Search results for: soil classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5066

Search results for: soil classification

2876 Fluoride Immobilization in Plaster Board Waste: A Safety Measure to Prevent Soil and Water Pollution

Authors: Venkataraman Sivasankar, Kiyoshi Omine, Hideaki Sano

Abstract:

The leaching of fluoride from Plaster Board Waste (PBW) is quite feasible in soil and water environments. The Ministry of Environment, Japan recommended the standard limit of 0.8 mgL⁻¹ or less for fluoride. Although the utilization of PBW as a substitute for cement is rather meritorious, its fluoride leaching behavior deteriorates the quality of soil and water and therefore envisaged as a demerit. In view of this fluoride leaching problem, the present research is focused on immobilizing fluoride in PBW. The immobilization experiments were conducted with four chemical systems operated by DAHP (diammonium hydrogen phosphate) and phosphoric acid carbonization of bamboo mass coupled with certain inorganic reactions using reagents such as calcium hydroxide, sodium hydroxide, and aqueous ammonia. The fluoride immobilization was determined after shaking the reactor contents including the plaster board waste for 24 h at 25˚C. In the DAHP system, the immobilization of fluoride was evident from the leaching of fluoride in the range 0.071-0.12 mgL⁻¹, 0.026-0.14 mgL⁻¹ and 0.068-0.12 mgL⁻¹ for the reaction temperatures at 30˚C, 50˚C, and 90˚C, respectively, with final pH of 6.8. The other chemical systems designated as PACCa, PACAm, and PACNa could immobilize fluoride in PBW, and the resulting solution was analyzed with the fluoride less than the Japanese environmental standard of 0.8 mgL⁻¹. In the case of PACAm and PACCa systems, the calcium concentration was found undetectable and witnessed the formation of phosphate compounds. The immobilization of fluoride was found inversely proportional to the increase in the volume of leaching solvent and dose of PBW. Characterization studies of PBW and the solid after fluoride immobilization was done using FTIR (Fourier transform infrared spectroscopy), Raman spectroscopy, FE-SEM ( Field Emission Scanning Electron Microscopy) with EDAX (Energy Dispersive Spectroscopy), XRD (X-ray diffraction), and XPS (X-ray photoelectron spectroscopy). The results revealed the formation of new calcium phosphate compounds such as apatite, monetite, and hydroxylapatite. The participation of such new compounds in fluoride immobilization seems indispensable through the exchange mechanism of hydroxyl and fluoride groups. Acknowledgment: First author thanks to Japanese Society for the Promotion of Science (JSPS) for the award of the fellowship (ID No. 16544).

Keywords: characterization, fluoride, immobilization, plaster board waste

Procedia PDF Downloads 157
2875 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing

Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson

Abstract:

Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).

Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation

Procedia PDF Downloads 93
2874 Evaluation of Ecological Resilience in Mountain-plain Transition Zones: A Case Study of Dujiangyan City, Chengdu

Authors: Zhu Zhizheng, Huang Yong, Li Tong

Abstract:

In the context of land and space development and resource environmental protection. Due to its special geographical location, mountain-plain transition zones are limited by many factors such as topography, mountain forest protection, etc., and their ecology is also more sensitive, with the characteristics of disaster susceptibility and resource gradient. Taking Dujiangyan City, Chengdu as an example, this paper establishes resilience evaluation indicators on the basis of ecological suitability evaluation through the analysis of current situation data and relevant policies: water conservation evaluation, soil and water conservation evaluation, biodiversity evaluation, soil erosion sensitivity evaluation, etc. Based on GIS spatial analysis, the ecological suitability and resilience evaluation results of Dujiangyan city were obtained by disjunction operation. The ecological resilience level of Dujiangyan city was divided into three categories: high, medium and low, with an area ratio of 50.81%, 16.4% and 32.79%, respectively. This paper can provide ideas for solving the contradiction between man and land in the mountain-plain transition zones, and also provide a certain basis for the construction of regional ecological protection and the delineation of three zones and three lines.

Keywords: urban and rural planning, ecological resilience, dujiangyan city, mountain-plain transition zones

Procedia PDF Downloads 110
2873 Sustainable Ecological Agricultural Systems in Bangladesh: Environmental, Economic and Social Perspective of Compost

Authors: Protima Chakraborty

Abstract:

The sustainability of conventional agriculture in Bangladesh is under threat from the continuous degradation of land and water resources, and from declining yields due to indiscriminate use of agrochemicals. NASL (Northern Agro Services Limited) is pursuing efforts to promote ecological agriculture with emphasis on better use of organic fertilizer resources and the reduction of external inputs. This paper examines the sustainability of two production systems in terms of their environmental soundness, economic viability and social acceptability based on empirical data collected through making demonstration land cultivation, a household survey, soil sample analysis, observations and discussions with key informants. Twelve indicators were selected to evaluate sustainability. Significant differences were found between the two systems in crop diversification, soil fertility management, pests and diseases management, and use of agrochemicals & Organic Compost. However, significant variations were found in other indicators such as land-use pattern, crop yield and stability, risk and uncertainties, and food security. Although crop yield and financial return were found to be slightly higher in the ecological system, the economic return and value addition per unit of land show the positive difference of using compost rather than chemical fertilizer. The findings suggest that ecological agriculture has a tendency towards becoming ecologically, economically and socially more sound than conventional agriculture, as it requires considerably fewer agro-chemicals, adds more organic matter to the soil, provides balanced food, and requires higher local inputs without markedly compromising output and financial benefits. Broad-policy measures, including the creation of mass awareness of adverse health effects of agrochemical-based products, are outlined for the promotion of ecological agriculture.

Keywords: Bangladesh, compost, conventional agriculture, organic fertilizer, environmental sustainability, economic viability, social acceptability

Procedia PDF Downloads 242
2872 An Acoustical Diagnosis of a Shaft-Wood Phyto-Pathogenic Damage of Sequoiadendron giganteum (Lindl.) Buccholz

Authors: Yuri V. Plugatar, Vladimir P. Koba, Vladimir V. Papelbu, Vladimir N. Gerasimchuk, Tatjana M. Sakhno

Abstract:

Using a supersonic shaft–wood tomography, the evaluation of a shaft-wood phyto-pathogenic damage level of Sequoiadendron giganteum (Lindl.) Buccholz was prosecuted. The digital bivariate reflections of the shaft tissue damage were obtained, the characteristics of comparative parameters of the wood-decay degree were given. The investigation results allowed to show up the role of some edaphic factors in their affection on a vital condition and the level of destructive processes while shaft tissue damaging of S.giganteum. It was pinned up that soil consolidation, and hydro-morphication equally make for a phyto-pathogenic damage of plants. While soil consolidation negative acting the shaft-wood damage is located in an underneath of a shaft. In the conditions of an enlarged hydro-morphication a tissue degradation runs less intensively, the destructive processes more active spread in a vertical section of a shaft. The use of a supersonic tomography method gives wide possibilities to diagnose a shaft-wood phyto-pathogenic damage.

Keywords: Sequoiadendron giganteum (Lindl.) Buccholz, supersonic tomography, diagnosis, phyto-pathogenic damage, a vital condition

Procedia PDF Downloads 213
2871 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images

Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou

Abstract:

This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.

Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning

Procedia PDF Downloads 127
2870 Classification of Emotions in Emergency Call Center Conversations

Authors: Magdalena Igras, Joanna Grzybowska, Mariusz Ziółko

Abstract:

The study of emotions expressed in emergency phone call is presented, covering both statistical analysis of emotions configurations and an attempt to automatically classify emotions. An emergency call is a situation usually accompanied by intense, authentic emotions. They influence (and may inhibit) the communication between caller and responder. In order to support responders in their responsible and psychically exhaustive work, we studied when and in which combinations emotions appeared in calls. A corpus of 45 hours of conversations (about 3300 calls) from emergency call center was collected. Each recording was manually tagged with labels of emotions valence (positive, negative or neutral), type (sadness, tiredness, anxiety, surprise, stress, anger, fury, calm, relief, compassion, satisfaction, amusement, joy) and arousal (weak, typical, varying, high) on the basis of perceptual judgment of two annotators. As we concluded, basic emotions tend to appear in specific configurations depending on the overall situational context and attitude of speaker. After performing statistical analysis we distinguished four main types of emotional behavior of callers: worry/helplessness (sadness, tiredness, compassion), alarm (anxiety, intense stress), mistake or neutral request for information (calm, surprise, sometimes with amusement) and pretension/insisting (anger, fury). The frequency of profiles was respectively: 51%, 21%, 18% and 8% of recordings. A model of presenting the complex emotional profiles on the two-dimensional (tension-insecurity) plane was introduced. In the stage of acoustic analysis, a set of prosodic parameters, as well as Mel-Frequency Cepstral Coefficients (MFCC) were used. Using these parameters, complex emotional states were modeled with machine learning techniques including Gaussian mixture models, decision trees and discriminant analysis. Results of classification with several methods will be presented and compared with the state of the art results obtained for classification of basic emotions. Future work will include optimization of the algorithm to perform in real time in order to track changes of emotions during a conversation.

Keywords: acoustic analysis, complex emotions, emotion recognition, machine learning

Procedia PDF Downloads 398
2869 Studies on the Mechanical Behavior of Bottom Ash for a Sustainable Environment

Authors: B. A. Mir, Asim Malik

Abstract:

Bottom ash is a by-product of the combustion process of coal in furnaces in the production of electricity in thermal power plants. In India, about 75% of total power is produced by using pulverized coal. The coal of India has a high ash content which leads to the generation of a huge quantity of bottom ash per year posing the dual problem of environmental pollution and difficulty in disposal. This calls for establishing strategies to use this industry by-product effectively and efficiently. However, its large-scale utilization is possible only in geotechnical applications, either alone or with soil. In the present investigation, bottom ash was collected from National Capital Power Station Dadri, Uttar Pradesh, India. Test samples of bottom ash admixed with 20% clayey soil were prepared and treated with different cement content by weight and subjected to various laboratory tests for assessing its suitability as an engineered construction material. This study has shown that use of 10% cement content is a viable chemical additive to enhance the mechanical properties of bottom ash, which can be used effectively as an engineered construction material in various geotechnical applications. More importantly, it offers an interesting potential for making use of an industrial waste to overcome challenges posed by bottom ash for a sustainable environment.

Keywords: bottom ash, environmental pollution, solid waste, sustainable environment, waste utilization

Procedia PDF Downloads 259
2868 Application of Hyperspectral Remote Sensing in Sambhar Salt Lake, A Ramsar Site of Rajasthan, India

Authors: Rajashree Naik, Laxmi Kant Sharma

Abstract:

Sambhar lake is the largest inland Salt Lake of India, declared as a Ramsar site on 23 March 1990. Due to high salinity and alkalinity condition its biodiversity richness is contributed by haloalkaliphilic flora and fauna along with the diverse land cover including waterbody, wetland, salt crust, saline soil, vegetation, scrub land and barren land which welcome large number of flamingos and other migratory birds for winter harboring. But with the gradual increase in the irrational salt extraction activities, the ecological diversity is at stake. There is an urgent need to assess the ecosystem. Advanced technology like remote sensing and GIS has enabled to look into the past, compare with the present for the future planning and management of the natural resources in a judicious way. This paper is a research work intended to present a vegetation in typical inland lake environment of Sambhar wetland using satellite data of NASA’s EO-1 Hyperion sensor launched in November 2000. With the spectral range of 0.4 to 2.5 micrometer at approximately 10nm spectral resolution with 242 bands 30m spatial resolution and 705km orbit was used to produce a vegetation map for a portion of the wetland. The vegetation map was tested for classification accuracy with a pre-existing detailed GIS wetland vegetation database. Though the accuracy varied greatly for different classes the algal communities were successfully identified which are the major sources of food for flamingo. The results from this study have practical implications for uses of spaceborne hyperspectral image data that are now becoming available. Practical limitations of using these satellite data for wetland vegetation mapping include inadequate spatial resolution, complexity of image processing procedures, and lack of stereo viewing.

Keywords: Algal community, NASA’s EO-1 Hyperion, salt-tolerant species, wetland vegetation mapping

Procedia PDF Downloads 135
2867 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data

Authors: M. Mueller, M. Kuehn, M. Voelker

Abstract:

In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).

Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing

Procedia PDF Downloads 131
2866 Microbial Diversity of El-Baida Marsh: Setif, Algeria

Authors: H. Necef, A. Benayad

Abstract:

Fungi are becoming more and more important in our life. Therefore, as a start for the symposium on filamentous fungi in biotechnology a short survey of the role of fungi in biotechnology. Salin soils occupy about 7% of land area; they are characterized by unsuitable physical conditions for the growth of living organisms. However, researches showed that some microorganisms especially fungi are able to grow and adapt to such extreme conditions; it is due to their ability to develop different physiological mechanisms in their adaptation. This is the first study on the physiological and biological characteristics of El-Beida marsh. Nine soil samples were taken at different points in two steps, the first was in winter (low temperature), and the second was in summer (high temperature). The physicochemical analyses of the soil were conducted, then the isolation process was applied using two methods, direct method and dilution method (10-1, 10-2, 10-3, 10-4). Different species of fungi were identified belong to 21 genera in addition to 3 yeast species, Aspergillus showed the highest proportion by 43%, then Penicillium by 20% then Alternaria by 7%, in addition to various genera in different proportions. As for the sampling periods, it was observed that the spread of fungi in winter was higher than in summer with the proportion 75.47% and 24.53% respectively. Some halotolerant fungi have a biotechnological importance especially if the salinity of the medium is necessary for the fermentation, and if the halotolerance genes of the fungus will define, this will open the research to study and improve this property for the industrial important micro-organisms.

Keywords: salinity, identification, aspergillus oryzae, halotolerance, fungi

Procedia PDF Downloads 399
2865 The Application of Video Segmentation Methods for the Purpose of Action Detection in Videos

Authors: Nassima Noufail, Sara Bouhali

Abstract:

In this work, we develop a semi-supervised solution for the purpose of action detection in videos and propose an efficient algorithm for video segmentation. The approach is divided into video segmentation, feature extraction, and classification. In the first part, a video is segmented into clips, and we used the K-means algorithm for this segmentation; our goal is to find groups based on similarity in the video. The application of k-means clustering into all the frames is time-consuming; therefore, we started by the identification of transition frames where the scene in the video changes significantly, and then we applied K-means clustering into these transition frames. We used two image filters, the gaussian filter and the Laplacian of Gaussian. Each filter extracts a set of features from the frames. The Gaussian filter blurs the image and omits the higher frequencies, and the Laplacian of gaussian detects regions of rapid intensity changes; we then used this vector of filter responses as an input to our k-means algorithm. The output is a set of cluster centers. Each video frame pixel is then mapped to the nearest cluster center and painted with a corresponding color to form a visual map. The resulting visual map had similar pixels grouped. We then computed a cluster score indicating how clusters are near each other and plotted a signal representing frame number vs. clustering score. Our hypothesis was that the evolution of the signal would not change if semantically related events were happening in the scene. We marked the breakpoints at which the root mean square level of the signal changes significantly, and each breakpoint is an indication of the beginning of a new video segment. In the second part, for each segment from part 1, we randomly selected a 16-frame clip, then we extracted spatiotemporal features using convolutional 3D network C3D for every 16 frames using a pre-trained model. The C3D final output is a 512-feature vector dimension; hence we used principal component analysis (PCA) for dimensionality reduction. The final part is the classification. The C3D feature vectors are used as input to a multi-class linear support vector machine (SVM) for the training model, and we used a multi-classifier to detect the action. We evaluated our experiment on the UCF101 dataset, which consists of 101 human action categories, and we achieved an accuracy that outperforms the state of art by 1.2%.

Keywords: video segmentation, action detection, classification, Kmeans, C3D

Procedia PDF Downloads 77
2864 Developing Sustainable Rammed Earth Material Using Pulp Mill Fly Ash as Cement Replacement

Authors: Amin Ajabi, Chinchu Cherian, Sumi Siddiqua

Abstract:

Rammed earth (RE) is a traditional soil-based building material made by compressing a mixture of natural earth and binder ingredients such as chalk or lime, in temporary formworks. However, the modern RE uses 5 to 10% cement as a binder in order to meet the strength and durability requirements as per the standard specifications and guidelines. RE construction is considered to be an energy-efficient and environmental-friendly approach when compared to conventional concrete systems, which use 20 to 30% cement. The present study aimed to develop RE mix designs by utilizing non-hazardous wood-based fly ash generated by pulp and paper mills as a partial replacement for cement. The pulp mill fly ash (PPFA)-stabilized RE is considered to be a sustainable approach keeping in view of the massive carbon footprints associated with cement production as well as the adverse environmental impacts due to disposal of PPFA in landfills. For the experimental study, as-received PPFA, as well as PPFA-based geopolymer (synthesized by alkaline activation method), were incorporated as cement substitutes in the RE mixtures. Initially, local soil was collected and characterized by index and engineering properties. The PPFA was procured from a pulp manufacturing mill, and its physicochemical, mineralogical and morphological characterization, as well as environmental impact assessment, was conducted. Further, the various mix designs of RE material incorporating local soil and different proportions of cement, PPFA, and alkaline activator (a mixture of sodium silicate and sodium hydroxide solutions) were developed. The compacted RE specimens were cured and tested for 7-day and 28-day unconfined compressive strength (UCS) variations. Based on UCS results, the optimum mix design was identified corresponding to maximum strength improvement. Further, the cured RE specimens were subjected to freeze-thaw cycle testing for evaluating its performance and durability as a sustainable construction technique under extreme climatic conditions.

Keywords: sustainability, rammed earth, stabilization, pulp mill fly ash, geopolymer, alkaline activation, strength, durability

Procedia PDF Downloads 99
2863 Different Tools and Complex Approach for Improving Phytoremediation Technology

Authors: T. Varazi, M. Pruidze, M. Kurashvili, N. Gagelidze, M. Sutton

Abstract:

The complex phytoremediation approach given in the presented work implies joint application of natural sorbents, microorganisms, natural biosurfactants and plants. The approach is based on using the natural mineral composites, microorganism strains with high detoxification abilities, plants-phytoremediators and natural biosurfactants for enhancing the uptake of intermediates of pollutants by plant roots. In this complex strategy of phytoremediation technology, the sorbent serves to uptake and trap the pollutants and thus restrain their emission in the environment. The role of microorganisms is to accomplish the first stage biodegradation of organic contaminants. This is followed by application of a phytoremediation technology through purposeful planting of selected plants. Thus, using of different tools will provide restoration of polluted environment and prevention of toxic compounds’ dissemination from hotbeds of pollution for a considerable length of time. The main idea and novelty of the carried out work is the development of a new approach for the ecological safety. The wide spectrum of contaminants: Organochlorine pesticide – DDT, heavy metal –Cu, oil hydrocarbon (hexadecane) and wax have been used in this work. The presented complex biotechnology is important from the viewpoint of prevention, providing total rehabilitation of soil. It is unique to chemical pollutants, ecologically friendly and provides the control of erosion of soils.

Keywords: bioremediation, phytoremediation, pollutants, soil contamination

Procedia PDF Downloads 297
2862 Detection of Internal Mold Infection of Intact Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy

Authors: K. Petcharaporn

Abstract:

The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.

Keywords: tomato, mold, quality, prediction, transmittance

Procedia PDF Downloads 363
2861 Examination of the Water and Nutrient Utilization of Maize Hybrids on Chernozem Soil

Authors: L. G. Karancsi

Abstract:

The research was set up on chernozem soil at the Látókép AGTC MÉK research area of the University of Debrecen in Hungary. We examined the yield, the yield production per 1kg NPK fertilizer and the water and nutrient utilization of hybrid PR37N01 and PR37M81 in 2013. We found that PR37N01 produced the most yield at the level of N120+P (17,476kg ha-1) while PR37M81 reached the highest yield at level N150+PK (16,754kg ha-1). Studies related to yield production per 1kg NPK indicated that the best results were achieved at level N30+PK compared to the control treatment. Yield production per 1kg NPK was17.6kg kg-1 by P37N01 and 44.2kg kg-1 by PR37M81. By comparing the water utilization of hybrids we found that the worst water utilization results were reached in the control treatment (PR37N01: 26.2kg mm-1, PR37M81: 19.5kg mm-1). The best water utilization values were produced at level N120+PK in the case of hybrid PR37N01 (32.1kg mm-1) and at N150+PK in the case of hybrid PR37M81 (30.8kg mm-1). We established the values of the nutrient reaction and the fertilizer optimum of hybrids. We discovered a strong relationship between the amount of fertilizer applied and the yield produced (r2= 0.8228–0.9515). The best nutrient response was induced by hybrid PR37N01, while the weakest results were reached by hybrid PR37M81.

Keywords: hybrid, maize, nutrient, yield, water utilization

Procedia PDF Downloads 413
2860 Improvement of Soft Clay Using Floating Cement Dust-Lime Columns

Authors: Adel Belal, Sameh Aboelsoud, Mohy Elmashad, Mohammed Abdelmonem

Abstract:

The two main criteria that control the design and performance of footings are bearing capacity and settlement of soil. In soft soils, the construction of buildings, storage tanks, warehouse, etc. on weak soils usually involves excessive settlement problems. To solve bearing capacity or reduce settlement problems, soil improvement may be considered by using different techniques, including encased cement dust–lime columns. The proposed research studies the effect of adding floating encased cement dust and lime mix columns to soft clay on the clay-bearing capacity. Four experimental tests were carried out. Columns diameters of 3.0 cm, 4.0 cm, and 5.0 cm and columns length of 60% of the clay layer thickness were used. Numerical model was constructed and verified using commercial finite element package (PLAXIS 2D, V8.5). The verified model was used to study the effect of distributing columns around the footing at different distances. The study showed that the floating cement dust lime columns enhanced the clay-bearing capacity with 262%. The numerical model showed that the columns around the footing have a limit effect on the clay improvement.

Keywords: bearing capacity, cement dust – lime columns, ground improvement, soft clay

Procedia PDF Downloads 202
2859 A Supervised Approach for Detection of Singleton Spam Reviews

Authors: Atefeh Heydari, Mohammadali Tavakoli, Naomie Salim

Abstract:

In recent years, we have witnessed that online reviews are the most important source of customers’ opinion. They are progressively more used by individuals and organisations to make purchase and business decisions. Unfortunately, for the reason of profit or fame, frauds produce deceptive reviews to hoodwink potential customers. Their activities mislead not only potential customers to make appropriate purchasing decisions and organisations to reshape their business, but also opinion mining techniques by preventing them from reaching accurate results. Spam reviews could be divided into two main groups, i.e. multiple and singleton spam reviews. Detecting a singleton spam review that is the only review written by a user ID is extremely challenging due to lack of clue for detection purposes. Singleton spam reviews are very harmful and various features and proofs used in multiple spam reviews detection are not applicable in this case. Current research aims to propose a novel supervised technique to detect singleton spam reviews. To achieve this, various features are proposed in this study and are to be combined with the most appropriate features extracted from literature and employed in a classifier. In order to compare the performance of different classifiers, SVM and naive Bayes classification algorithms were used for model building. The results revealed that SVM was more accurate than naive Bayes and our proposed technique is capable to detect singleton spam reviews effectively.

Keywords: classification algorithms, Naïve Bayes, opinion review spam detection, singleton review spam detection, support vector machine

Procedia PDF Downloads 309
2858 Detection of Internal Mold Infection of Intact For Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy

Authors: K. Petcharaporn, N. Prathengjit

Abstract:

The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.

Keywords: tomato, mold, quality, prediction, transmittance

Procedia PDF Downloads 519
2857 Seasonal Profile of the Feeding Ecology of Auchenoglanis Occidentalis from Tagwai Lake, Minna Niger State, Nigeria

Authors: V. I. Chukwuemeka, S. M. Tsadu, R. O. Ojutiku, R. J. Kolo

Abstract:

The food and feeding habits of Auchenoglanis occidentalis, which is commonly called the “BuBu” cat fish or the giraffe cat fish from Tagwai Lake Minna, was analysed from January to June, 2013. A total of 216 fish specimen were used for the study which were obtained from the local fishermen operating in Tagwai Lake Minna. Fishing gears used include cast nets and gills nets of various sizes. They also use hook and lines. The frequency of occurrence and dominance method were used to analyse the food in the gut. Auchenoglanis occidentalis from Tagwai Lake, Minna had a broad spectrum of food items in the gut, ranging from insects, fish, plant materials to protozoan. The percentage of insects was (31.75%), fish (12.70%), Chyme (20.63%), plant materials (20.63%), protozoa (1.59%) and soil (12.70%). The presence of different food items in the gut of the Auchenoglanis occidentalis which ranged from animal to plant and soil made it to be considered as an omnivore bottom feeder. The food habits of this fish showed no remarkable difference between the dry season months and the rainy season months. The broad food spectrum of the fish makes them a good aquaculture candidate. It also suggests that the specie feed both in surface water and near the substratum (sand).

Keywords: Auchenoglanis occidentalis, ecology, Tagwai Lake, Nigeria

Procedia PDF Downloads 572
2856 Change Detection of Vegetative Areas Using Land Use Land Cover of Desertification Vulnerable Areas in Nigeria

Authors: T. Garba, Y. Y. Sabo A. Babanyara, K. G. Ilellah, A. K. Mutari

Abstract:

This study used the Normalized Difference Vegetation Index (NDVI) and maps compiled from the classification of Landsat TM and Landsat ETM images of 1986 and 1999 respectively and Nigeria sat 1 images of 2007 to quantify changes in land use and land cover in selected areas of Nigeria covering 143,609 hectares that are threatened by the encroaching Sahara desert. The results of this investigation revealed a decrease in natural vegetation over the three time slices (1986, 1999 and 2007) which was characterised by an increase in high positive pixel values from 0.04 in 1986 to 0.22 and 0.32 in 1999 and 2007 respectively and, a decrease in natural vegetation from 74,411.60ha in 1986 to 28,591.93ha and 21,819.19ha in 1999 and 2007 respectively. The same results also revealed a periodic trend in which there was progressive increase in the cultivated area from 60,191.87ha in 1986 to 104,376.07ha in 1999 and a terminal decrease to 88,868.31ha in 2007. These findings point to expansion of vegetated and cultivated areas in in the initial period between 1988 and 1996 and reversal of these increases in the terminal period between 1988 and 1996. The study also revealed progressive expansion of built-up areas from 1, 681.68ha in 1986 to 2,661.82ha in 1999 and to 3,765.35ha in 2007. These results argue for the urgent need to protect and conserve the depleting natural vegetation by adopting sustainable human resource use practices i.e. intensive farming in order to minimize persistent depletion of natural vegetation.

Keywords: changes, classification, desertification, vegetation changes

Procedia PDF Downloads 387
2855 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers

Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen

Abstract:

In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other. As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.

Keywords: AIS, ANN, ECG, hybrid classifiers, PSO

Procedia PDF Downloads 442
2854 Life Stage Customer Segmentation by Fine-Tuning Large Language Models

Authors: Nikita Katyal, Shaurya Uppal

Abstract:

This paper tackles the significant challenge of accurately classifying customers within a retailer’s customer base. Accurate classification is essential for developing targeted marketing strategies that effectively engage this important demographic. To address this issue, we propose a method that utilizes Large Language Models (LLMs). By employing LLMs, we analyze the metadata associated with product purchases derived from historical data to identify key product categories that act as distinguishing factors. These categories, such as baby food, eldercare products, or family-sized packages, offer valuable insights into the likely household composition of customers, including families with babies, families with kids/teenagers, families with pets, households caring for elders, or mixed households. We segment high-confidence customers into distinct categories by integrating historical purchase behavior with LLM-powered product classification. This paper asserts that life stage segmentation can significantly enhance e-commerce businesses’ ability to target the appropriate customers with tailored products and campaigns, thereby augmenting sales and improving customer retention. Additionally, the paper details the data sources, model architecture, and evaluation metrics employed for the segmentation task.

Keywords: LLMs, segmentation, product tags, fine-tuning, target segments, marketing communication

Procedia PDF Downloads 23
2853 Characterization and Optimization of Culture Conditions for Sulphur Oxidizing Bacteria after Isolation from Rhizospheric Mustard Soil, Decomposing Sites and Pit House

Authors: Suman Chaudhary, Rinku Dhanker, Tanvi, Sneh Goyal

Abstract:

Sulphur oxidizing bacteria (SOB) have marked their significant role in perspectives of maintaining healthy environment as researchers from all over the world tested and apply these in waste water treatment plants, bioleaching of heavy metals, deterioration of bridge structures, concrete and for bioremediation purposes, etc. Also, these SOB are well adapted in all kinds of environment ranging from normal soil, water habitats to extreme natural sources like geothermal areas, volcanic eruptions, black shale and acid rock drainage (ARD). SOB have been isolated from low pH environment of anthropogenic origin like acid mine drainage (AMD) and bioleaching heaps, hence these can work efficiently in different environmental conditions. Besides having many applications in field of environment science, they may be proven to be very beneficial in area of agriculture as sulphur is the fourth major macronutrients required for the growth of plants. More amount of sulphur is needed by pulses and oilseed crops with respect to the cereal grains. Due to continuous use of land for overproduction of more demanding sulphur utilizing crops and without application of sulphur fertilizers, its concentration is decreasing day by day, and thus, sulphur deficiency is becoming a great problem as it affects the crop productivity and quality. Sulphur is generally found in soils in many forms which are unavailable for plants (cannot be use by plants) like elemental sulphur, thiosulphate which can be taken up by bacteria and converted into simpler forms usable by plants by undergoing a series of transformations. So, keeping the importance of sulphur in view for various soil types, oilseed crops and role of microorganisms in making them available to plants, we made an effort to isolate, optimize, and characterize SOB. Three potential strains of bacteria were isolated, namely SSF7, SSA21, and SSS6, showing sulphate production of concentration, i.e. 2.268, 3.102, and 2.785 mM, respectively. Also, these were optimized for various culture conditions like carbon, nitrogen source, pH, temperature, and incubation time, and characterization was also done.

Keywords: sulphur oxidizing bacteria, isolation, optimization, characterization, sulphate production

Procedia PDF Downloads 337
2852 Reliability-based Condition Assessment of Offshore Wind Turbines using SHM data

Authors: Caglayan Hizal, Hasan Emre Demirci, Engin Aktas, Alper Sezer

Abstract:

Offshore wind turbines consist of a long slender tower with a heavy fixed mass on the top of the tower (nacelle), together with a heavy rotating mass (blades and hub). They are always subjected to environmental loads including wind and wave loads in their service life. This study presents a three-stage methodology for reliability-based condition assessment of offshore wind-turbines against the seismic, wave and wind induced effects considering the soil-structure interaction. In this context, failure criterions are considered as serviceability limits of a monopile supporting an Offshore Wind Turbine: (a) allowable horizontal displacement at pile head should not exceed 0.2 m, (b) rotations at pile head should not exceed 0.5°. A Bayesian system identification framework is adapted to the classical reliability analysis procedure. Using this framework, a reliability assessment can be directly implemented to the updated finite element model without performing time-consuming methods. For numerical verification, simulation data of the finite model of a real offshore wind-turbine structure is investigated using the three-stage methodology.

Keywords: Offshore wind turbines, SHM, reliability assessment, soil-structure interaction

Procedia PDF Downloads 532
2851 The Classification Accuracy of Finance Data through Holder Functions

Authors: Yeliz Karaca, Carlo Cattani

Abstract:

This study focuses on the local Holder exponent as a measure of the function regularity for time series related to finance data. In this study, the attributes of the finance dataset belonging to 13 countries (India, China, Japan, Sweden, France, Germany, Italy, Australia, Mexico, United Kingdom, Argentina, Brazil, USA) located in 5 different continents (Asia, Europe, Australia, North America and South America) have been examined.These countries are the ones mostly affected by the attributes with regard to financial development, covering a period from 2012 to 2017. Our study is concerned with the most important attributes that have impact on the development of finance for the countries identified. Our method is comprised of the following stages: (a) among the multi fractal methods and Brownian motion Holder regularity functions (polynomial, exponential), significant and self-similar attributes have been identified (b) The significant and self-similar attributes have been applied to the Artificial Neuronal Network (ANN) algorithms (Feed Forward Back Propagation (FFBP) and Cascade Forward Back Propagation (CFBP)) (c) the outcomes of classification accuracy have been compared concerning the attributes that have impact on the attributes which affect the countries’ financial development. This study has enabled to reveal, through the application of ANN algorithms, how the most significant attributes are identified within the relevant dataset via the Holder functions (polynomial and exponential function).

Keywords: artificial neural networks, finance data, Holder regularity, multifractals

Procedia PDF Downloads 246
2850 Removal of Mixed Heavy Metals from Contaminated Clay Soils Using Pulsed Electrokinetic Process

Authors: Nuhu Dalhat Mu’azu, Abdullahi Usman, A. Bukhari, Muhammad Hussain Essa, Salihu Lukman

Abstract:

Electrokinetic remediation process was employed for the removal of four (4) heavy metals (Cr, Cu, Hg and Pb) from contaminated clay and bentonite soils under pulsed current supply mode. The effects of voltage gradient, pulse duty cycle and bentonite/clay ratio on the simultaneous removal efficiencies of the heavy metals were investigated. A total of thirteen experiments were designed and conducted according to factorial design with each experiment allowed to continuously ran for 3 weeks. Results obtained showed that increase in bentonite ratio decreased the removal efficiency of the heavy metals with no significant effect on the energy consumption. Conversely, increase in both voltage gradient and pulse duty cycle increased the heavy metals removal efficiencies with increased in energy consumption. Additionally, increase in voltage gradient increased the electrical conductivity and the soil pH due to due to continuous refill and replacement of process fluids as they decomposed under the induced voltage gradient. Under different operating conditions, the maximum removal efficiencies obtained for Cr, Cu, Hg, and Pb were 21.87, 83.2, 62.4, 78.06 and 16.65% respectively.

Keywords: clay, bentonite, soil remediation, mixed contaminants, heavy metals, and electrokinetic-adsorption

Procedia PDF Downloads 432
2849 Impact of Climate Change on Crop Production: Climate Resilient Agriculture Is the Need of the Hour

Authors: Deepak Loura

Abstract:

Climate change is considered one of the major environmental problems of the 21st century and a lasting change in the statistical distribution of weather patterns over periods ranging from decades to millions of years. Agriculture and climate change are internally correlated with each other in various aspects, as the threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting a negative impact on global crop production and compromising food security worldwide. The fast pace of development and industrialization and indiscriminate destruction of the natural environment, more so in the last century, have altered the concentration of atmospheric gases that lead to global warming. Carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (NO) are important biogenic greenhouse gases (GHGs) from the agricultural sector contributing to global warming and their concentration is increasing alarmingly. Agricultural productivity can be affected by climate change in 2 ways: first, directly, by affecting plant growth development and yield due to changes in rainfall/precipitation and temperature and/or CO₂ levels, and second, indirectly, there may be considerable impact on agricultural land use due to snow melt, availability of irrigation, frequency and intensity of inter- and intra-seasonal droughts and floods, soil organic matter transformations, soil erosion, distribution and frequency of infestation by insect pests, diseases or weeds, the decline in arable areas (due to submergence of coastal lands), and availability of energy. An increase in atmospheric CO₂ promotes the growth and productivity of C3 plants. On the other hand, an increase in temperature, can reduce crop duration, increase crop respiration rates, affect the equilibrium between crops and pests, hasten nutrient mineralization in soils, decrease fertilizer- use efficiencies, and increase evapotranspiration among others. All these could considerably affect crop yield in long run. Climate resilient agriculture consisting of adaptation, mitigation, and other agriculture practices can potentially enhance the capacity of the system to withstand climate-related disturbances by resisting damage and recovering quickly. Climate resilient agriculture turns the climate change threats that have to be tackled into new business opportunities for the sector in different regions and therefore provides a triple win: mitigation, adaptation, and economic growth. Improving the soil organic carbon stock of soil is integral to any strategy towards adapting to and mitigating the abrupt climate change, advancing food security, and improving the environment. Soil carbon sequestration is one of the major mitigation strategies to achieve climate-resilient agriculture. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation before it might affect global crop production drastically. To cope with these extreme changes, future development needs to make adjustments in technology, management practices, and legislation. Adaptation and mitigation are twin approaches to bringing resilience to climate change in agriculture.

Keywords: climate change, global warming, crop production, climate resilient agriculture

Procedia PDF Downloads 74
2848 Effect of Testing Device Calibration on Liquid Limit Assessment

Authors: M. O. Bayram, H. B. Gencdal, N. O. Fercan, B. Basbug

Abstract:

Liquid limit, which is used as a measure of soil strength, can be detected by Casagrande and fall-cone testing methods. The two methods majorly diverge from each other in terms of operator dependency. The Casagrande method that is applied according to ASTM D4318-17 standards may give misleading results, especially if the calibration process is not performed well. To reveal the effect of calibration for drop height and amount of soil paste placement in the Casagrande cup, a series of tests were carried out by multipoint method as it is specified in the ASTM standards. The tests include the combination of 6 mm, 8 mm, 10 mm, and 12 mm drop heights and under-filled, half-filled, and full-filled Casagrande cups by kaolinite samples. It was observed that during successive tests, the drop height of the cup deteriorated; hence the device was recalibrated before and after each test to provide the accuracy of the results. Besides, the tests by under-filled and full-filled samples for higher drop heights revealed lower liquid limit values than the lower drop heights revealed. For the half-filled samples, it was clearly seen that the liquid limit values didn’t change at all as the drop height increased, and this explains the function of standard specifications.

Keywords: calibration, casagrande cup method, drop height, kaolinite, liquid limit, placing form

Procedia PDF Downloads 160
2847 The Effects of Green Manure Returning on Properties and Fungal Communities in Vanadium/Titanium Magnet Tailings

Authors: Hai-Hong Gu, Yan-Jun Ai, Zheng Zhou

Abstract:

Vanadium and titanium are rare metals with superior properties and are important resources in aerospace, aviation, and military. The vanadium/titanium magnetite are mostly ultra-lean ores, and a large number of tailings has been produced in the exploitation process. The tailings are characterized by loose structure, poor nutrient, complex composition and high trace metal contents. Returning green manure has been shown to not only increase plant biomass and soil nutrients but also change the bioavailability of trace metals and the microbial community structure. Fungi play an important role in decomposing organic matter and increasing soil fertility, and the application of organic matter also affects the community structure of fungi. The effects of green manure plants, alfalfa (Medicago sativa L.), returned to the tailings in situ on community structure of fungi, nutrients and bioavailability of trace metals in vanadium/titanium magnetite tailings were investigated in a pot experiment. The results showed that the fungal community diversity and richness were increase after alfalfa green manure returned in situ. The dominant phyla of the fungal community were Ascomycota, Basidiomycota and Ciliophora, especially, the phyla Ciliophora was rare in ordinary soil, but had been found to be the dominant phyla in tailings. Meanwhile, the nutrient properties and various trace metals may shape the microbial communities by affecting the abundance of fungi. It was found that the plant growth was stimulated and the available N and organic C were significantly improved in the vanadium/titanium magnetite tailing with the long-term returning of alfalfa green manure. Moreover, the DTPA-TEA extractable Cd and Zn concentrations in the vanadium/titanium magnetite tailing were reduced by 7.72%~23.8% and 8.02%~24.4%, respectively, compared with those in the non-returning treatment. The above results suggest that the returning of alfalfa green manure could be a potential approach to improve fungal community structure and restore mine tailing ecosystem.

Keywords: fungal community, green manure returning, vanadium/titanium magnet tailings, trace metals

Procedia PDF Downloads 70