a full range of functionalities. The outcome of the proposed techniques present state-of-the-art detection and classification results and real-time performance running on AI accelerator devices like Intel’s Myriad 2/X Vision Processing Unit (VPU).

Keywords: deep learning, convolutional neural networks, road condition classification, embedded systems

Procedia PDF Downloads 117
4458 4D Monitoring of Subsurface Conditions in Concrete Infrastructure Prior to Failure Using Ground Penetrating Radar

Authors: Lee Tasker, Ali Karrech, Jeffrey Shragge, Matthew Josh

Abstract:

Monitoring for the deterioration of concrete infrastructure is an important assessment tool for an engineer and difficulties can be experienced with monitoring for deterioration within an infrastructure. If a failure crack, or fluid seepage through such a crack, is observed from the surface often the source location of the deterioration is not known. Geophysical methods are used to assist engineers with assessing the subsurface conditions of materials. Techniques such as Ground Penetrating Radar (GPR) provide information on the location of buried infrastructure such as pipes and conduits, positions of reinforcements within concrete blocks, and regions of voids/cavities behind tunnel lining. This experiment underlines the application of GPR as an infrastructure-monitoring tool to highlight and monitor regions of possible deterioration within a concrete test wall due to an increase in the generation of fractures; in particular, during a time period of applied load to a concrete wall up to and including structural failure. A three-point load was applied to a concrete test wall of dimensions 1700 x 600 x 300 mm³ in increments of 10 kN, until the wall structurally failed at 107.6 kN. At each increment of applied load, the load was kept constant and the wall was scanned using GPR along profile lines across the wall surface. The measured radar amplitude responses of the GPR profiles, at each applied load interval, were reconstructed into depth-slice grids and presented at fixed depth-slice intervals. The corresponding depth-slices were subtracted from each data set to compare the radar amplitude response between datasets and monitor for changes in the radar amplitude response. At lower values of applied load (i.e., 0-60 kN), few changes were observed in the difference of radar amplitude responses between data sets. At higher values of applied load (i.e., 100 kN), closer to structural failure, larger differences in radar amplitude response between data sets were highlighted in the GPR data; up to 300% increase in radar amplitude response at some locations between the 0 kN and 100 kN radar datasets. Distinct regions were observed in the 100 kN difference dataset (i.e., 100 kN-0 kN) close to the location of the final failure crack. The key regions observed were a conical feature located between approximately 3.0-12.0 cm depth from surface and a vertical linear feature located approximately 12.1-21.0 cm depth from surface. These key regions have been interpreted as locations exhibiting an increased change in pore-space due to increased mechanical loading, or locations displaying an increase in volume of micro-cracks, or locations showing the development of a larger macro-crack. The experiment showed that GPR is a useful geophysical monitoring tool to assist engineers with highlighting and monitoring regions of large changes of radar amplitude response that may be associated with locations of significant internal structural change (e.g. crack development). GPR is a non-destructive technique that is fast to deploy in a production setting. GPR can assist with reducing risk and costs in future infrastructure maintenance programs by highlighting and monitoring locations within the structure exhibiting large changes in radar amplitude over calendar-time.

Keywords: 4D GPR, engineering geophysics, ground penetrating radar, infrastructure monitoring

Procedia PDF Downloads 164
4457 Potential Applications of Biosurfactants from Corn Steep Liquor in Cosmetic

Authors: J. M. Cruz, X. Vecıno, L. Rodrıguez-López, J. M. Dominguez, A. B. Moldes

Abstract:

The cosmetic and personal care industry are the fields where biosurfactants could have more possibilities of success because in this kind of products the replacement of synthetic detergents by natural surfactants will provide an additional added value to the product, at the same time that the harmful effects produced by some synthetic surfactants could be avoided or reduced. Therefore, nowadays, consumers are disposed to pay and additional cost if they obtain more natural products. In this work we provide data about the potential of biosurfactants in the cosmetic and personal care industry. Biosurfactants from corn steep liquor, that is a fermented and condensed stream, have showed good surface-active properties, reducing substantially the surface tension of water. The bacteria that usually growth in corn steep liquor comprises Lactobacillus species, generally recognize as safe. The biosurfactant extracted from CSL consists of a lipopeptide, composed by fatty acids, which can reduce the surface tension of water in more than 30 units. It is a yellow and viscous liquid with a density of 1.053 mg/mL and pH=4. By these properties, they could be introduced in the formulation of cosmetic creams, hair conditioners or shampoos. Moreover this biosurfactant extracted from corn steep liquor, have showed a potent antimicrobial effect on different strains of Streptococcus. Some species of Streptococcus are commonly found weakly living in the human respiratory and genitourinary systems, producing several diseases in humans, including skin diseases. For instance, Streptococcus pyogenes produces many toxins and enzymes that help to stabilize skin infections; probably biosurfactants from corn steep liquor can inhibit the mechanisms of the S. pyogenes enzymes. S. pyogenes is an important cause of pharyngitis, impetigo, cellulitis and necrotizing fasciitis. In this work it was observed that 50 mg/L of biosurfactant extract obtained from corn steep liquor is able to inhibit more than 50% the growth of S. pyogenes. Thus, cosmetic and personal care products, formulated with biosurfactants from corn steep liquor, could have prebiotic properties. The natural biosurfactant presented in this work and obtained from corn milling industry streams, have showed a high potential to provide an interesting and sustainable alternative to those, antibacterial and surfactant ingredients used in cosmetic and personal care manufacture, obtained by chemical synthesis, which can cause irritation, and often only show short time effects.

Keywords: antimicrobial activity, biosurfactants, cosmetic, personal care

Procedia PDF Downloads 244
4456 Advanced Separation Process of Hazardous Plastics and Metals from End-Of-Life Vehicles Shredder Residue by Nanoparticle Froth Flotation

Authors: Srinivasa Reddy Mallampati, Min Hee Park, Soo Mim Cho, Sung Hyeon Yoon

Abstract:

One of the issues of End of Life Vehicles (ELVs) recycling promotion is technology for the appropriate treatment of automotive shredder residue (ASR). Owing to its high heterogeneity and variable composition (plastic (23–41%), rubber/elastomers (9–21%), metals (6–13%), glass (10–20%) and dust (soil/sand) etc.), ASR can be classified as ‘hazardous waste’, on the basis of the presence of heavy metals (HMs), PCBs, BFRs, mineral oils, etc. Considering their relevant concentrations, these metals and plastics should be properly recovered for recycling purposes before ASR residues are disposed of. Brominated flame retardant additives in ABS/HIPS and PVC may generate dioxins and furans at elevated temperatures. Moreover, these BFRs additives present in plastic materials may leach into the environment during landfilling operations. ASR thermal process removes some of the organic material but concentrates, the heavy metals and POPs present in the ASR residues. In the present study, Fe/Ca/CaO nanoparticle assisted ozone treatment has been found to selectively hydrophilize the surface of ABS/HIPS and PVC plastics, enhancing its wettability and thereby promoting its separation from ASR plastics by means of froth flotation. The water contact angles, of ABS/HIPS and PVC decreased, about 18.7°, 18.3°, and 17.9° in ASR respectively. Under froth flotation conditions at 50 rpm, about 99.5% and 99.5% of HIPS in ASR samples sank, resulting in a purity of 98% and 99%. Furthermore, at 150 rpm a 100% PVC separation in the settled fraction, with 98% of purity in ASR, respectively. Total recovery of non-ABS/HIPS and PVC plastics reached nearly 100% in the floating fraction. This process improved the quality of recycled ASR plastics by removing surface contaminants or impurities. Further, a hybrid ball-milling and with Fe/Ca/CaO nanoparticle froth flotation process was established for the recovery of HMs from ASR. After ball-milling with Fe/Ca/CaO nanoparticle additives, the flotation efficiency increased to about 55 wt% and the HMs recovery were also increased about 90% for the 0.25 mm size fractions of ASR. Coating with Fe/Ca/CaO nanoparticles associated with subsequent microbubble froth flotation allowed the air bubbles to attach firmly on the HMs. SEM–EDS maps showed that the amounts of HMs were significant on the surface of the floating ASR fraction. This result, along with the low HM concentration in the settled fraction, was confirmed by elemental spectra and semi-quantitative SEM–EDS analysis. Developed hybrid preferential hazardous plastics and metals separation process from ASR is a simple, highly efficient, and sustainable procedure.

Keywords: end of life vehicles shredder residue, hazardous plastics, nanoparticle froth flotation, separation process

Procedia PDF Downloads 263
4455 Solutions for Food-Safe 3D Printing

Authors: Geremew Geidare Kailo, Igor Gáspár, András Koris, Ivana Pajčin, Flóra Vitális, Vanja Vlajkov

Abstract:

Three-dimension (3D) printing, a very popular additive manufacturing technology, has recently undergone rapid growth and replaced the use of conventional technology from prototyping to producing end-user parts and products. The 3D Printing technology involves a digital manufacturing machine that produces three-dimensional objects according to designs created by the user via 3D modeling or computer-aided design/manufacturing (CAD/CAM) software. The most popular 3D printing system is Fused Deposition Modeling (FDM) or also called Fused Filament Fabrication (FFF). A 3D-printed object is considered food safe if it can have direct contact with the food without any toxic effects, even after cleaning, storing, and reusing the object. This work analyzes the processing timeline of the filament (material for 3D printing) from unboxing to the extrusion through the nozzle. It is an important task to analyze the growth of bacteria on the 3D printed surface and in gaps between the layers. By default, the 3D-printed object is not food safe after longer usage and direct contact with food (even though they use food-safe filaments), but there are solutions for this problem. The aim of this work was to evaluate the 3D-printed object from different perspectives of food safety. Firstly, testing antimicrobial 3D printing filaments from a food safety aspect since the 3D Printed object in the food industry may have direct contact with the food. Therefore, the main purpose of the work is to reduce the microbial load on the surface of a 3D-printed part. Coating with epoxy resin was investigated, too, to see its effect on mechanical strength, thermal resistance, surface smoothness and food safety (cleanability). Another aim of this study was to test new temperature-resistant filaments and the effect of high temperature on 3D printed materials to see if they can be cleaned with boiling or similar hi-temp treatment. This work proved that all three mentioned methods could improve the food safety of the 3D printed object, but the size of this effect variates. The best result we got was with coating with epoxy resin, and the object was cleanable like any other injection molded plastic object with a smooth surface. Very good results we got by boiling the objects, and it is good to see that nowadays, more and more special filaments have a food-safe certificate and can withstand boiling temperatures too. Using antibacterial filaments reduced bacterial colonies to 1/5, but the biggest advantage of this method is that it doesn’t require any post-processing. The object is ready out of the 3D printer. Acknowledgements: The research was supported by the Hungarian and Serbian bilateral scientific and technological cooperation project funded by the Hungarian National Office for Research, Development and Innovation (NKFI, 2019-2.1.11-TÉT-2020-00249) and the Ministry of Education, Science and Technological Development of the Republic of Serbia. The authors acknowledge the Hungarian University of Agriculture and Life Sciences’s Doctoral School of Food Science for the support in this study

Keywords: food safety, 3D printing, filaments, microbial, temperature

Procedia PDF Downloads 126
4454 Assessment of Tidal Influence in Spatial and Temporal Variations of Water Quality in Masan Bay, Korea

Authors: S. J. Kim, Y. J. Yoo

Abstract:

Slack-tide sampling was carried out at seven stations at high and low tides for a tidal cycle, in summer (7, 8, 9) and fall (10), 2016 to determine the differences of water quality according to tides in Masan Bay. The data were analyzed by Pearson correlation and factor analysis. The mixing state of all the water quality components investigated is well explained by the correlation with salinity (SAL). Turbidity (TURB), dissolved silica (DSi), nitrite and nitrate nitrogen (NNN) and total nitrogen (TN), which find their way into the bay from the streams and have no internal source and sink reaction, showed a strong negative correlation with SAL at low tide, indicating the property of conservative mixing. On the contrary, in summer and fall, dissolved oxygen (DO), hydrogen sulfide (H2S) and chemical oxygen demand with KMnO4 (CODMn) of the surface and bottom water, which were sensitive to an internal source and sink reaction, showed no significant correlation with SAL at high and low tides. The remaining water quality parameters showed a conservative or a non-conservative mixing pattern depending on the mixing characteristics at high and low tides, determined by the functional relationship between the changes of the flushing time and the changes of the characteristics of water quality components of the end-members in the bay. Factor analysis performed on the concentration difference data sets between high and low tides helped in identifying the principal latent variables for them. The concentration differences varied spatially and temporally. Principal factors (PFs) scores plots for each monitoring situation showed high associations of the variations to the monitoring sites. At sampling station 1 (ST1), temperature (TEMP), SAL, DSi, TURB, NNN and TN of the surface water in summer, TEMP, SAL, DSi, DO, TURB, NNN, TN, reactive soluble phosphorus (RSP) and total phosphorus (TP) of the bottom water in summer, TEMP, pH, SAL, DSi, DO, TURB, CODMn, particulate organic carbon (POC), ammonia nitrogen (AMN), NNN, TN and fecal coliform (FC) of the surface water in fall, TEMP, pH, SAL, DSi, H2S, TURB, CODMn, AMN, NNN and TN of the bottom water in fall commonly showed up as the most significant parameters and the large concentration differences between high and low tides. At other stations, the significant parameters showed differently according to the spatial and temporal variations of mixing pattern in the bay. In fact, there is no estuary that always maintains steady-state flow conditions. The mixing regime of an estuary might be changed at any time from linear to non-linear, due to the change of flushing time according to the combination of hydrogeometric properties, inflow of freshwater and tidal action, And furthermore the change of end-member conditions due to the internal sinks and sources makes the occurrence of concentration difference inevitable. Therefore, when investigating the water quality of the estuary, it is necessary to take a sampling method considering the tide to obtain average water quality data.

Keywords: conservative mixing, end-member, factor analysis, flushing time, high and low tide, latent variables, non-conservative mixing, slack-tide sampling, spatial and temporal variations, surface and bottom water

Procedia PDF Downloads 113
4453 Synthesis of Deformed Nuclei 260Rf, 261Rf and 262Rf in the Decay of 266Rf*Formed via Different Fusion Reactions: Entrance Channel Effects

Authors: Niyti, Aman Deep, Rajesh Kharab, Sahila Chopra, Raj. K. Gupta

Abstract:

Relatively long-lived transactinide elements (i.e., elements with atomic number Z≥104) up to Z = 108 have been produced in nuclear reactions between low Z projectiles (C to Al) and actinide targets. Cross sections have been observed to decrease steeply with increasing Z. Recently, production cross sections of several picobarns have been reported for comparatively neutron-rich nuclides of 112 through 118 produced via hot fusion reactions with 48Ca and actinide targets. Some of those heavy nuclides are reported to have lifetimes on the order of seconds or longer. The relatively high cross sections in these hot fusion reactions are not fully understood and this has renewed interest in systematic studies of heavy-ion reactions with actinide targets. The main aim of this work is to understand the dynamics hot fusion reactions 18O+ 248Cm and 22Ne+244Pu (carried out at RIKEN and TASCA respectively) using the collective clusterization technique, carried out by undertaking the decay of the compound nucleus 266Rf∗ into 4n, 5n and 6n neutron evaporation channels. Here we extend our earlier study of the excitation functions (EFs) of 266Rf∗, formed in fusion reaction 18O+248Cm, based on Dynamical Cluster-decay Model (DCM) using the pocket formula for nuclear proximity potential, to the use of other nuclear interaction potentials derived from Skyrme energy density formalism (SEDF) based on semiclassical extended Thomas Fermi (ETF) approach and also study entrance channel effects by considering the synthesis of 266Rf* in 22Ne+244Pu reaction. The Skyrme forces used are the old force SIII, and new forces GSkI and KDE0(v1). Here, the EFs for the production of 260Rf, 261Rf and 262Rf isotope via 6n, 5n and 4n decay channel from the 266Rf∗ compound nucleus are studied at Elab = 88.2 to 125 MeV, including quadrupole deformations β2i and ‘hot-optimum’ orientations θi. The calculations are made within the DCM where the neck-length ∆R is the only parameter representing the relative separation distance between two fragments and/or clusters Ai which assimilates the neck formation effects.

Keywords: entrance channel effects, fusion reactions, skyrme force, superheavy nucleus

Procedia PDF Downloads 236
4452 Design of an Artificial Oil Body-Cyanogen Bromide Technology Platform for the Expression of Small Bioactive Peptide, Mastoparan B

Authors: Tzyy-Rong Jinn, Sheng-Kuo Hsieh, Yi-Ching Chung, Feng-Chia Hsieh

Abstract:

In this study, we attempted to develop a recombinant oleosin-based fusion expression strategy in Escherichia coli (E. coli) and coupled with the artificial oil bodies (AOB)-cyanogen bromide technology platform to produce bioactive mastoparan B (MP-B). As reported, the oleosin in AOB system plays a carrier (fusion with target protein), since oleosin possess two amphipathic regions (at the N-terminus and C-terminus), which result in the N-terminus and C-terminus of oleosin could be arranged on the surface of AOB. Thus, the target protein fused to the N-terminus or C-terminus of oleosin which also is exposed on the surface of AOB, and this process will greatly facilitate the subsequent separation and purification of target protein from AOB. In addition, oleosin, a unique structural protein of seed oil bodies, has the added advantage of helping the fused MP-B expressed in inclusion bodies, which can protect from proteolytic degradation. In this work, MP-B was fused to the C-terminus of oleosin and then was expressed in E. coli as an insoluble recombinant protein. As a consequence, we successfully developed a reliable recombinant oleosin-based fusion expression strategy in Escherichia coli and coupled with the artificial oil bodies (AOB)-cyanogen bromide technology platform to produce the small peptide, MP-B. Take together, this platform provides an insight into the production of active MP-B, which will facilitate studies and applications of this peptide in the future.

Keywords: artificial oil bodies, Escherichia coli, Oleosin-fusion protein, Mastoparan-B

Procedia PDF Downloads 440
4451 Nanoparticles Modification by Grafting Strategies for the Development of Hybrid Nanocomposites

Authors: Irati Barandiaran, Xabier Velasco-Iza, Galder Kortaberria

Abstract:

Hybrid inorganic/organic nanostructured materials based on block copolymers are of considerable interest in the field of Nanotechnology, taking into account that these nanocomposites combine the properties of polymer matrix and the unique properties of the added nanoparticles. The use of block copolymers as templates offers the opportunity to control the size and the distribution of inorganic nanoparticles. This research is focused on the surface modification of inorganic nanoparticles to reach a good interface between nanoparticles and polymer matrices which hinders the nanoparticle aggregation. The aim of this work is to obtain a good and selective dispersion of Fe3O4 magnetic nanoparticles into different types of block copolymers such us, poly(styrene-b-methyl methacrylate) (PS-b-PMMA), poly(styrene-b-ε-caprolactone) (PS-b-PCL) poly(isoprene-b-methyl methacrylate) (PI-b-PMMA) or poly(styrene-b-butadiene-b-methyl methacrylate) (SBM) by using different grafting strategies. Fe3O4 magnetic nanoparticles have been surface-modified with polymer or block copolymer brushes following different grafting methods (grafting to, grafting from and grafting through) to achieve a selective location of nanoparticles into desired domains of the block copolymers. Morphology of fabricated hybrid nanocomposites was studied by means of atomic force microscopy (AFM) and with the aim to reach well-ordered nanostructured composites different annealing methods were used. Additionally, nanoparticle amount has been also varied in order to investigate the effect of the nanoparticle content in the morphology of the block copolymer. Nowadays different characterization methods were using in order to investigate magnetic properties of nanometer-scale electronic devices. Particularly, two different techniques have been used with the aim of characterizing synthesized nanocomposites. First, magnetic force microscopy (MFM) was used to investigate qualitatively the magnetic properties taking into account that this technique allows distinguishing magnetic domains on the sample surface. On the other hand, magnetic characterization by vibrating sample magnetometer and superconducting quantum interference device. This technique demonstrated that magnetic properties of nanoparticles have been transferred to the nanocomposites, exhibiting superparamagnetic behavior similar to that of the maghemite nanoparticles at room temperature. Obtained advanced nanostructured materials could found possible applications in the field of dye-sensitized solar cells and electronic nanodevices.

Keywords: atomic force microscopy, block copolymers, grafting techniques, iron oxide nanoparticles

Procedia PDF Downloads 248
4450 Community Based Landslide Investigation and Treatment in the Earthquake Affected Areas, Nepal

Authors: Basanta Raj Adhikari

Abstract:

Large and small scale earthquakes are frequent in the Nepal, Himalaya, and many co-seismic landslides are resulted out of it. Recently, Gorkha earthquake-2015 has triggered many co-seismic landslides destroying many lives and properties. People have displaced their original places due to having many cracks and unstable ground. Therefore, Nepal has been adopting a pronged development strategy to address the earthquake issues through reconstruction and rehabilitation policy, plans and budgets. Landslides are major threat for the mountain livelihood, and it is very important to investigate and mitigate to improve human wellbeing factoring in considerations of economic growth, environmental safety, and sustainable development. Community based landslide investigation was carried with the involvement of the local community in the Sindhupalchowk District of Central Nepal. Landslide training and field orientation were the major methodological approach of this study. Combination of indigenous and modern scientific knowledge has created unique working environment which enhanced the local capacity and trained people for replication. Local topography of the landslide was created with the help of Total Station and bill of quantity was derived based on it. River training works, plantation of trees and grasses, support structures, surface and sub-surface drainage management are the recommended mitigative measures. This is a very unique example of how academia and local community can work together for sustainable development by reducing disaster risk at the local level with very low-cost technology.

Keywords: community, earthquake, landslides, Nepal

Procedia PDF Downloads 144
4449 Assessment of Environmental Impact for Rice Mills in Burdwan District: Special Emphasis on Groundwater, Surface Water, Soil, Vegetation and Human Health

Authors: Rajkumar Ghosh, Bhabani Prasad Mukhopadhay

Abstract:

Rice milling is an important activity in agricultural economy of India, particularly the Burdwan district. However, the environmental impact of rice mills is frequently underestimated. The environmental impact of rice mills in the Burdwan district is a major source of concern, given the importance of rice milling in the local economy and food supply. In the Burdwan district, more than fifty (50) rice mills are in operation. The goal of this study is to investigate the effects of rice mills on several environmental components, with a particular emphasis on groundwater, surface water, soil, and vegetation. The research comprises a thorough review of numerous rice mills located around the district, utilising both qualitative and quantitative approaches. Water samples taken from wells near rice mills will be tested for groundwater quality, with an emphasis on factors such as heavy metal pollution and pollutant concentrations. Monitoring rice mill discharge into neighbouring bodies of water and studying the potential impact on aquatic ecosystems will be part of surface water evaluations. Furthermore, soil samples from the surrounding areas will be taken to examine changes in soil characteristics, nutrient content, and potential contamination from milling waste disposal. Vegetation studies will be conducted to investigate the effects of emissions and effluents on plant health and biodiversity in the region. The findings will provide light on the extent of environmental degradation caused by rice mills in the Burdwan district, as well as valuable insight into the effects of such operations on water, soil, and vegetation. The findings will aid in the development of appropriate legislation and regulations to reduce negative environmental repercussions and promote sustainable practises in the rice milling business. In some cases, heavy metals have been related to health problems. Heavy metals (As, Cd, Cu, Pb, Cr, Hg) are linked to skin, lung, brain, kidney, liver, metabolic, spleen, cardiovascular, haematological, immunological, gastrointestinal, testes, pancreatic, metabolic, and bone problems. As a result, this study contributes to a better knowledge of industrial environmental impacts and establishes the framework for future studies aimed at developing a more ecologically balanced and resilient Burdwan district. The following recommendations are offered for reducing the rice mill's environmental impact: To keep untreated effluents out of bodies of water, adequate waste management systems must be established. Use environmentally friendly rice milling processes to reduce pollution. To avoid soil pollution, rice mill by-products should be used as fertiliser in a controlled and appropriate manner. Groundwater, surface water, soil, and vegetation are all regularly monitored in order to study and adapt to environmental changes. By adhering to these principles, the rice milling industry of Burdwan district may achieve long-term growth while lowering its environmental effect and safeguarding the environment for future generations.

Keywords: groundwater, environmental analysis, biodiversity, rice mill, waste management, diseases, industrial impact

Procedia PDF Downloads 72
4448 Alternative Energy and Carbon Source for Biosurfactant Production

Authors: Akram Abi, Mohammad Hossein Sarrafzadeh

Abstract:

Because of their several advantages over chemical surfactants, biosurfactants have given rise to a growing interest in the past decades. Advantages such as lower toxicity, higher biodegradability, higher selectivity and applicable at extreme temperature and pH which enables them to be used in a variety of applications such as: enhanced oil recovery, environmental and pharmaceutical applications, etc. Bacillus subtilis produces a cyclic lipopeptide, called surfactin, which is one of the most powerful biosurfactants with ability to decrease surface tension of water from 72 mN/m to 27 mN/m. In addition to its biosurfactant character, surfactin exhibits interesting biological activities such as: inhibition of fibrin clot formation, lyses of erythrocytes and several bacterial spheroplasts, antiviral, anti-tumoral and antibacterial properties. Surfactin is an antibiotic substance and has been shown recently to possess anti-HIV activity. However, application of biosurfactants is limited by their high production cost. The cost can be reduced by optimizing biosurfactant production using cheap feed stock. Utilization of inexpensive substrates and unconventional carbon sources like urban or agro-industrial wastes is a promising strategy to decrease the production cost of biosurfactants. With suitable engineering optimization and microbiological modifications, these wastes can be used as substrates for large-scale production of biosurfactants. As an effort to fulfill this purpose, in this work we have tried to utilize olive oil as second carbon source and also yeast extract as second nitrogen source to investigate the effect on both biomass and biosurfactant production improvement in Bacillus subtilis cultures. Since the turbidity of the culture was affected by presence of the oil, optical density was compromised and no longer could be used as an index of growth and biomass concentration. Therefore, cell Dry Weight measurements with applying necessary tactics for removing oil drops to prevent interference with biomass weight were carried out to monitor biomass concentration during the growth of the bacterium. The surface tension and critical micelle dilutions (CMD-1, CMD-2) were considered as an indirect measurement of biosurfactant production. Distinctive and promising results were obtained in the cultures containing olive oil compared to cultures without it: more than two fold increase in biomass production (from 2 g/l to 5 g/l) and considerable reduction in surface tension, down to 40 mN/m at surprisingly early hours of culture time (only 5hr after inoculation). This early onset of biosurfactant production in this culture is specially interesting when compared to the conventional cultures at which this reduction in surface tension is not obtained until 30 hour of culture time. Reducing the production time is a very prominent result to be considered for large scale process development. Furthermore, these results can be used to develop strategies for utilization of agro-industrial wastes (such as olive oil mill residue, molasses, etc.) as cheap and easily accessible feed stocks to decrease the high costs of biosurfactant production.

Keywords: agro-industrial waste, bacillus subtilis, biosurfactant, fermentation, second carbon and nitrogen source, surfactin

Procedia PDF Downloads 284
4447 Nondestructive Electrochemical Testing Method for Prestressed Concrete Structures

Authors: Tomoko Fukuyama, Osamu Senbu

Abstract:

Prestressed concrete is used a lot in infrastructures such as roads or bridges. However, poor grout filling and PC steel corrosion are currently major issues of prestressed concrete structures. One of the problems with nondestructive corrosion detection of PC steel is a plastic pipe which covers PC steel. The insulative property of pipe makes a nondestructive diagnosis difficult; therefore a practical technology to detect these defects is necessary for the maintenance of infrastructures. The goal of the research is a development of an electrochemical technique which enables to detect internal defects from the surface of prestressed concrete nondestructively. Ideally, the measurements should be conducted from the surface of structural members to diagnose non-destructively. In the present experiment, a prestressed concrete member is simplified as a layered specimen to simulate a current path between an input and an output electrode on a member surface. The specimens which are layered by mortar and the prestressed concrete constitution materials (steel, polyethylene, stainless steel, or galvanized steel plates) were provided to the alternating current impedance measurement. The magnitude of an applied electric field was 0.01-volt or 1-volt, and the frequency range was from 106 Hz to 10-2 Hz. The frequency spectrums of impedance, which relate to charge reactions activated by an electric field, were measured to clarify the effects of the material configurations or the properties. In the civil engineering field, the Nyquist diagram is popular to analyze impedance and it is a good way to grasp electric relaxation using a shape of the plot. However, it is slightly not suitable to figure out an influence of a measurement frequency which is reciprocal of reaction time. Hence, Bode diagram is also applied to describe charge reactions in the present paper. From the experiment results, the alternating current impedance method looks to be applicable to the insulative material measurement and eventually prestressed concrete diagnosis. At the same time, the frequency spectrums of impedance show the difference of the material configuration. This is because the charge mobility reflects the variety of substances and also the measuring frequency of the electric field determines migration length of charges which are under the influence of the electric field. However, it could not distinguish the differences of the material thickness and is inferred the difficulties of prestressed concrete diagnosis to identify the amount of an air void or a layer of corrosion product by the technique.

Keywords: capacitance, conductance, prestressed concrete, susceptance

Procedia PDF Downloads 402
4446 Geoelectrical Investigation Around Bomo Area, Kaduna State, Nigeria

Authors: B. S. Jatau, Baba Adama, S. I. Fadele

Abstract:

Electrical resistivity investigation was carried out around Bomo area, Zaria, Kaduna state in order to study the subsurface geologic layer with a view of determining the depth to the bedrock and thickness of the geologic layers. Vertical Electrical Sounding (VES) using Schlumberger array was carried out at fifteen (15) VES stations. ABEM terrameter (SAS 300) was used for the data acquisition. The field data obtained have been analyzed using computer software (IPI2win) which gives an automatic interpretation of the apparent resistivity. The VES results revealed heterogeneous nature of the subsurface geological sequence. The geologic sequence beneath the study area is composed of hard pan top soil (clayey and sandy-lateritic), weathered layer, partly weathered or fractured basement and fresh basement. The resistivity value for the topsoil layer varies from 40Ωm to 450Ωm with thickness ranging from 1.25 to 7.5 m. The weathered basement has resistivity values ranging from 50Ωm to 593Ωm and thickness between 1.37 and 20.1 m. The fractured basement has resistivity values ranging from 218Ωm to 520Ωm and thickness of between 12.9 and 26.3 m. The fresh basement (bedrock) has resistivity values ranging from 1215Ωm to 2150Ωm with infinite depth. However, the depth of the earth’s surface to the bedrock surface varies between 2.63 and 34.99 m. The study further stressed the importance of the findings in civil engineering structures and groundwater prospecting.

Keywords: electrical resistivity, CERT (CT), vertical electrical sounding (VES), top soil (TP), weathered basement (WB), partly weathered basement (PWB), fresh basement (FB)

Procedia PDF Downloads 315
4445 Effect of Taper Pin Ratio on Microstructure and Mechanical Property of Friction Stir Welded AZ31 Magnesium Alloy

Authors: N. H. Othman, N. Udin, M. Ishak, L. H. Shah

Abstract:

This study focuses on the effect of pin taper tool ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 6 mm were friction stir welded by using the conventional milling machine. The shoulder diameter used in this experiment is fixed at 18 mm. The taper pin ratio used are varied at 6:6, 6:5, 6:4, 6:3, 6:2 and 6:1. The rotational speeds that were used in this study were 500 rpm, 1000 rpm and 1500 rpm, respectively. The welding speeds used are 150 mm/min, 200 mm/min and 250 mm/min. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. Tool pin diameter ratio 6/1 causes low heat input to the material because of small contact surface between tool surface and stirred materials compared to other tool pin diameter ratio. The grain size of stir zone increased with increasing of ratio of rotational speed to transverse speed due to higher heat input. It is observed that worm hole is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Welded specimens using taper pin ratio 6:1 shows higher tensile strength compared to other taper pin ratio up to 204 MPa. Moreover, specimens using taper pin ratio 6:1 showed better tensile strength with 500 rpm of rotational speed and 150mm/min welding speed.

Keywords: friction stir welding, magnesium AZ31, cylindrical taper tool, taper pin ratio

Procedia PDF Downloads 269
4444 Layer-by-Layer Coated Dexamethasone Microcrystals for Experimental Inflammatory Bowel Disease Therapy

Authors: Murtada Ahmed Oshi, Jin-Wook Yoo

Abstract:

Layer-by-layer (LBL) coating has gained popularity for drug delivery of therapeutic drugs. Herein we described a novel approach for enhancing the therapeutic efficiency of the locally administered dexamethasone (Dex) for inflammatory bowel disease (IBD). We utilized a LBL-coating technique on Dex microcrystals (DexMCs) with multiple layers of polyelectrolytes composed of poly (allylamine hydrochloride) (PAH), poly (sodium 4-styrene sulfonate) (PSS) and Eudragit® S100 (ES). The successful deposition of the layers onto DexMCs surfaces were confirmed through zeta potential measurement and confocal laser scanning microscopy. The surface morphology was investigated through scanning electron microscopy. The drug encapsulation efficiency was 95% with a mean particle size of 2 µm and negative surface charge (-40 mV). Moreover, in vitro drug release study showed a minimum release of the drug ( 15%) at an acidic condition during initial first 5 h, followed by sustained-release at an alkaline condition. For in vivo study, LBL-DxMCs were administered orally to ICR mice suffering from dextran sulfate sodium-induced colitis. LBL-DxMCs substantially enhanced anti-IBD activities as compared to DxMCs. Macroscopic, histological and biochemical (tumor necrosis factor-α, interleukin-6 and myeloperoxidase) examinations revealed marked improvements of colitis signs in the mice treated with LBL-DxMCs compared with those treated with DxMCs. Overall, LBL-DxMCs could be a suitable candidate for the treatment of IBD.

Keywords: dexamethasone, inflammatory bowel disease, LBL-coating, polyelectrolytes

Procedia PDF Downloads 181
4443 Surface Acoustic Waves Nebulisation of Liposomes Manufactured in situ for Pulmonary Drug Delivery

Authors: X. King, E. Nazarzadeh, J. Reboud, J. Cooper

Abstract:

Pulmonary diseases, such as asthma, are generally treated by the inhalation of aerosols that has the advantage of reducing the off-target (e.g., toxicity) effects associated with systemic delivery in blood. Effective respiratory drug delivery requires a droplet size distribution between 1 and 5 µm. Inhalation of aerosols with wide droplet size distribution, out of this range, results in deposition of drug in not-targeted area of the respiratory tract, introducing undesired side effects on the patient. In order to solely deliver the drug in the lower branches of the lungs and release it in a targeted manner, a control mechanism to produce the aerosolized droplets is required. To regulate the drug release and to facilitate the uptake from cells, drugs are often encapsulated into protective liposomes. However, a multistep process is required for their formation, often performed at the formulation step, therefore limiting the range of available drugs or their shelf life. Using surface acoustic waves (SAWs), a pulmonary drug delivery platform was produced, which enabled the formation of defined size aerosols and the formation of liposomes in situ. SAWs are mechanical waves, propagating along the surface of a piezoelectric substrate. They were generated using an interdigital transducer on lithium niobate with an excitation frequency of 9.6 MHz at a power of 1W. Disposable silicon superstrates were etched using photolithography and dry etch processes to create an array of cylindrical through-holes with different diameters and pitches. Superstrates were coupled with the SAW substrate through water-based gel. As the SAW propagates on the superstrate, it enables nebulisation of a lipid solution deposited onto it. The cylindrical cavities restricted the formation of large drops in the aerosol, while at the same time unilamellar liposomes were created. SAW formed liposomes showed a higher monodispersity compared to the control sample, as well as displayed, a faster production rate. To test the aerosol’s size, dynamic light scattering and laser diffraction methods were used, both showing the size control of the aerosolised particles. The use of silicon superstate with cavity size of 100-200 µm, produced an aerosol with a mean droplet size within the optimum range for pulmonary drug delivery, containing the liposomes in which the medicine could be loaded. Additionally, analysis of liposomes with Cryo-TEM showed formation of vesicles with narrow size distribution between 80-100 nm and optimal morphology in order to be used for drug delivery. Encapsulation of nucleic acids in liposomes through the developed SAW platform was also investigated. In vitro delivery of siRNA and DNA Luciferase were achieved using A549 cell line, lung carcinoma from human. In conclusion, SAW pulmonary drug delivery platform was engineered, in order to combine multiple time consuming steps (formation of liposomes, drug loading, nebulisation) into a unique platform with the aim of specifically delivering the medicament in a targeted area, reducing the drug’s side effects.

Keywords: acoustics, drug delivery, liposomes, surface acoustic waves

Procedia PDF Downloads 114
4442 Normalized Difference Vegetation Index and Normalize Difference Chlorophyll Changes with Different Irrigation Levels on Sillage Corn

Authors: Cenk Aksit, Suleyman Kodal, Yusuf Ersoy Yildirim

Abstract:

Normalized Difference Vegetation Index (NDVI) is a widely used index in the world that provides reference information, such as the health status of the plant, and the density of the vegetation in a certain area, by making use of the electromagnetic radiation reflected from the plant surface. On the other hand, the chlorophyll index provides reference information about the chlorophyll density in the plant by making use of electromagnetic reflections at certain wavelengths. Chlorophyll concentration is higher in healthy plants and decreases as plant health decreases. This study, it was aimed to determine the changes in Normalize Difference Vegetation Index (NDVI) and Normalize Difference Chlorophyll (NDCI) of silage corn irrigated with subsurface drip irrigation systems under different irrigation levels. In 5 days irrigation interval, the daily potential plant water consumption values were collected, and the calculated amount was applied to the full irrigation and 3 irrigation water levels as irrigation water. The changes in NDVI and NDCI of silage corn irrigated with subsurface drip irrigation systems under different irrigation levels were determined. NDVI values have changed according to the amount of irrigation water applied, and the highest NDVI value has been reached in the subject where the most water is applied. Likewise, it was observed that the chlorophyll value decreased in direct proportion to the amount of irrigation water as the plant approached the harvest.

Keywords: NDVI, NDCI, sub-surface drip irrigation, silage corn, deficit irrigation

Procedia PDF Downloads 75
4441 The Influence of Surface Roughness on the Flow Fields Generated by an Oscillating Cantilever

Authors: Ciaran Conway, Nick Jeffers, Jeff Punch

Abstract:

With the current trend of miniaturisation of electronic devices, piezoelectric fans have attracted increasing interest as an alternative means of forced convection over traditional rotary solutions. Whilst there exists an abundance of research on various piezo-actuated flapping fans in the literature, the geometries of these fans all consist of a smooth rectangular cross section with thicknesses typically of the order of 100 um. The focus of these studies is primarily on variables such as frequency, amplitude, and in some cases resonance mode. As a result, the induced flow dynamics are a direct consequence of the pressure differential at the fan tip as well as the pressure-driven ‘over the top’ vortices generated at the upper and lower edges of the fan. Rough surfaces such as golf ball dimples or vortex generators on an aircraft wing have proven to be beneficial by tripping the boundary layer and energising the adjacent air flow. This paper aims to examine the influence of surface roughness on the airflow generation of a flapping fan and determine whether the induced wake can be manipulated or enhanced by energising the airflow around the fan tip. Particle Image Velocimetry (PIV) is carried out on mechanically oscillated rigid fans with various surfaces consisting of pillars, perforations and cell-like grids derived from the wing topology of natural fliers. The results of this paper may be used to inform the design of piezoelectric fans and possibly aid in understanding the complex aerodynamics inherent in flapping wing flight.

Keywords: aerodynamics, oscillating cantilevers, PIV, vortices

Procedia PDF Downloads 201
4440 Investigations Of The Service Life Of Different Material Configurations At Solid-lubricated Rolling Bearings

Authors: Bernd Sauer, Michel Werner, Stefan Emrich, Michael Kopnarski, Oliver Koch

Abstract:

Friction reduction is an important aspect in the context of sustainability and energy transition. Rolling bearings are therefore used in many applications in which components move relative to each other. Conventionally lubricated rolling bearings are used in a wide range of applications, but are not suitable under certain conditions. Conventional lubricants such as grease or oil cannot be used at very high or very low temperatures. In addition, these lubricants evaporate at very low ambient pressure, e.g. in a high vacuum environment, making the use of solid lubricated bearings unavoidable. With the use of solid-lubricated bearings, predicting the service life becomes more complex. While the end of the service life of bearings with conventional lubrication is mainly caused by the failure of the bearing components due to material fatigue, solid-lubricated bearings fail at the moment when the lubrication layer is worn and the rolling elements come into direct contact with the raceway during operation. In order to extend the service life of these bearings beyond the service life of the initial coating, the use of transfer lubrication is recommended, in which pockets or sacrificial cages are used in which the balls run and can thus absorb the lubricant, which is then available for lubrication in tribological contact. This contribution presents the results of wear and service life tests on solid-lubricated rolling bearings with sacrificial cage pockets. The cage of the bearing consists of a polyimide (PI) matrix with 15% molybdenum disulfide (MoS2) and serves as a lubrication depot alongside the silver-coated balls. The bearings are tested under high vacuum (pE < 10-2 Pa) at a temperature of 300 °C on a four-bearing test rig. First, investigations of the bearing system within the bearing service life are presented and the torque curve, the wear mass and surface analyses are discussed. With regard to wear, it can be seen that the bearing rings tend to increase in mass over the service life of the bearing, while the balls and the cage tend to lose mass. With regard to the elementary surface properties, the surfaces of the bearing rings and balls are examined in terms of the mass of the elements on them. Furthermore, service life investigations with different material pairings are presented, whereby the focus here is on the service life achieved in addition to the torque curve, wear development and surface analysis. It was shown that MoS2 in the cage leads to a longer service life, while a silver (Ag) coating on the balls has no positive influence on the service life and even appears to reduce it in combination with MoS2.

Keywords: ball bearings, molybdenum disulfide, solid lubricated bearings, solid lubrication mechanisms

Procedia PDF Downloads 28
4439 Obtaining Bioactive Mg-hydroxyapatite Composite Ceramics From Phosphate Rock For Medical Applications

Authors: Sara Mercedes Barroso Pinzón, Antonio Javier Sanchéz Herencia, Begoña Ferrari, Álvaro Jesús Castro

Abstract:

The current need for durable implants and bone substitutes characterised by biocompatibility, bioactivity and mechanical properties, without immunological rejection, is a major challenge for scientists. Hydroxyapatite (HAp) has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure gives it very low mechanical and biological properties. In this sense, the objective of the research is to address the synthesis of hydroxyapatite with Mg from phosphate rock from sedimentary deposits in the central-eastern region of Colombia, taking advantage of the release of the species contained as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with mineralogical species of magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); as well as the evaluation of the surface physicochemical properties of zeta potential (PZC), with the aim of studying the surface behaviour of the microconstituents present in the phosphate rock and to elucidate the synergistic mechanism between the minerals and establish the optimum conditions for the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on the morphometric parameters, mechanical and biological properties of the designed materials is evaluated.

Keywords: phosphate rock, hydroxyapatite, magnesium, biomaterials

Procedia PDF Downloads 33
4438 Investigation of Mechanical and Tribological Property of Graphene Reinforced SS-316L Matrix Composite Prepared by Selective Laser Melting

Authors: Ajay Mandal, Jitendar Kumar Tiwari, N. Sathish, A. K. Srivastava

Abstract:

A fundamental investigation is performed on the development of graphene (Gr) reinforced stainless steel 316L (SS 316L) metal matrix composite via selective laser melting (SLM) in order to improve specific strength and wear resistance property of SS 316L. Firstly, SS 316L powder and graphene were mixed in a fixed ratio using low energy planetary ball milling. The milled powder is then subjected to the SLM process to fabricate composite samples at a laser power of 320 W and exposure time of 100 µs. The prepared composite was mechanically tested (hardness and tensile test) at ambient temperature, and obtained results indicate that the properties of the composite increased significantly with the addition of 0.2 wt. % Gr. Increment of about 25% (from 194 to 242 HV) and 70% (from 502 to 850 MPa) is obtained in hardness and yield strength of composite, respectively. Raman mapping and XRD were performed to see the distribution of Gr in the matrix and its effect on the formation of carbide, respectively. Results of Raman mapping show the uniform distribution of graphene inside the matrix. Electron back scatter diffraction (EBSD) map of the prepared composite was analyzed under FESEM in order to understand the microstructure and grain orientation. Due to thermal gradient, elongated grains were observed along the building direction, and grains get finer with the addition of Gr. Most of the mechanical components are subjected to several types of wear conditions. Therefore, it is very necessary to improve the wear property of the component, and hence apart from strength and hardness, a tribological property of composite was also measured under dry sliding condition. Solid lubrication property of Gr plays an important role during the sliding process due to which the wear rate of composite reduces up to 58%. Also, the surface roughness of worn surface reduces up to 70% as measured by 3D surface profilometry. Finally, it can be concluded that SLM is an efficient method of fabricating cutting edge metal matrix nano-composite having Gr like reinforcement, which was very difficult to fabricate through conventional manufacturing techniques. Prepared composite has superior mechanical and tribological properties and can be used for a wide variety of engineering applications. However, due to the unavailability of a considerable amount of literature in a similar domain, more experimental works need to perform, such as thermal property analysis, and is a part of ongoing study.

Keywords: selective laser melting, graphene, composite, mechanical property, tribological property

Procedia PDF Downloads 123
4437 A Study on the Effect of Mg and Ag Additions and Age Hardening Treatment on the Properties of As-Cast Al-Cu-Mg-Ag Alloys

Authors: Ahmed. S. Alasmari, M. S. Soliman, Magdy M. El-Rayes

Abstract:

This study focuses on the effect of the addition of magnesium (Mg) and silver (Ag) on the mechanical properties of aluminum based alloys. The alloying elements will be added at different levels using the factorial design of experiments of 22; the two factors are Mg and Ag at two levels of concentration. The superior mechanical properties of the produced Al-Cu-Mg-Ag alloys after aging will be resulted from a unique type of precipitation named as Ω-phase. The formed precipitate enhanced the tensile strength and thermal stability. This paper further investigated the microstructure and mechanical properties of as cast Al–Cu–Mg–Ag alloys after being complete homogenized treatment at 520 °C for 8 hours followed by isothermally age hardening process at 190 °C for different periods of time. The homogenization at 520 °C for 8 hours was selected based on homogenization study at various temperatures and times. The alloys’ microstructures were studied by using optical microscopy (OM). In addition to that, the fracture surface investigation was performed using a scanning electronic microscope (SEM). Studying the microstructure of aged Al-Cu-Mg-Ag alloys reveal that the grains are equiaxed with an average grain size of about 50 µm. A detailed fractography study for fractured surface of the aged alloys exhibited a mixed fracture whereby the random fracture suggested crack propagation along the grain boundaries while the dimples indicated that the fracture was ductile. The present result has shown that alloy 5 has the highest hardness values and the best mechanical behaviors.

Keywords: precipitation hardening, aluminum alloys, aging, design of experiments, analysis of variance, heat treatments

Procedia PDF Downloads 138
4436 Design and Development of Buccal Delivery System for Atenolol Tablets by Using Different Bioadhesive Polymers

Authors: Venkatalakshmi Ranganathan, Ong Hsin Ju, Tan Yinn Ming, Lim Kien Sin, Wong Man Ting, Venkata Srikanth Meka

Abstract:

The mucoadhesive buccal tablet is an oral drug delivery system which attached to the buccal surface for direct drug absorption into the systemic circulation and the unidirectional drug release is ensured by formulating a hydrophobic backing layer. The objective of present study was to formulate mucoadhesive atenolol bilayer buccal tablets by using sodium alginate, hydroxyethyl cellulose, and xanthan gum as mucoadhesive polymer and the technique applied was direct compression method. Ethyl cellulose was used as backing layer of the tablet. FTIR and DSC analysis were carried out to identify the drug polymer interactions. The prepared tablets were evaluated for physicochemical parameters, ex vivo mucoadhesion time and in-vitro drug release. The formulated tablets showed the average surface pH 6-7 which is favourable for oral mucosa. The formulation containing sodium alginate showed more than 90 % of drug release at the end of the 7 hours in vitro dissolution studies. The formulation containing xanthan gum showed more than 8 hours of mucoadhesion time and all formulation exhibited non fickian release kinetics. The present study indicates enormous potential of erodible mucoadhesive buccal tablet containing atenolol for systemic delivery with an added advantage of circumventing the hepatic first pass metabolism.

Keywords: atenolol, mucoadhesion, in vitro drug release, direct compression, ethyl cellulose

Procedia PDF Downloads 606
4435 Assessing the Effects of Land Use Spatial Structure on Urban Heat Island Using New Launched Remote Sensing in Shenzhen, China

Authors: Kai Liua, Hongbo Sua, Weimin Wangb, Hong Liangb

Abstract:

Urban heat island (UHI) has attracted attention around the world since they profoundly affect human life and climatological. Better understanding the effects of landscape pattern on UHI is crucial for improving the ecological security and sustainability of cities. This study aims to investigate how landscape composition and configuration would affect UHI in Shenzhen, China, based on the analysis of land surface temperature (LST) in relation landscape metrics, mainly with the aid of three new satellite sensors launched by China. HJ-1B satellite system was utilized to estimate surface temperature and comprehensively explore the urban thermal spatial pattern. The landscape metrics of the high spatial resolution remote sensing satellites (GF-1 and ZY-3) were compared and analyzed to validate the performance of the new launched satellite sensors. Results show that the mean LST is correlated with main landscape metrics involving class-based metrics and landscape-based metrics, suggesting that the landscape composition and the spatial configuration both influence UHI. These relationships also reveal that urban green has a significant effect in mitigating UHI in Shenzhen due to its homogeneous spatial distribution and large spatial extent. Overall, our study not only confirm the applicability and effectiveness of the HJ-1B, GF-1 and ZY-3 satellite system for studying UHI but also reveal the impacts of the urban spatial structure on UHI, which is meaningful for the planning and management of the urban environment.

Keywords: urban heat island, Shenzhen, new remote sensing sensor, remote sensing satellites

Procedia PDF Downloads 392
4434 Experimental Characterization of Anti-Icing System and Accretion of Re-Emitted Droplets on Turbojet Engine Blades

Authors: Guillaume Linassier, Morgan Balland, Hugo Pervier, Marie Pervier, David Hammond

Abstract:

Atmospheric icing for turbojet is caused by ingestion of super-cooled water droplets. To prevent operability risks, manufacturer can implement ice protection systems. Thermal systems are commonly used for this purpose, but their activation can cause the formation of a water liquid film, that can freeze downstream the heated surface or even on other components. In the framework of STORM, a European project dedicated to icing physics in turbojet engines, a cascade rig representative of engine inlet blades was built and tested in an icing wind tunnel. This mock-up integrates two rows of blades, the upstream one being anti-iced using an electro-thermal device the downstream one being unheated. Under icing conditions, the anti-icing system is activated and set at power level to observe a liquid film on the surface and droplet re-emission at the trailing edge. These re-emitted droplets will impinge on the downstream row and contribute to ice accretion. A complete experimental database was generated, including the characterization of ice accretion shapes, and the characterization of electro-thermal anti-icing system (power limit for apparition of the runback water or ice accretion). These data will be used for validation of numerical tools for modeling thermal anti-icing systems in the scope of engine application, as well as validation of re-emission droplets model for stator parts.

Keywords: turbomachine, anti-icing, cascade rig, runback water

Procedia PDF Downloads 170
4433 A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows

Authors: J. P. Panda, K. Sasmal, H. V. Warrior

Abstract:

Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.

Keywords: Eddy viscosity, turbulence modeling, GOTM, CFD

Procedia PDF Downloads 183
4432 Functionally Modified Melt-Electrospun Thermoplastic Polyurethane (TPU) Mats for Wound-Dressing Applications

Authors: Christoph Hacker, Zeynep Karahaliloglu, Gunnar Seide, Emir Baki Denkbas, Thomas Gries

Abstract:

A wound dressing material is designed to facilitate wound healing and minimize scarring. An ideal wound dressing material should protect the wound from any contaminations of exogeneous microorganism. In addition, the dressing material should provide a moist environment through extraction of body fluid from the wound area. Recently, wound dressing electrospun nanofibrous membranes are produced by electrospinning from a polymer solution or a polymer melt. These materials have a great potential as dressing materials for wound healing because of superior properties such as high surface-to-volume ratio, high porosity with excellent pore interconnectivity. Melt electrospinning is an attractive tissue engineering scaffold manufacturing process which eliminated the health risk posed by organic solvents used in electrospinning process and reduced the production costs. In this study, antibacterial wound dressing materials were prepared from TPU (Elastollan 1185A) by a melt-electrospinning technique. The electrospinning parameters for an efficient melt-electrospinning process of TPU were optimized. The surface of the fibers was modified with poly(ethylene glycol) (PEG) by radio-frequency glow discharge plasma deposition method and with silver nanoparticles (nAg) to improve their wettability and antimicrobial properties. TPU melt-electrospun mats were characterized using SEM, DSC, TGA and XPS. The cell viability and proliferation on modified melt-electrospun TPU mats were evaluated using a mouse fibroblast cell line (L929). Antibacterial effects of theirs against both Staphylococcus aureus strain and Escherichia coli were investigated by disk-diffusion method. TPU was successfully processed into a porous, fibrous network of beadless fibers in the micrometer range (4.896±0.94 µm) with a voltage of 50 kV, a working distance of 6 cm, a temperature of the thermocouple and hot coil of 225–230ºC, and a flow rate of 0.1 mL/h. The antibacterial test indicated that PEG-modified nAg-loaded TPU melt-electrospun structure had excellent antibacterial effects and cell study results demonstrated that nAg-loaded TPU mats had no cytotoxic effect on the fibroblast cells. In this work, the surface of a melt-electrospun TPU mats was modified via PEG monomer and then nAg. Results showed melt-electrospun TPU mats modified with PEG and nAg have a great potential for use as an antibacterial wound dressing material and thus, requires further investigation.

Keywords: melt electrospinning, nanofiber, silver nanoparticles, wound dressing

Procedia PDF Downloads 445
4431 Effect of Acid-Basic Treatments of Lingocellulosic Material Forest Wastes Wild Carob on Ethyl Violet Dye Adsorption

Authors: Abdallah Bouguettoucha, Derradji Chebli, Tariq Yahyaoui, Hichem Attout

Abstract:

The effect of acid -basic treatment of lingocellulosic material (forest wastes wild carob) on Ethyl violet adsorption was investigated. It was found that surface chemistry plays an important role in Ethyl violet (EV) adsorption. HCl treatment produces more active acidic surface groups such as carboxylic and lactone, resulting in an increase in the adsorption of EV dye. The adsorption efficiency was higher for treated of lingocellulosic material with HCl than for treated with KOH. Maximum biosorption capacity was 170 and 130 mg/g, for treated of lingocellulosic material with HCl than for treated with KOH at pH 6 respectively. It was also found that the time to reach equilibrium takes less than 25 min for both treated materials. The adsorption of basic dye (i.e., ethyl violet or basic violet 4) was carried out by varying some process parameters, such as initial concentration, pH and temperature. The adsorption process can be well described by means of a pseudo-second-order reaction model showing that boundary layer resistance was not the rate-limiting step, as confirmed by intraparticle diffusion since the linear plot of Qt versus t^0.5 did not pass through the origin. In addition, experimental data were accurately expressed by the Sips equation if compared with the Langmuir and Freundlich isotherms. The values of ΔG° and ΔH° confirmed that the adsorption of EV on acid-basic treated forest wast wild carob was spontaneous and endothermic in nature. The positive values of ΔS° suggested an irregular increase of the randomness at the treated lingocellulosic material -solution interface during the adsorption process.

Keywords: adsorption, isotherm models, thermodynamic parameters, wild carob

Procedia PDF Downloads 261