Search results for: continental and ocean formation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3741

Search results for: continental and ocean formation

1551 Condition Monitoring for Twin-Fluid Nozzles with Internal Mixing

Authors: C. Lanzerstorfer

Abstract:

Liquid sprays of water are frequently used in air pollution control for gas cooling purposes and for gas cleaning. Twin-fluid nozzles with internal mixing are often used for these purposes because of the small size of the drops produced. In these nozzles the liquid is dispersed by compressed air or another pressurized gas. In high efficiency scrubbers for particle separation, several nozzles are operated in parallel because of the size of the cross section. In such scrubbers, the scrubbing water has to be re-circulated. Precipitation of some solid material can occur in the liquid circuit, caused by chemical reactions. When such precipitations are detached from the place of formation, they can partly or totally block the liquid flow to a nozzle. Due to the resulting unbalanced supply of the nozzles with water and gas, the efficiency of separation decreases. Thus, the nozzles have to be cleaned if a certain fraction of blockages is reached. The aim of this study was to provide a tool for continuously monitoring the status of the nozzles of a scrubber based on the available operation data (water flow, air flow, water pressure and air pressure). The difference between the air pressure and the water pressure is not well suited for this purpose, because the difference is quite small and therefore very exact calibration of the pressure measurement would be required. Therefore, an equation for the reference air flow of a nozzle at the actual water flow and operation pressure was derived. This flow can be compared with the actual air flow for assessment of the status of the nozzles.

Keywords: condition monitoring, dual flow nozzles, flow equation, operation data

Procedia PDF Downloads 268
1550 Narratives of Cultural Encounters Revisited: Moroccan Entertainers beyond Borders (1840-1920)

Authors: Lhoussain Simour

Abstract:

This paper discusses the reordering and reorientation Moroccan Oossified and frozen histories in national and colonial archives. It attempts to reexamine Moroccan non-canonical voices beyond borders, their forgotten experiences and itineraries, with the aim of uncovering cultural discourses pertaining to early cultural and artistic interactions between Morocco and the western countries, namely Britain and America. In fact, less attention has been given to the presence of Moroccan entertainers beyond borders in the archives of history. Moroccan historians and cultural critics seem to have paid little critical consideration to Moroccan artistic encounters with the west, Europe and America as a case in point. They have overlooked to deal with travel performances, professional entertainments, and artistic spectacles, initiated by acrobats, as instances of visual cross-cultural encounters between Morocco and the west. The narratives of these professional artists have hardly found their ways into historiographical writing. This contribution attempts to locate the contesting beginnings of Moroccan professional entertainers in western show business in the nineteenth century which witnessed intricate artistic, discursive and cultural junctures by emphasizing connections between theatrical performances, ethnic exhibition and world fair expositions. Moroccan professional performances grew in Europe and America within a zealous context marked by the rise of a paradigmatic racial consciousness that sought to authenticate and legitimate ethnic discourses of power and exclusion. The ethnic taxonomies and racial hierarchies governed by ethnographic and anthropological documentation fueled up entertainment venues and popular theatrical performances and helped in developing a distinctive view about Self and Other paradigms. Moroccan travelers started their journeys to visit European and American countries to exhibit their acrobatics acts. They, in a certain sense, continued, albeit in varying degrees and circumstances, the whole tradition of travel initiated previously by their ancestor diplomats and ambassadors. Professional entertainers embarked on daring journeys across the Mediterranean and the Atlantic to discover new geographies and cultural spaces, and perform their spectacles beyond borders. These travelers left rich archival documents that reflect important cultural and historical moments. The routes of travel started from the margins of the empire towards metropolitan centers of nineteenth century Europe and America included Moroccan women travelers as acrobats and dancing professional artists as well. These also crossed the straits of Gibraltar and journeyed through the Atlantic Ocean to visit western countries. Moroccan women travelers took part in various Euro-American theatre performances and in circus shows as early as 1850 according to newspapers archives and passengers shipping lists. Najat Amburg, Zahar Ben Tahar, Torquia, Fadma, and many more whose names are now lost to us, moved freely in various western capital cities to entertain nineteenth century western audiences.

Keywords: archives, cultural encounters, self and other, Morocco, travel, Moroccan acrobats, Moorish dancing women

Procedia PDF Downloads 174
1549 Physiological Response of Naturally Regenerated Pinus taeda L. Saplings to Four Levels of Stem Inoculation with Leptographium terebrantis

Authors: John K. Mensah, Mary A. Sword Sayer, Ryan L. Nadel, George Matusick, Zhaofei Fan, Lori G. Eckhardt

Abstract:

Leptographium terebrantis is an opportunistic root pathogen commonly associated with loblolly pine (Pinus taeda L.) stands that are undergoing a loss of vigor in the southeastern US. In order to understand the relationship between L. terebrantis inoculum density and host physiology, an artificial inoculation study was conducted in a five-year-old naturally regenerated loblolly pine stand over a 24 week period in a completely randomized design. L. terebrantis caused sapwood occlusions that increased in severity as inoculum density increased. The occlusions significantly reduced water transport through the stem but did not interfere with fascicle-level stomatal conductance or induce moisture stress in the saplings. The resilience of stomatal conductance among pathogen-infested saplings is attributed to the growth and hydraulic function of new sapwood that developed after artificial inoculation. Results demonstrate that faster-growing families of loblolly pine may be capable of tolerating the vascular root disease when the formation of new sapwood is supported by sustained crown health.

Keywords: hydraulic conductance, inoculum density, Leptographium terebrantis, Pinus taeda, sapwood occlusion

Procedia PDF Downloads 326
1548 Effects of Temperature and Cysteine Addition on Formation of Flavor from Maillard Reaction Using Xylose and Rapeseed Meal Peptide

Authors: Zuoyong Zhang, Min Yu, Jinlong Zhao, Shudong He

Abstract:

The Maillard reaction can produce the flavor enhancing substance through the chemical crosslinking between free amino group of the protein or polypeptide with the carbonyl of the reducing sugar. In this research, solutions of rapeseed meal peptide and D-xylose with or without L-cysteine (RXC or RX) were heated over a range of temperatures (80-140 °C) for 2 h. It was observed that RXs had a severe browning,while RXCs accompanied by more pH decrement with the temperature increasing. Then the correlation among data of quantitative sensory descriptive analysis, free amino acid (FAA) and GC–MS of RXCs and RXs were analyzed using the partial least square regression method. Results suggested that the Maillard reaction product (MRPs) with cysteine formed at 120 °C (RXC-120) had greater sensory properties especially meat-like flavor compared to other MRPs. Meanwhile, it revealed that glutamic and glycine not only had a positive contribution to meaty aroma but also showed a significant and positive influence on umami taste of RXs based on the FAA data. Moreover, the sulfur-containing compounds showed a significant positive correlation with the meat-like flavor of RXCs, while RXs depended on furans and nitrogenous-containing compounds with more caramel-like flavor. Therefore, a MRP with strong meaty flavor could be obtained at 120 °C by addition of cysteine.

Keywords: rapeseed meal, Maillard reaction, sensory characteristics, FAA, GC–MS, partial least square regression

Procedia PDF Downloads 270
1547 Evaluating Urban Land Expansion Using Geographic Information System and Remote Sensing in Kabul City, Afghanistan

Authors: Ahmad Sharif Ahmadi, Yoshitaka Kajita

Abstract:

With massive population expansion and fast economic development in last decade, urban land has increasingly expanded and formed high informal development territory in Kabul city. This paper investigates integrated urbanization trends in Kabul city since the formation of the basic structure of the present city using GIS and remote sensing. This study explores the spatial and temporal difference of urban land expansion and land use categories among different time intervals, 1964-1978 and 1978-2008 from 1964 to 2008 in Kabul city. Furthermore, the goal of this paper is to understand the extent of urban land expansion and the factors driving urban land expansion in Kabul city. Many factors like population expansion, the return of refugees from neighboring countries and significant economic growth of the city affected urban land expansion. Across all the study area urban land expansion rate, population expansion rate and economic growth rate have been compared to analyze the relationship of driving forces with urban land expansion. Based on urban land change data detected by interpreting land use maps, it was found that in the entire study area the urban territory has been expanded by 14 times between 1964 and 2008.

Keywords: GIS, Kabul city, land use, urban land expansion, urbanization

Procedia PDF Downloads 341
1546 Verification of Simulated Accumulated Precipitation

Authors: Nato Kutaladze, George Mikuchadze, Giorgi Sokhadze

Abstract:

Precipitation forecasts are one of the most demanding applications in numerical weather prediction (NWP). Georgia, as the whole Caucasian region, is characterized by very complex topography. The country territory is prone to flash floods and mudflows, quantitative precipitation estimation (QPE) and quantitative precipitation forecast (QPF) at any leading time are very important for Georgia. In this study, advanced research weather forecasting model’s skill in QPF is investigated over Georgia’s territory. We have analyzed several convection parameterization and microphysical scheme combinations for different rainy episodes and heavy rainy phenomena. We estimate errors and biases in accumulated 6 h precipitation using different spatial resolution during model performance verification for 12-hour and 24-hour lead time against corresponding rain gouge observations and satellite data. Various statistical parameters have been calculated for the 8-month comparison period, and some skills of model simulation have been evaluated. Our focus is on the formation and organization of convective precipitation systems in a low-mountain region. Several problems in connection with QPF have been identified for mountain regions, which include the overestimation and underestimation of precipitation on the windward and lee side of the mountains, respectively, and a phase error in the diurnal cycle of precipitation leading to the onset of convective precipitation in model forecasts several hours too early.

Keywords: extremal dependence index, false alarm, numerical weather prediction, quantitative precipitation forecasting

Procedia PDF Downloads 155
1545 Microstructural and Mechanical Property Investigation on SS316L-Cu Graded Deposition Prepared using Wire Arc Additive Manufacturing

Authors: Bunty Tomar, Shiva S.

Abstract:

Fabrication of steel and copper-based functionally graded material (FGM) through cold metal transfer-based wire arc additive manufacturing is a novel exploration. Components combining Cu and steel show significant usage in many industrial applications as they combine high corrosion resistance, ductility, thermal conductivity, and wear resistance to excellent mechanical properties. Joining steel and copper is challenging due to the mismatch in their thermo-mechanical properties. In this experiment, a functionally graded material (FGM) structure of pure copper (Cu) and 316L stainless steel (SS) was successfully developed using cold metal transfer-based wire arc additive manufacturing (CMT-WAAM). The interface of the fabricated samples was characterized under optical microscopy, field emission scanning electron microscopy, and X-ray diffraction techniques. Detailed EBSD and TEM analysis was performed to analyze the grain orientation, strain distribution, grain boundary misorientations, and formation of metastable and intermetallic phases. Mechanical characteristics of deposits was also analyzed using tensile and wear testing. This works paves the way to use CMT-WAAM to fabricate steel/copper FGMs.

Keywords: wire arc additive manufacturing (waam), cold metal transfer (cmt), metals and alloys, mechanical properties, characterization

Procedia PDF Downloads 84
1544 Magnetic Field Induced Tribological Properties of Magnetic Fluid

Authors: Kinjal Trivedi, Ramesh V. Upadhyay

Abstract:

Magnetic fluid as a nanolubricant is a most recent field of study due to its unusual properties that can be tuned by applying a magnetic field. In present work, four ball tester has been used to investigate the tribological properties of the magnetic fluid having a 4 wt% of nanoparticles. The structural characterization of fluid shows crystallite size of particle is 11.7 nm and particles are nearly spherical in nature. The magnetic characterization shows the fluid saturation magnetization is 2.2 kA/m. The magnetic field applied using permanent strip magnet (0 to 1.6 mT) on the faces of the lock nut and fixing a solenoid (0 to 50 mT) around a shaft, such that shaft rotates freely. The magnetic flux line for both the systems analyzed using finite elemental analysis. The coefficient of friction increases with the application of magnetic field using permanent strip magnet compared to zero field value. While for the solenoid, it decreases at 20 mT. The wear scar diameter is lower for 1.1 mT and 20 mT when the magnetic field applied using permanent strip magnet and solenoid, respectively. The coefficient of friction and wear scar reduced by 29 % and 7 % at 20 mT using solenoid. The worn surface analysis carried out using Scanning Electron Microscope and Atomic Force Microscope to understand the wear mechanism. The results are explained on the basis of structure formation in a magnetic fluid upon application of magnetic field. It is concluded that the tribological properties of magnetic fluid depend on magnetic field and its applied direction.

Keywords: four ball tester, magnetic fluid, nanolubricant, tribology

Procedia PDF Downloads 240
1543 History of Radical Politics in Sabon Birni District of Sokoto, 1950-1983

Authors: Jamilu Adamu

Abstract:

Radical political activities among the people of Northern Nigeria and Sabon Birni, in particular from the formation of the Northern Element Progressive Union (NEPU) and Northern People Congress (NPC) in the last decade of colonial rule, led to the dramatic spread of radical ideas that were expressed through party politics. The above two parties were said to be more prominent in each of the movements throughout the period covered by this study. The NEPU and NPC were said to have opposed one another in an attempt to establish their political control in the area. What is apparent about the nature of the opposition is that the earlier NEPU and People Redemption Party (PRP) emerged from the idea of liberating the common man (Talakawa) against all forms of oppression, thereby rejecting a contrary idea of supporting the native elites and their colonial collaborators as envisaged in the ideology of the later NPC and National Party of Nigeria (NPN). This laid the ground for ideological confrontation between the supporters of the two opposing wings all over the northern emirates and the Sabon Birni district in particular. The study used a qualitative method of data collection. This study examines the historical developments of radical party politics among the Gobirawa people of the Sabon Birni District of Sokoto. It also investigates the factors that inspired opposition politics among the Gobirawa people of Sabon Birni. These were analyses side-by-side with the role of the traditional leaders in the area in suppressing the activities of the opposition party.

Keywords: NEPU, NPC, radical politics, Sabon-Birni District

Procedia PDF Downloads 107
1542 The Role of Police in Counterinsurgency: A Case Study of Tripura

Authors: Yagnik Patel

Abstract:

This paper will analyze and explain two main objectives. First, it will examine the emergence of the insurgency in the state of Tripura. The State of Tripura was facing the full blow of insurgency problem since 1978 after the formation of Tripura National Volunteers (TNV). But, the roots of this insurgency were found even before 1978. This study will analyze the roots and trajectory of insurgency in the Tripura. Second, it will examine the role played by the police in counterinsurgency in the State of Tripura. Even though state police are mandated for the maintenance of the law and order and public order (like every police), the state police of Tripura have played a significant role in curbing the insurgency by enhancing their counterinsurgency (COIN) capabilities and re-structuring the new comprehensive COIN doctrine. And by the end of May 2015, the State Government has lifted The Armed Forces (Special Powers) Act (AFSPA) from the State of Tripura, as declaiming of the violence. The fight against the insurgency, usually done by the military or para-military, but nowadays the police organization is also becoming a vital state apparatus. After Punjab police and Andhra Pradesh police, Tripura police have also successfully curbed the insurgency from the state. This was the third time when successful counterinsurgency did by the state police in India. This has shown the importance of the police in the fight against the insurgency. In this regard, this paper will use both quantitative and qualitative research methods for an explanatory case study to analyze and explain the roots, causes and the trajectory of insurgency in the state of Tripura and the role played by the police in COIN in Tripura. Along with this, the paper will also examine the successful ‘Police Model of Tripura’.

Keywords: counterinsurgency, insurgency, police, Tripura state rifles

Procedia PDF Downloads 191
1541 Using Human-Digestive Simulator to Harbor Encapsulated Lactobacillus casei 01 along with Pasteurized-Purple-Rice Drinks for Examination of the Health-Promoting Effects

Authors: Srivilai Worametrachanon, Arunee Apichartsrangkoon, Jiranat Techarang, Boonrak Phanchaisri

Abstract:

A human-digestive simulator consisted of four colon compartments, i.e., stomach, small intestine, proximal colon and distal colon used to harbor L. casei 01 plus either pasteurized ordinary-purple-rice drinks or germinated-purple-rice drinks. Accordingly, three treatment compositions had been set up and the effects of treatments on colon bacterial communities including their by-products were thoroughly examined. L. casei 01 plus purple-rice drinks gave rise to significantly high formation (P ≤ 0.05) of short-chain-fatty acids (SCFA) of which highest acetic acid was found followed by propionic and butyric acids, while the germinated-rice drink showed the greatest impact. Moreover, the effect was more pronounced upon prolonged fermentation. In addition, the influence of treatments on colon microbes was also demonstrated. Accordingly, desirable bacteria including colon Lactobacilli and Bifidobacteria were significantly increased (P ≤ 0.05) in both colons in comparison with the control and the effect was more prominent after adding purple-rice drink. On the other hand, undesirable Clostridia and coliforms were apparently diminished by the influence of treatment conditions, in which both compartments exhibited similar results.

Keywords: human-digestive simulator, Lactobacillus casei 01, Pasteurized-purple-rice drinks

Procedia PDF Downloads 225
1540 Improving the Method for Characterizing Structural Fabrics for Shear Resistance and Formability

Authors: Dimitrios Karanatsis

Abstract:

Non-crimp fabrics (NCFs) allow for high mechanical performance of a manufacture composite component by maintaining the fibre reinforcements parallel to each other. The handling of NCFs is enabled by the stitching of the tows. Although the stitching material has negligible influence to the performance of the manufactured part, it can affect the ability of the structural fabric to shear and drape over the part’s geometry. High resistance to shearing is attributed to the high tensile strain of the stitching yarn and can cause defects in the fabric. In the current study, a correlation based on the stitch tension and shear behaviour is examined. The purpose of the research is to investigate the upper and lower limits of non-crimp fabrics manufacture and how these affect the shear behaviour of the fabrics. Experimental observations show that shear behaviour of the fabrics is significantly affected by the stitch tension, and there is a linear effect to the degree of shear they experience. It was found that the lowest possible stitch tension on the manufacturing line settings produces an NCF that exhibits very low tensile strain on it’s yarns and that has shear properties similar to a woven fabric. Moreover, the highest allowable stitch tension results in reduced formability of the fabric, as the stitch thread rearranges the fibre filaments where these become packed in a tight formation with constricted movement.

Keywords: carbon fibres, composite manufacture, shear testing, textiles

Procedia PDF Downloads 149
1539 Effect of Variation of Injection Timing on Performance and Emission Characteristics of Compression Ignition Engine: A CFD Approach

Authors: N. Balamurugan, N. V. Mahalakshmi

Abstract:

Compression ignition (CI) engines are known for their high thermal efficiency in comparison with spark-ignited (SI) engines. This makes CI engines a potential candidate for the future prime source of power for transportation sector to reduce greenhouse gas emissions and to shrink carbon footprint. However, CI engines produce high levels of NOx and soot emissions. Conventional methods to reduce NOx and soot emissions often result in the infamous NOx-soot trade-off. The injection parameters are one of the most important factors in the working of CI engines. The engine performance, power output, economy etc., is greatly dependent on the effectiveness of the injection parameters. The injection parameter has their direct impact on combustion process and pollutant formation. The injection parameter’s values are required to be optimised according to the application of the engine. Control of fuel injection mode is one method for reduction of NOx and soot emissions that is achievable. This study aims to assess, compare and analyse the influence of the effect of injection characteristics that is SOI timing studied on combustion and emissions in in-cylinder combustion processes with that of conventional DI Diesel Engine system using the commercial Computational Fluid Dynamic (CFD) package STAR- CD ES-ICE.

Keywords: variation of injection timing, compression ignition engine, spark-ignited, Computational Fluid Dynamic

Procedia PDF Downloads 298
1538 Investigation of Bubble Growth During Nucleate Boiling Using CFD

Authors: K. Jagannath, Akhilesh Kotian, S. S. Sharma, Achutha Kini U., P. R. Prabhu

Abstract:

Boiling process is characterized by the rapid formation of vapour bubbles at the solid–liquid interface (nucleate boiling) with pre-existing vapour or gas pockets. Computational fluid dynamics (CFD) is an important tool to study bubble dynamics. In the present study, CFD simulation has been carried out to determine the bubble detachment diameter and its terminal velocity. Volume of fluid method is used to model the bubble and the surrounding by solving single set of momentum equations and tracking the volume fraction of each of the fluids throughout the domain. In the simulation, bubble is generated by allowing water-vapour to enter a cylinder filled with liquid water through an inlet at the bottom. After the bubble is fully formed, the bubble detaches from the surface and rises up during which the bubble accelerates due to the net balance between buoyancy force and viscous drag. Finally when these forces exactly balance each other, it attains a constant terminal velocity. The bubble detachment diameter and the terminal velocity of the bubble are captured by the monitor function provided in FLUENT. The detachment diameter and the terminal velocity obtained is compared with the established results based on the shape of the bubble. A good agreement is obtained between the results obtained from simulation and the equations in comparison with the established results.

Keywords: bubble growth, computational fluid dynamics, detachment diameter, terminal velocity

Procedia PDF Downloads 388
1537 Numerical Simulation of Three-Dimensional Cavitating Turbulent Flow in Francis Turbines with ANSYS

Authors: Raza Abdulla Saeed

Abstract:

In this study, the three-dimensional cavitating turbulent flow in a complete Francis turbine is simulated using mixture model for cavity/liquid two-phase flows. Numerical analysis is carried out using ANSYS CFX software release 12, and standard k-ε turbulence model is adopted for this analysis. The computational fluid domain consist of spiral casing, stay vanes, guide vanes, runner and draft tube. The computational domain is discretized with a three-dimensional mesh system of unstructured tetrahedron mesh. The finite volume method (FVM) is used to solve the governing equations of the mixture model. Results of cavitation on the runner’s blades under three different boundary conditions are presented and discussed. From the numerical results it has been found that the numerical method was successfully applied to simulate the cavitating two-phase turbulent flow through a Francis turbine, and also cavitation is clearly predicted in the form of water vapor formation inside the turbine. By comparison the numerical prediction results with a real runner; it’s shown that the region of higher volume fraction obtained by simulation is consistent with the region of runner cavitation damage.

Keywords: computational fluid dynamics, hydraulic francis turbine, numerical simulation, two-phase mixture cavitation model

Procedia PDF Downloads 565
1536 Microdiamond and Moissanite Inclusions in Garnets from Pohorje Mountains, Eastern Alps, Slovenia

Authors: Mirijam Vrabec, Marian Janak, Bojan Ambrozic, Angelja K. Surca, Nastja Rogan Smuc, Nina Zupancic, Saso Sturm

Abstract:

Natural microdiamonds and moissanite (SiC) can form during the orogenic events under ultrahigh-pressure metamorphic conditions (UHP), when parts of Earth’s crust are subducted to extreme depths. So far, such processes were identified only in few places on the Earth, and therefore, represent unique opportunity to study the evolution of the Earth’s deep interior. An important discovery of microdiamonds and moissanite was reported from Pohorje, (Slovenia), where they occurred as single or polyphase inclusions in garnets. Metasedimentary rocks from Pohorje are predominantly gneisses representing parts of the Austroalpine metamorphic units of the Eastern Alps. During Cretaceous orogeny, (ca. 95–92 Ma) continental crustal rocks were deeply subducted to the mantle depths (below 100 km) and metamorphosed at pressures exceeding 3.5 GPa and temperatures between 800–850 °C. Microstructural and phase analysis of the inclusions as well as detailed elemental analysis of host garnets were carried out combining several analytical techniques: optical microscope in plane polarized transmitted light, electron probe microanalysis (EPMA) with wavelength-dispersive x-ray spectrometry (WDS) and field-emission scanning microscope (FEG-SEM) with energy-dispersive x-ray spectroscopy (EDS). Micro-Raman analysis revealed sharp, first order diamond bands sometimes accompanied by graphite bands implying that transformation of diamond back to graphite occurred. To study the chemical and crystallographic relationship between microdiamonds and co-inclusions, advanced techniques of transmission electron microscopy (TEM) were applied, which included high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), combined with EDS and electron energy-loss spectroscopy (EELS). To prepare electron transparent TEM lamellae selectively a dual-beam Focused Ion Beam/SEM (FIB/SEM) was employed. Detailed study of TEM lamellae, which was cross-sectioned from the highly faceted inclusion body located within the host garnet crystal matrix, revealed rich and rather complex internal structure. Namely, the negative crystal facets of the main inclusion body were typically decorated with up to 1 μm thick amorphous layer, reflecting the general garnet composition with slight variations in Fe/Ca content. Within these layers, ELNES analysis revealed the presence of a 28–30 nm thick layer of amorphous carbon. The very last section of this layer corresponds to composition of SiO2. Within the inclusion, besides diamond and moissanite alumosilicate mineral with pronounced layered structure, iron sulfides and chlorine were identified under TEM and CO2 and CH4 using Raman. Moissanite is found as single crystal or composed from numerous highly textured nano-crystals with the average size of 10 nm. Moissanite inclusions were found embedded inside the amorphous crust implying that moissanite crystalized well before the deposition of the amorphous layer. From the microstructural, crystallographic and chemical observations so far we can deduce, that polyphase inclusions in diamond bearing garnets from Pohorje most probably crystallized from reduced supercritical fluids. Based on layered interface structure of the host mineral multiphase process of crystallization is possible. The presence of microdiamonds and moissanite in rocks from Pohorje demonstrates that these parts of the Eastern Alps were subducted to extreme depths, and were subsequently exhumed back to the Earth's surface without complete breakdown of UHP mineral phases, allowing a rear and exceptional opportunity to study them in-situ.

Keywords: diamond, fluid inclusions, moissanite, TEM, UHP metamorphism.

Procedia PDF Downloads 307
1535 Early Melt Season Variability of Fast Ice Degradation Due to Small Arctic Riverine Heat Fluxes

Authors: Grace E. Santella, Shawn G. Gallaher, Joseph P. Smith

Abstract:

In order to determine the importance of small-system riverine heat flux on regional landfast sea ice breakup, our study explores the annual spring freshet of the Sagavanirktok River from 2014-2019. Seasonal heat cycling ultimately serves as the driving mechanism behind the freshet; however, as an emerging area of study, the extent to which inland thermodynamics influence coastal tundra geomorphology and connected landfast sea ice has not been extensively investigated in relation to small-scale Arctic river systems. The Sagavanirktok River is a small-to-midsized river system that flows south-to-north on the Alaskan North Slope from the Brooks mountain range to the Beaufort Sea at Prudhoe Bay. Seasonal warming in the spring rapidly melts snow and ice in a northwards progression from the Brooks Range and transitional tundra highlands towards the coast and when coupled with seasonal precipitation, results in a pulsed freshet that propagates through the Sagavanirktok River. The concentrated presence of newly exposed vegetation in the transitional tundra region due to spring melting results in higher absorption of solar radiation due to a lower albedo relative to snow-covered tundra and/or landfast sea ice. This results in spring flood runoff that advances over impermeable early-season permafrost soils with elevated temperatures relative to landfast sea ice and sub-ice flow. We examine the extent to which interannual temporal variability influences the onset and magnitude of river discharge by analyzing field measurements from the United States Geological Survey (USGS) river and meteorological observation sites. Rapid influx of heat to the Arctic Ocean via riverine systems results in a noticeable decay of landfast sea ice independent of ice breakup seaward of the shear zone. Utilizing MODIS imagery from NASA’s Terra satellite, interannual variability of river discharge is visualized, allowing for optical validation that the discharge flow is interacting with landfast sea ice. Thermal erosion experienced by sediment fast ice at the arrival of warm overflow preconditions the ice regime for rapid thawing. We investigate the extent to which interannual heat flux from the Sagavanirktok River’s freshet significantly influences the onset of local landfast sea ice breakup. The early-season warming of atmospheric temperatures is evidenced by the presence of storms which introduce liquid, rather than frozen, precipitation into the system. The resultant decreased albedo of the transitional tundra supports the positive relationship between early-season precipitation events, inland thermodynamic cycling, and degradation of landfast sea ice. Early removal of landfast sea ice increases coastal erosion in these regions and has implications for coastline geomorphology which stress industrial, ecological, and humanitarian infrastructure.

Keywords: Albedo, freshet, landfast sea ice, riverine heat flux, seasonal heat cycling

Procedia PDF Downloads 133
1534 Using Short Narrative Film to Drive Healthcare Policy: A Case Study

Authors: T. L. Granzyk, S. Scarborough, J. DeCosmo

Abstract:

The use of health-related or medical narratives has gained increasing anecdotal and research-based support as a successful device for changing health behavior and outcomes. These narratives, in the form of oral storytelling, short films, and educational documentaries, for example, are most effective when including empathetic characters that transport viewers into the story and command both their attention and emotional response. This case study outlines how and why one large health system created a short narrative film for their internal Sepsis Awareness campaign, which told the dramatic story of a patient recovering from a missed sepsis diagnosis, leaving her a quad-amputee. Results include positive global anecdotal response to the film from healthcare professionals and patients, as well as use of the film to support legislation, ultimately passed in favor of the formation of Sepsis Awareness Workgroups in Maryland. Authors conclude that narrative films can be used successfully to initiate healthcare legislation and to increase internal and external awareness of health-related areas in need of greater improvement and support. As such, healthcare leaders and stakeholders would benefit from learning how to intentionally create, cultivate, and curate narratives from within their own health systems that elicit an empathetic response.

Keywords: healthcare policy, healthcare narratives, sepsis awareness, short films

Procedia PDF Downloads 105
1533 A Neural Network Approach to Understanding Turbulent Jet Formations

Authors: Nurul Bin Ibrahim

Abstract:

Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.

Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence

Procedia PDF Downloads 78
1532 Demographic Dividend Explained by Infrastructure Costs of Population Growth Rate, Distinct from Age Dependency

Authors: Jane N. O'Sullivan

Abstract:

Although it is widely believed that fertility decline has benefitted economic advancement, particularly in East and South-East Asian countries, the causal mechanisms for this stimulus are contested. Since the turn of this century, demographic dividend theory has been increasingly recognised, hypothesising that higher proportions of working-age people can contribute to economic expansion if conditions are met to employ them productively. Population growth rate, as a systemic condition distinct from age composition, has not been similar attention since the 1970s and has lacked methodology for quantitative assessment. This paper explores conceptual and empirical quantification of the burden of expanding physical capital to accommodate a growing population. In proof-of-concept analyses of Australia and the United Kingdom, actual expenditure on gross fixed capital formation was compiled over four decades and apportioned to maintenance/turnover or expansion to accommodate population growth, based on lifespan of capital assets and population growth rate. In both countries, capital expansion was estimated to cost 6.5-7.0% of GDP per 1% population growth rate. This opportunity cost impedes the improvement of per capita capacity needed to realise the potential of the working-age population. Economic modelling of demographic scenarios have to date omitted this channel of influence; the implications of its inclusion are discussed.

Keywords: age dependency, demographic dividend, infrastructure, population growth rate

Procedia PDF Downloads 149
1531 Development and Performance of Aerobic Granular Sludge at Elevated Temperature

Authors: Mustafa M. Bob, Siti Izaidah Azmi, Mohd Hakim Ab Halim, Nur Syahida Abdul Jamal, Aznah Nor-Anuar, Zaini Ujang

Abstract:

In this research, the formation and development of aerobic granular sludge (AGS) for domestic wastewater treatment application in hot climate conditions was studied using a sequencing batch reactor (SBR). The performance of the developed AGS in the removal of organic matter and nutrients from wastewater was also investigated. The operation of the reactor was based on the sequencing batch system with a complete cycle time of 3 hours that included feeding, aeration, settling, discharging and idling. The reactor was seeded with sludge collected from the municipal wastewater treatment plant in Madinah city, Saudi Arabia and operated at a temperature of 40ºC using synthetic wastewater as influent. Results showed that granular sludge was developed after an operation period of 30 days. The developed granular sludge had a good settling ability with the average size of the granules ranging from 1.03 to 2.42 mm. The removal efficiency of chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and total phosphorus (TP) were 87.31%, 91.93% and 61.25% respectively. These results show that AGS can be developed at elevated temperatures and it is a promising technique to treat domestic wastewater in hot and low humidity climate conditions such as those encountered in Saudi Arabia.

Keywords: aerobic granular sludge, hot climate, sequencing batch reactor, domestic wastewater treatment

Procedia PDF Downloads 361
1530 High Temperature Properties of Diffusion Brazed Joints of in 939 Ni-Base Superalloy

Authors: Hyunki Kang, Hi Won Jeong

Abstract:

The gas turbine operates for a long period of time under harsh, cyclic conditions of high temperature and pressure, where high turbine inlet temperature (TIT) can range from 1273 to 1873K. Therefore, Ni-base superalloys such as IN738, IN939, Rene 45, Rene 71, Rene 80, Mar M 247, CM 247, and CMSX-4 with excellent mechanical properties and resistance to creep, corrosion and oxidation at high temperatures are indeed used. Among the alloying additions for these alloys, aluminum (Al) and titanium (Ti) form gamma prime and enhance the high-temperature properties. However, when crack-damaged high-temperature turbine components such as blade and vane are repaired by fusion welding, they cause cracks. For example, when arc welding is applied to certain superalloys that contain Al and Ti with more than 3 wt.% and T3.5 wt%, respectively, such as IN738, IN939, Rene 80, Mar M 247, and CM 247, aging cracks occur. Therefore, repair technologies using diffusion brazing, which has less heat input into the base material, are being developed. Analysis of microstructural evolution of the brazed joints with a base metal of IN 939 Ni-base superalloy using brazing different filler metals was also carried out using X-ray diffraction, OEM, SEM-EDS, and EPMA. Stress rupture and high-temperature tensile strength properties were also measured to analyze the effects of different brazing heat cycles. The boron amount in the diffusion-affected zone (DAZ) was decreased towards the base metal and the formation of borides at grain boundaries was detected through EPMA.

Keywords: gas turbine, diffusion brazing, superalloy, gas turbine repair

Procedia PDF Downloads 46
1529 Preparation of Biomedical Hydrogels Using Phenolic Compounds and Electron Beam Irradiation

Authors: Farnaz Sadeghi, Moslem Tavakol

Abstract:

In this study, an attempt has been made to prepare a physically cross-linked gel by cooling of tannic acid (TA)-polyvinyl alcohol (PVA) solution that subsequently convert to antibacterial chemically cross-linked hydrogel by using electron beam irradiation. PVA is known for its biocompatibility and hydrophilicity, and TA is known for being a natural compound which can serve as a cross-linking agent and a therapeutic agent. Swelling behavior, gel content, pore size, and mechanical properties of hydrogels which prepared at 14, 28, and 56 (kGy) with different ratios of polymers were investigated. PVA-TA hydrogel showed sustained release of tannic acid as approximately 20% and 50% of loaded TA released from the hydrogel after 4 and 72 h release time. We found that gel content decreased and the moisture retention capability increased by an increase in TA composition. In addition, PVA-TA hydrogels showed a good antibacterial activity against S.aureus. MTT analysis indicated that close to 83% of fibroblast cells remained viable after 48 h exposure to hydrogel extract. Moreover, the cooling of 10% PVA solution containing 0.5 and 0.75% w/v tannic acid to room and refrigerator, respectively, led to formation of physical gel that did not present any flow index after inversion of hydrogel cast. According to the results, the hydrogel prepared by electron beam irradiation of blended PVA-TA solution could be further investigated as a promising candidate for wound healing.

Keywords: poly vinyl alcohol, tannic acid, electron beam irradiation, hydrogel wound dressing

Procedia PDF Downloads 160
1528 Influence of La³⁺ on Structural, Magnetic, Optical and Dielectric Properties in CoFe₂O₄ Nanoparticles Synthesized by Starch-Assisted Sol-Gel Combustion Method

Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Pavel Urbánek, Michal Machovsky, Milan Masař, Martin Holek

Abstract:

Herein, we reported the influence of La³⁺ substitution on structural, magnetic and dielectric properties of CoFe₂O₄ nanoparticles synthesized by starch-assisted sol-gel combustion method. X-ray diffraction pattern confirmed the formation of cubic spinel structure of La³⁺ ions doped CoFe₂O₄ nanoparticles. Raman and Fourier Transform Infrared spectroscopy study also confirmed cubic spinel structure of La³⁺ substituted CoFe₂O₄ nanoparticles. The field emission scanning electron microscopy study revealed that La³⁺ substituted CoFe2O4 nanoparticles were in the range of 10-40 nm. The magnetic properties of La³⁺ substituted CoFe₂O₄ nanoparticles were investigated by using vibrating sample magnetometer. The variation in saturation magnetization, coercivity and remanent magnetization with La³⁺ concentration in CoFe2O4 nanoparticles was observed. The variation of real and imaginary part of dielectric constant, tan δ, and AC conductivity were studied with change of concentration of La³⁺ ions in CoFe₂O₄ nanoparticles. The variation in optical properties was studied via UV-Vis absorption spectroscopy. Acknowledgment: This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).

Keywords: starch, sol-gel combustion method, nanoparticles, magnetic properties, dielectric properties

Procedia PDF Downloads 320
1527 Design of DNA Origami Structures Using LAMP Products as a Combined System for the Detection of Extended Spectrum B-Lactamases

Authors: Kalaumari Mayoral-Peña, Ana I. Montejano-Montelongo, Josué Reyes-Muñoz, Gonzalo A. Ortiz-Mancilla, Mayrin Rodríguez-Cruz, Víctor Hernández-Villalobos, Jesús A. Guzmán-López, Santiago García-Jacobo, Iván Licona-Vázquez, Grisel Fierros-Romero, Rosario Flores-Vallejo

Abstract:

The group B-lactamic antibiotics include some of the most frequently used small drug molecules against bacterial infections. Nevertheless, an alarming decrease in their efficacy has been reported due to the emergence of antibiotic-resistant bacteria. Infections caused by bacteria expressing extended Spectrum B-lactamases (ESBLs) are difficult to treat and account for higher morbidity and mortality rates, delayed recovery, and high economic burden. According to the Global Report on Antimicrobial Resistance Surveillance, it is estimated that mortality due to resistant bacteria will ascend to 10 million cases per year worldwide. These facts highlight the importance of developing low-cost and readily accessible detection methods of drug-resistant ESBLs bacteria to prevent their spread and promote accurate and fast diagnosis. Bacterial detection is commonly done using molecular diagnostic techniques, where PCR stands out for its high performance. However, this technique requires specialized equipment not available everywhere, is time-consuming, and has a high cost. Loop-Mediated Isothermal Amplification (LAMP) is an alternative technique that works at a constant temperature, significantly decreasing the equipment cost. It yields double-stranded DNA of several lengths with repetitions of the target DNA sequence as a product. Although positive and negative results from LAMP can be discriminated by colorimetry, fluorescence, and turbidity, there is still a large room for improvement in the point-of-care implementation. DNA origami is a technique that allows the formation of 3D nanometric structures by folding a large single-stranded DNA (scaffold) into a determined shape with the help of short DNA sequences (staples), which hybridize with the scaffold. This research aimed to generate DNA origami structures using LAMP products as scaffolds to improve the sensitivity to detect ESBLs in point-of-care diagnosis. For this study, the coding sequence of the CTM-X-15 ESBL of E. coli was used to generate the LAMP products. The set of LAMP primers were designed using PrimerExplorerV5. As a result, a target sequence of 200 nucleotides from CTM-X-15 ESBL was obtained. Afterward, eight different DNA origami structures were designed using the target sequence in the SDCadnano and analyzed with CanDo to evaluate the stability of the 3D structures. The designs were constructed minimizing the total number of staples to reduce costs and complexity for point-of-care applications. After analyzing the DNA origami designs, two structures were selected. The first one was a zig-zag flat structure, while the second one was a wall-like shape. Given the sequence repetitions in the scaffold sequence, both were able to be assembled with only 6 different staples each one, ranging between 18 to 80 nucleotides. Simulations of both structures were performed using scaffolds of different sizes yielding stable structures in all the cases. The generation of the LAMP products were tested by colorimetry and electrophoresis. The formation of the DNA structures was analyzed using electrophoresis and colorimetry. The modeling of novel detection methods through bioinformatics tools allows reliable control and prediction of results. To our knowledge, this is the first study that uses LAMP products and DNA-origami in combination to delect ESBL-producing bacterial strains, which represent a promising methodology for diagnosis in the point-of-care.

Keywords: beta-lactamases, antibiotic resistance, DNA origami, isothermal amplification, LAMP technique, molecular diagnosis

Procedia PDF Downloads 227
1526 An Evaluation of a Prototype System for Harvesting Energy from Pressurized Pipeline Networks

Authors: Nicholas Aerne, John P. Parmigiani

Abstract:

There is an increasing desire for renewable and sustainable energy sources to replace fossil fuels. This desire is the result of several factors. First, is the role of fossil fuels in climate change. Scientific data clearly shows that global warming is occurring. It has also been concluded that it is highly likely human activity; specifically, the combustion of fossil fuels, is a major cause of this warming. Second, despite the current surplus of petroleum, fossil fuels are a finite resource and will eventually become scarce and alternatives, such as clean or renewable energy will be needed. Third, operations to obtain fossil fuels such as fracking, off-shore oil drilling, and strip mining are expensive and harmful to the environment. Given these environmental impacts, there is a need to replace fossil fuels with renewable energy sources as a primary energy source. Various sources of renewable energy exist. Many familiar sources obtain renewable energy from the sun and natural environments of the earth. Common examples include solar, hydropower, geothermal heat, ocean waves and tides, and wind energy. Often obtaining significant energy from these sources requires physically-large, sophisticated, and expensive equipment (e.g., wind turbines, dams, solar panels, etc.). Other sources of renewable energy are from the man-made environment. An example is municipal water distribution systems. The movement of water through the pipelines of these systems typically requires the reduction of hydraulic pressure through the use of pressure reducing valves. These valves are needed to reduce upstream supply-line pressures to levels suitable downstream users. The energy associated with this reduction of pressure is significant but is currently not harvested and is simply lost. While the integrity of municipal water supplies is of paramount importance, one can certainly envision means by which this lost energy source could be safely accessed. This paper provides a technical description and analysis of one such means by the technology company InPipe Energy to generate hydroelectricity by harvesting energy from municipal water distribution pressure reducing valve stations. Specifically, InPipe Energy proposes to install hydropower turbines in parallel with existing pressure reducing valves in municipal water distribution systems. InPipe Energy in partnership with Oregon State University has evaluated this approach and built a prototype system at the O. H. Hinsdale Wave Research Lab. The Oregon State University evaluation showed that the prototype system rapidly and safely initiates, maintains, and ceases power production as directed. The outgoing water pressure remained constant at the specified set point throughout all testing. The system replicates the functionality of the pressure reducing valve and ensures accurate control of down-stream pressure. At a typical water-distribution-system pressure drop of 60 psi the prototype, operating at an efficiency 64%, produced approximately 5 kW of electricity. Based on the results of this study, this proposed method appears to offer a viable means of producing significant amounts of clean renewable energy from existing pressure reducing valves.

Keywords: pressure reducing valve, renewable energy, sustainable energy, water supply

Procedia PDF Downloads 208
1525 The Role of High Performance Liquid Chromatography in Identification of Rat Liver Microsomes Responsible for the in vitro Metabolite Formation of Dipyrone

Authors: Salem Abdalla

Abstract:

Objective: Dipyrone is a widely used, well tolerated analgesic drug which, however, is compromised by agranulocytosis as an adverse effect. Subsequent to no enzymatic hydrolysis, the primary metabolic step is N-demethylation of 4-methylaminoantipyrine (4-MAA) to 4-aminoantipyrine (4-AA). The aim of the present study was to identify the cytochrome P-450 enzyme (CYP) mediating this reaction. Methods: We identified the relevant CYP using virus expressed isolated rat liver microsomes with chemical inhibition studies. The substrate of 4-methylaminantipyrine was employed at six different concentrations (25, 50, 100, 400, 800, and 1200 µmol/l) with varying concentrations of selective inhibitors of CYP1A2 (furafylline, fluvoxamine), CYP3A4 (ketoconazole), CYP2A6 (coumarin), CYP2D6 (quinidine), CYP2C19 (omeprazole, fluvoxamine, tranylcypromine), CYP2C9 (sulfaphenazole), and CYP1A1 (alpha-naphthoflavone). 4-MAA and 4-AA were analyzed by HPLC, and enzyme kinetic parameters (Km and Vmax) were determined by regression (Sigma plot 9.0). Results: The N-demethylation of 4-MAA by microsomes prepared from baculovirus-expressing human CYP was pronounced with CYP2C19. Intrinsic clearances of the most active enzymes were 0.092, 0.027, and 0.026 for the CYP enzymes 2C19, 2D6, and 1A2, respectively. Metabolism by rat liver microsomes was strongly inhibited by omeprazole (IC50 of 0.05). Conclusion: The enzyme CYP2C19 apparently has an important role in N-demethylation of 4-methylaminoantipyrine which should be further analyzed in clinical studies and which may also be interesting concerning the agranulocytosis.

Keywords: dipyrone, 4-methylaminoantipyrine (4-MAA), 4- aminoantipyrine (4-AA), metabolism, human CYP2C19

Procedia PDF Downloads 242
1524 Compilation of Islamic Law as Law Applied Religious Courts in Indonesia (Responding to Changes in Religious Courts Authority)

Authors: Hamdan Arief Hanif, Rahmat Sidiq

Abstract:

Indonesia is a country of law, the legal system adopted by Indonesia is a civil law system. A major feature of the civil law is the codified legislation. Meanwhile the majority of society Indonesia are Muslims, whilst Islamic law itself having the sources written in Qur'an, Sunnah and the opinion of Muslim scholars, generally not codified in book form of legislation that is easy on the set as a reference. in Indonesia, many scholars have different opinions in decisions so that there is no legal certainty in Muslim civil cases, so the need for legal codification, which, as the source of the judges in deciding a case, especially a case in religious courts. This paper raised the topic of discussion which offers a solution to the application of the codification of the Islamic Law which became the core resources in delivering a verdict against Islamic civil related issue; codification usually called a compilation of Islamic Law. Compilation of Islamic Law is highly recommended as a core reference for the judges in religious courts in Indonesia. This compilation which includes a collection of large number of opinions scholars (book of fiqh) that existed previously and are ripened in deduce in order to unify the existing differences. This paper also discusses how the early formation of the compilation and as the right solution in order to create legal certainty and justice especially for the muslim community in Indonesia.

Keywords: Islamic law, compilation, law applied core, religious court

Procedia PDF Downloads 358
1523 Inversion of Gravity Data for Density Reconstruction

Authors: Arka Roy, Chandra Prakash Dubey

Abstract:

Inverse problem generally used for recovering hidden information from outside available data. Vertical component of gravity field we will be going to use for underneath density structure calculation. Ill-posing nature is main obstacle for any inverse problem. Linear regularization using Tikhonov formulation are used for appropriate choice of SVD and GSVD components. For real time data handle, signal to noise ratios should have to be less for reliable solution. In our study, 2D and 3D synthetic model with rectangular grid are used for gravity field calculation and its corresponding inversion for density reconstruction. Fine grid also we have considered to hold any irregular structure. Keeping in mind of algebraic ambiguity factor number of observation point should be more than that of number of data point. Picard plot is represented here for choosing appropriate or main controlling Eigenvalues for a regularized solution. Another important study is depth resolution plot (DRP). DRP are generally used for studying how the inversion is influenced by regularizing or discretizing. Our further study involves real time gravity data inversion of Vredeforte Dome South Africa. We apply our method to this data. The results include density structure is in good agreement with known formation in that region, which puts an additional support of our method.

Keywords: depth resolution plot, gravity inversion, Picard plot, SVD, Tikhonov formulation

Procedia PDF Downloads 216
1522 Study of Landslide Behavior with Topographic Monitoring and Numerical Modeling

Authors: ZerarkaHizia, Akchiche Mustapha, Prunier Florent

Abstract:

Landslide of Ain El Hammam (AEH) has been an old slip since 1969; it was reactivated after an intense rainfall period in 2008 where it presents a complex shape and affects broad areas. The schist of AEH is more or less altered; the alteration is facilitated by the fracturing of the rock in its upper part, the presence of flowing water as well as physical and chemical mechanisms of desegregation in joint of altered schist. The factors following these instabilities are mostly related to the geological formation, the hydro-climatic conditions and the topography of the region. The city of AEH is located on the top of a steep slope at 50 km from the city of TiziOuzou (Algeria). AEH’s topographic monitoring of unstable slope allows analyzing the structure and the different deformation mechanism and the gradual change in the geometry, the direction of change of slip. It also allows us to delimit the area affected by the movement. This work aims to study the behavior of AEH landslide with topographic monitoring and to validate the results with numerical modeling of the slip site, when the hydraulic factors are identified as the most important factors for the reactivation of this landslide. With the help of the numerical code PLAXIS 2D and PlaxFlow, the precipitations and the steady state flow are modeled. To identify the mechanism of deformation and to predict the spread of the AEH landslide numerically, we used the equivalent deviatory strain, and these results were visualized by MATLAB software.

Keywords: equivalent deviatory strain, landslide, numerical modeling, topographic monitoring

Procedia PDF Downloads 295