Search results for: climate data validation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27528

Search results for: climate data validation

25338 Understanding Systemic Barriers (and Opportunities) to Increasing Uptake of Subcutaneous Medroxy Progesterone Acetate Self-Injection in Health Facilities in Nigeria

Authors: Oluwaseun Adeleke, Samuel O. Ikani, Fidelis Edet, Anthony Nwala, Mopelola Raji, Simeon Christian Chukwu

Abstract:

Background: The DISC project collaborated with partners to implement demand creation and service delivery interventions, including the MoT (Moment of Truth) innovation, in over 500 health facilities across 15 states. This has increased the voluntary conversion rate to self-injection among women who opt for injectable contraception. While some facilities recorded an increasing trend in key performance indicators, few others persistently performed sub-optimally due to provider and system-related barriers. Methodology: Twenty-two facilities performing sub-optimally were selected purposively from three Nigerian states. Low productivity was appraised using low reporting rates and poor SI conversion rates as indicators. Interviews were conducted with health providers across these health facilities using a rapid diagnosis tool. The project also conducted a data quality assessment that evaluated the veracity of data elements reported across the three major sources of family planning data in the facility. Findings: The inability and sometimes refusal of providers to support clients to self-inject effectively was associated with the misunderstanding of its value to their work experience. It was also observed that providers still held a strong influence over clients’ method choices. Furthermore, providers held biases and misconceptions about DMPA-SC that restricted the access of obese clients and new acceptors to services – a clear departure from the recommendations of the national guidelines. Additionally, quality of care standards was compromised because job aids were not used to inform service delivery. Facilities performing sub-optimally often under-reported DMPA-SC utilization data, and there were multiple uncoordinated responsibilities for recording and reporting. Additionally, data validation meetings were not regularly convened, and these meetings were ineffective in authenticating data received from health facilities. Other reasons for sub-optimal performance included poor documentation and tracking of stock inventory resulting in commodity stockouts, low client flow because of poor positioning of health facilities, and ineffective messaging. Some facilities lacked adequate human and material resources to provide services effectively and received very few supportive supervision visits. Supportive supervision visits and Data Quality Audits have been useful to address the aforementioned performance barriers. The project has deployed digital DMPA-SC self-injection checklists that have been aligned with nationally approved templates. During visits, each provider and community mobilizer is accorded special attention by the supervisor until he/she can perform procedures in line with best practice (protocol). Conclusion: This narrative provides a summary of a range of factors that identify health facilities performing sub-optimally in their provision of DMPA-SC services. Findings from this assessment will be useful during project design to inform effective strategies. As the project enters its final stages of implementation, it is transitioning high-impact activities to state institutions in the quest to sustain the quality of service beyond the tenure of the project. The project has flagged activities, as well as created protocols and tools aimed at placing state-level stakeholders at the forefront of improving productivity in health facilities.

Keywords: family planning, contraception, DMPA-SC, self-care, self-injection, barriers, opportunities, performance

Procedia PDF Downloads 80
25337 Public Health Infrastructure Resilience in the Face of Natural Disasters in Rwanda

Authors: Jessy Rugeyo, William Donner

Abstract:

This research delves into the resilience of Rwanda's public health infrastructure amidst natural disasters, a critical issue given that the Northern Province alone has witnessed no fewer than 1500 cases of disaster ranging from floods and landslides in the last five years, with more than 200 people killed and thousands of homes destroyed, according to MINEMA. In an era where climate change escalates the frequency and intensity of such disasters, fortifying the resilience of public health systems is paramount. This study offers a comprehensive analysis of the existing state of Rwanda's public health infrastructure and its ability to manage such crises. Employing a mix of literature review, case studies, and policy analysis, the study discerns key vulnerabilities and brings to light the intricacies of disaster management in Rwanda. Case studies centered around past natural disasters in Rwanda provide critical insights into the strengths and weaknesses of the existing disaster response mechanisms. A thorough critique of related disaster management and public health infrastructure policies reveals areas of commendable practice, along with gaps calling for policy enhancements. Findings guide the proposition of targeted strategies to bolster the resilience of Rwanda's public health infrastructure. This research serves as a significant contribution to the domains of disaster studies and public health, offering valuable insights for policymakers, public health and disaster management professionals in Rwanda and similar contexts. It presents actionable recommendations for improvement, underscoring the potential for enhancing Rwanda's disaster management capacity. By advocating for the strengthening of public health infrastructure resilience, the research highlights the potential for improved public health outcomes following natural disasters, thereby showcasing significant implications for public health and disaster management in the country, particularly in the face of a changing climate.

Keywords: public health infrastructure, disaster resilience, natural disaster, disaster management, emergency preparedness, health policy

Procedia PDF Downloads 92
25336 Pattern Recognition Using Feature Based Die-Map Clustering in the Semiconductor Manufacturing Process

Authors: Seung Hwan Park, Cheng-Sool Park, Jun Seok Kim, Youngji Yoo, Daewoong An, Jun-Geol Baek

Abstract:

Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.

Keywords: die-map clustering, feature extraction, pattern recognition, semiconductor manufacturing process

Procedia PDF Downloads 402
25335 Solid State Drive End to End Reliability Prediction, Characterization and Control

Authors: Mohd Azman Abdul Latif, Erwan Basiron

Abstract:

A flaw or drift from expected operational performance in one component (NAND, PMIC, controller, DRAM, etc.) may affect the reliability of the entire Solid State Drive (SSD) system. Therefore, it is important to ensure the required quality of each individual component through qualification testing specified using standards or user requirements. Qualification testing is time-consuming and comes at a substantial cost for product manufacturers. A highly technical team, from all the eminent stakeholders is embarking on reliability prediction from beginning of new product development, identify critical to reliability parameters, perform full-blown characterization to embed margin into product reliability and establish control to ensure the product reliability is sustainable in the mass production. The paper will discuss a comprehensive development framework, comprehending SSD end to end from design to assembly, in-line inspection, in-line testing and will be able to predict and to validate the product reliability at the early stage of new product development. During the design stage, the SSD will go through intense reliability margin investigation with focus on assembly process attributes, process equipment control, in-process metrology and also comprehending forward looking product roadmap. Once these pillars are completed, the next step is to perform process characterization and build up reliability prediction modeling. Next, for the design validation process, the reliability prediction specifically solder joint simulator will be established. The SSD will be stratified into Non-Operating and Operating tests with focus on solder joint reliability and connectivity/component latent failures by prevention through design intervention and containment through Temperature Cycle Test (TCT). Some of the SSDs will be subjected to the physical solder joint analysis called Dye and Pry (DP) and Cross Section analysis. The result will be feedbacked to the simulation team for any corrective actions required to further improve the design. Once the SSD is validated and is proven working, it will be subjected to implementation of the monitor phase whereby Design for Assembly (DFA) rules will be updated. At this stage, the design change, process and equipment parameters are in control. Predictable product reliability at early product development will enable on-time sample qualification delivery to customer and will optimize product development validation, effective development resource and will avoid forced late investment to bandage the end-of-life product failures. Understanding the critical to reliability parameters earlier will allow focus on increasing the product margin that will increase customer confidence to product reliability.

Keywords: e2e reliability prediction, SSD, TCT, solder joint reliability, NUDD, connectivity issues, qualifications, characterization and control

Procedia PDF Downloads 174
25334 Implementation and Validation of Therapeutic Tourism Products for Families With Children With Autism Spectrum Disorder in Azores Islands: “Azores All in Blue” Project

Authors: Ana Rita Conde, Pilar Mota, Tânia Botelho, Suzana Caldeira, Isabel Rego, Jessica Pacheco, Osvaldo Silva, Áurea Sousa

Abstract:

Tourism promotes well-being and health to children with ASD and their families. Literature indicates the need to provide tourist activities that integrate the therapeutic component, to promote the development and well-being of children with ASD. The study aims to implement tourist offers in Azores that integrate the therapeutic feature, assess their suitability and impact on the well-being and health of the child and caregivers. Using a mixed methodology, the study integrates families that experience and evaluate the impact of tourism products developed specifically for them.

Keywords: austism spectrum disorder, children, therapeutic tourism activities, well-being, health, inclusive tourism

Procedia PDF Downloads 144
25333 Evaluating Data Maturity in Riyadh's Nonprofit Sector: Insights Using the National Data Maturity Index (NDI)

Authors: Maryam Aloshan, Imam Mohammad Ibn Saud, Ahmad Khudair

Abstract:

This study assesses the data governance maturity of nonprofit organizations in Riyadh, Saudi Arabia, using the National Data Maturity Index (NDI) framework developed by the Saudi Data and Artificial Intelligence Authority (SDAIA). Employing a survey designed around the NDI model, data maturity levels were evaluated across 14 dimensions using a 5-point Likert scale. The results reveal a spectrum of maturity levels among the organizations surveyed: while some medium-sized associations reached the ‘Defined’ stage, others, including large associations, fell within the ‘Absence of Capabilities’ or ‘Building’ phases, with no organizations achieving the advanced ‘Established’ or ‘Pioneering’ levels. This variation suggests an emerging recognition of data governance but underscores the need for targeted interventions to bridge the maturity gap. The findings point to a significant opportunity to elevate data governance capabilities in Saudi nonprofits through customized capacity-building initiatives, including training, mentorship, and best practice sharing. This study contributes valuable insights into the digital transformation journey of the Saudi nonprofit sector, aligning with national goals for data-driven governance and organizational efficiency.

Keywords: nonprofit organizations-national data maturity index (NDI), Saudi Arabia- SDAIA, data governance, data maturity

Procedia PDF Downloads 16
25332 Investigating the Behavior of Water Shortage Indices for Performance Evaluation of a Water Resources System

Authors: Frederick N. F. Chou, Nguyen Thi Thuy Linh

Abstract:

The impact of water shortages has been increasingly severe as a consequence of population growth, urbanization, economic development, and climate change. The need for improvements in reliable water supply systems is urgent with the increasing living standards of regions. In this study, a suitable shortage index capable of multi-aspect description - frequency, magnitude, and duration - is adopted to more accurately describe the characteristics of a shortage situation. The values of the index were determined to cope with the increasing need for reliability. There are four reservoirs in series located on the Be River of the Dong Nai River Basin in Southern Vietnam. The primary purpose of the three upstream reservoirs is hydropower generation while the primary purpose of the fourth is water supply. A compromise between hydropower generation and water supply can be negotiated for these four reservoirs to reduce the severity of water shortages. A generalized water allocation model was applied to simulate the water supply, and hydropower generation of various management alternatives and the system’s reliability was evaluated using the adopted multiple shortage indices. Modifying management policies of water resources using data-based indexes can improve the reliability of water supply.

Keywords: cascade reservoirs, hydropower, shortage index, water supply

Procedia PDF Downloads 269
25331 Single-Cell Visualization with Minimum Volume Embedding

Authors: Zhenqiu Liu

Abstract:

Visualizing the heterogeneity within cell-populations for single-cell RNA-seq data is crucial for studying the functional diversity of a cell. However, because of the high level of noises, outlier, and dropouts, it is very challenging to measure the cell-to-cell similarity (distance), visualize and cluster the data in a low-dimension. Minimum volume embedding (MVE) projects the data into a lower-dimensional space and is a promising tool for data visualization. However, it is computationally inefficient to solve a semi-definite programming (SDP) when the sample size is large. Therefore, it is not applicable to single-cell RNA-seq data with thousands of samples. In this paper, we develop an efficient algorithm with an accelerated proximal gradient method and visualize the single-cell RNA-seq data efficiently. We demonstrate that the proposed approach separates known subpopulations more accurately in single-cell data sets than other existing dimension reduction methods.

Keywords: single-cell RNA-seq, minimum volume embedding, visualization, accelerated proximal gradient method

Procedia PDF Downloads 228
25330 Fault Diagnosis in Induction Motor

Authors: Kirti Gosavi, Anita Bhole

Abstract:

The paper demonstrates simulation and steady-state performance of three phase squirrel cage induction motor and detection of rotor broken bar fault using MATLAB. This simulation model is successfully used in the fault detection of rotor broken bar for the induction machines. A dynamic model using PWM inverter and mathematical modelling of the motor is developed. The dynamic simulation of the small power induction motor is one of the key steps in the validation of the design process of the motor drive system and it is needed for eliminating advertent design errors and the resulting error in the prototype construction and testing. The simulation model will be helpful in detecting the faults in three phase induction motor using Motor current signature analysis.

Keywords: squirrel cage induction motor, pulse width modulation (PWM), fault diagnosis, induction motor

Procedia PDF Downloads 633
25329 Time-Domain Nuclear Magnetic Resonance as a Potential Analytical Tool to Assess Thermisation in Ewe's Milk

Authors: Alessandra Pardu, Elena Curti, Marco Caredda, Alessio Dedola, Margherita Addis, Massimo Pes, Antonio Pirisi, Tonina Roggio, Sergio Uzzau, Roberto Anedda

Abstract:

Some of the artisanal cheeses products of European Countries certificated as PDO (Protected Designation of Origin) are made from raw milk. To recognise potential frauds (e.g. pasteurisation or thermisation of milk aimed at raw milk cheese production), the alkaline phosphatase (ALP) assay is currently applied only for pasteurisation, although it is known to have notable limitations for the validation of ALP enzymatic state in nonbovine milk. It is known that frauds considerably impact on customers and certificating institutions, sometimes resulting in a damage of the product image and potential economic losses for cheesemaking producers. Robust, validated, and univocal analytical methods are therefore needed to allow Food Control and Security Organisms, to recognise a potential fraud. In an attempt to develop a new reliable method to overcome this issue, Time-Domain Nuclear Magnetic Resonance (TD-NMR) spectroscopy has been applied in the described work. Daily fresh milk was analysed raw (680.00 µL in each 10-mm NMR glass tube) at least in triplicate. Thermally treated samples were also produced, by putting each NMR tube of fresh raw milk in water pre-heated at temperatures from 68°C up to 72°C and for up to 3 min, with continuous agitation, and quench-cooled to 25°C in a water and ice solution. Raw and thermally treated samples were analysed in terms of 1H T2 transverse relaxation times with a CPMG sequence (Recycle Delay: 6 s, interpulse spacing: 0.05 ms, 8000 data points) and quasi-continuous distributions of T2 relaxation times were obtained by CONTIN analysis. In line with previous data collected by high field NMR techniques, a decrease in the spin-spin relaxation constant T2 of the predominant 1H population was detected in heat-treated milk as compared to raw milk. The decrease of T2 parameter is consistent with changes in chemical exchange and diffusive phenomena, likely associated to changes in milk protein (i.e. whey proteins and casein) arrangement promoted by heat treatment. Furthermore, experimental data suggest that molecular alterations are strictly dependent on the specific heat treatment conditions (temperature/time). Such molecular variations in milk, which are likely transferred to cheese during cheesemaking, highlight the possibility to extend the TD-NMR technique directly on cheese to develop a method for assessing a fraud related to the use of a milk thermal treatment in PDO raw milk cheese. Results suggest that TDNMR assays might pave a new way to the detailed characterisation of heat treatments of milk.

Keywords: cheese fraud, milk, pasteurisation, TD-NMR

Procedia PDF Downloads 243
25328 Cloud Data Security Using Map/Reduce Implementation of Secret Sharing Schemes

Authors: Sara Ibn El Ahrache, Tajje-eddine Rachidi, Hassan Badir, Abderrahmane Sbihi

Abstract:

Recently, there has been increasing confidence for a favorable usage of big data drawn out from the huge amount of information deposited in a cloud computing system. Data kept on such systems can be retrieved through the network at the user’s convenience. However, the data that users send include private information, and therefore, information leakage from these data is now a major social problem. The usage of secret sharing schemes for cloud computing have lately been approved to be relevant in which users deal out their data to several servers. Notably, in a (k,n) threshold scheme, data security is assured if and only if all through the whole life of the secret the opponent cannot compromise more than k of the n servers. In fact, a number of secret sharing algorithms have been suggested to deal with these security issues. In this paper, we present a Mapreduce implementation of Shamir’s secret sharing scheme to increase its performance and to achieve optimal security for cloud data. Different tests were run and through it has been demonstrated the contributions of the proposed approach. These contributions are quite considerable in terms of both security and performance.

Keywords: cloud computing, data security, Mapreduce, Shamir's secret sharing

Procedia PDF Downloads 306
25327 Relationship of Indoor and Outdoor Levels of Black Carbon in an Urban Environment

Authors: Daria Pashneva, Julija Pauraite, Agne Minderyte, Vadimas Dudoitis, Lina Davuliene, Kristina Plauskaite, Inga Garbariene, Steigvile Bycenkiene

Abstract:

Black carbon (BC) has received particular attention around the world, not only for its impact on regional and global climate change but also for its impact on air quality and public health. In order to study the relationship between indoor and outdoor BC concentrations, studies were carried out in Vilnius, Lithuania. The studies are aimed at determining the relationship of concentrations, identifying dependencies during the day and week with a further opportunity to analyze the key factors affecting the indoor concentration of BC. In this context, indoor and outdoor continuous real-time measurements of optical BC-related light absorption by aerosol particles were carried out during the cold season (from October to December 2020). The measurement venue was an office located in an urban background environment. Equivalent black carbon (eBC) mass concentration was measured by an Aethalometer (Magee Scientific, model AE-31). The optical transmission of carbonaceous aerosol particles was measured sequentially at seven wavelengths (λ= 370, 470, 520, 590, 660, 880, and 950 nm), where the eBC mass concentration was derived from the light absorption coefficient (σab) at 880 nm wavelength. The diurnal indoor eBC mass concentration was found to vary in the range from 0.02 to 0.08 µgm⁻³, while the outdoor eBC mass concentration - from 0.34 to 0.99 µgm⁻³. Diurnal variations of eBC mass concentration outdoor vs. indoor showed an increased contribution during 10:00 and 12:00 AM (GMT+2), with the highest indoor eBC mass concentration of 0.14µgm⁻³. An indoor/outdoor eBC ratio (I/O) was below one throughout the entire measurement period. The weekend levels of eBC mass concentration were lower than in weekdays for indoor and outdoor for 33% and 28% respectively. Hourly mean mass concentrations of eBC for weekdays and weekends show diurnal cycles, which could be explained by the periodicity of traffic intensity and heating activities. The results show a moderate influence of outdoor eBC emissions on the indoor eBC level.

Keywords: black carbon, climate change, indoor air quality, I/O ratio

Procedia PDF Downloads 199
25326 Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria

Authors: Laidi Maamar, Achwak Madani, Abdellah El Ahdj Abdellah

Abstract:

The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models.

Keywords: support vector regression (SVR), optimization algorithms, global solar radiation prediction, hybrid forecasting models

Procedia PDF Downloads 35
25325 Building Information Modelling for Construction Delay Management

Authors: Essa Alenazi, Zulfikar Adamu

Abstract:

The Kingdom of Saudi Arabia (KSA) is not an exception in relying on the growth of its construction industry to support rapid population growth. However, its need for infrastructure development is constrained by low productivity levels and cost overruns caused by factors such as delays to project completion. Delays in delivering a construction project are a global issue and while theories such as Optimism Bias have been used to explain such delays, in KSA, client-related causes of delays are also significant. The objective of this paper is to develop a framework-based approach to explore how the country’s construction industry can manage and reduce delays in construction projects through building information modelling (BIM) in order to mitigate the cost consequences of such delays.  It comprehensively and systematically reviewed the global literature on the subject and identified gaps, critical delay factors and the specific benefits that BIM can deliver for the delay management.  A case study comprising of nine hospital projects that have experienced delay and cost overruns was also carried out. Five critical delay factors related to the clients were identified as candidates that can be mitigated through BIM’s benefits. These factors are: Ineffective planning and scheduling of the project; changes during construction by the client; delay in progress payment; slowness in decision making by the client; and poor communication between clients and other stakeholders. In addition, data from the case study projects strongly suggest that optimism bias is present in many of the hospital projects. Further validation via key stakeholder interviews and documentations are planned.

Keywords: building information modelling (BIM), clients perspective, delay management, optimism bias, public sector projects

Procedia PDF Downloads 324
25324 Navigating Neural Pathways to Success with Students on the Autism Spectrum

Authors: Panda Krouse

Abstract:

This work is a marriage of the science of Applied Behavioral Analysis and an educator’s look at Neuroscience. The focus is integrating what we know about the anatomy of the brain in autism and evidence-based practices in education. It is a bold attempt to present links between neurological research and the application of evidence-based practices in education. In researching for this work, no discovery of articles making these connections was made. Consideration of the areas of structural differences in the brain are aligned with evidence-based strategies. A brief literary review identifies how identified areas affect overt behavior, which is what, as educators, is what we can see and measure. Giving further justification and validation of our practices in education from a second scientific field is significant for continued improvement in intervention for students on the autism spectrum.

Keywords: autism, evidence based practices, neurological differences, education intervention

Procedia PDF Downloads 67
25323 A Modular Framework for Enabling Analysis for Educators with Different Levels of Data Mining Skills

Authors: Kyle De Freitas, Margaret Bernard

Abstract:

Enabling data mining analysis among a wider audience of educators is an active area of research within the educational data mining (EDM) community. The paper proposes a framework for developing an environment that caters for educators who have little technical data mining skills as well as for more advanced users with some data mining expertise. This framework architecture was developed through the review of the strengths and weaknesses of existing models in the literature. The proposed framework provides a modular architecture for future researchers to focus on the development of specific areas within the EDM process. Finally, the paper also highlights a strategy of enabling analysis through either the use of predefined questions or a guided data mining process and highlights how the developed questions and analysis conducted can be reused and extended over time.

Keywords: educational data mining, learning management system, learning analytics, EDM framework

Procedia PDF Downloads 326
25322 Author Name Disambiguation for Biomedical Literature

Authors: Parthiban Srinivasan

Abstract:

PubMed provides online access to the National Library of Medicine database (MEDLINE) and other publications, which contain close to 25 million scientific citations from 1865 to the present. There are close to 80 million author name instances in those close to 25 million citations. For any work of literature, a fundamental issue is to identify the individual(s) who wrote it, and conversely, to identify all of the works that belong to a given individual. Due to the lack of universal standards for name information, there are two aspects of name ambiguity: name synonymy (a single author with multiple name representations), and name homonymy (multiple authors sharing the same name representation). In this talk, we present some results from our extensive work in author name disambiguation for PubMed citations. Information will be presented on the effectiveness and shortcomings of different aspects of successful name disambiguation such as parsing, validation, standardization and normalization.

Keywords: disambiguation, normalization, parsing, PubMed

Procedia PDF Downloads 300
25321 Using Audit Tools to Maintain Data Quality for ACC/NCDR PCI Registry Abstraction

Authors: Vikrum Malhotra, Manpreet Kaur, Ayesha Ghotto

Abstract:

Background: Cardiac registries such as ACC Percutaneous Coronary Intervention Registry require high quality data to be abstracted, including data elements such as nuclear cardiology, diagnostic coronary angiography, and PCI. Introduction: The audit tool created is used by data abstractors to provide data audits and assess the accuracy and inter-rater reliability of abstraction performed by the abstractors for a health system. This audit tool solution has been developed across 13 registries, including ACC/NCDR registries, PCI, STS, Get with the Guidelines. Methodology: The data audit tool was used to audit internal registry abstraction for all data elements, including stress test performed, type of stress test, data of stress test, results of stress test, risk/extent of ischemia, diagnostic catheterization detail, and PCI data elements for ACC/NCDR PCI registries. This is being used across 20 hospital systems internally and providing abstraction and audit services for them. Results: The data audit tool had inter-rater reliability and accuracy greater than 95% data accuracy and IRR score for the PCI registry in 50 PCI registry cases in 2021. Conclusion: The tool is being used internally for surgical societies and across hospital systems. The audit tool enables the abstractor to be assessed by an external abstractor and includes all of the data dictionary fields for each registry.

Keywords: abstraction, cardiac registry, cardiovascular registry, registry, data

Procedia PDF Downloads 105
25320 Design Flood Estimation in Satluj Basin-Challenges for Sunni Dam Hydro Electric Project, Himachal Pradesh-India

Authors: Navneet Kalia, Lalit Mohan Verma, Vinay Guleria

Abstract:

Introduction: Design Flood studies are essential for effective planning and functioning of water resource projects. Design flood estimation for Sunni Dam Hydro Electric Project located in State of Himachal Pradesh, India, on the river Satluj, was a big challenge in view of the river flowing in the Himalayan region from Tibet to India, having a large catchment area of varying topography, climate, and vegetation. No Discharge data was available for the part of the river in Tibet, whereas, for India, it was available only at Khab, Rampur, and Luhri. The estimation of Design Flood using standard methods was not possible. This challenge was met using two different approaches for upper (snow-fed) and lower (rainfed) catchment using Flood Frequency Approach and Hydro-metrological approach. i) For catchment up to Khab Gauging site (Sub-Catchment, C1), Flood Frequency approach was used. Around 90% of the catchment area (46300 sqkm) up to Khab is snow-fed which lies above 4200m. In view of the predominant area being snow-fed area, 1 in 10000 years return period flood estimated using Flood Frequency analysis at Khab was considered as Probable Maximum Flood (PMF). The flood peaks were taken from daily observed discharges at Khab, which were increased by 10% to make them instantaneous. Design Flood of 4184 cumec thus obtained was considered as PMF at Khab. ii) For catchment between Khab and Sunni Dam (Sub-Catchment, C2), Hydro-metrological approach was used. This method is based upon the catchment response to the rainfall pattern observed (Probable Maximum Precipitation - PMP) in a particular catchment area. The design flood computation mainly involves the estimation of a design storm hyetograph and derivation of the catchment response function. A unit hydrograph is assumed to represent the response of the entire catchment area to a unit rainfall. The main advantage of the hydro-metrological approach is that it gives a complete flood hydrograph which allows us to make a realistic determination of its moderation effect while passing through a reservoir or a river reach. These studies were carried out to derive PMF for the catchment area between Khab and Sunni Dam site using a 1-day and 2-day PMP values of 232 and 416 cm respectively. The PMF so obtained was 12920.60 cumec. Final Result: As the Catchment area up to Sunni Dam has been divided into 2 sub-catchments, the Flood Hydrograph for the Catchment C1 has been routed through the connecting channel reach (River Satluj) using Muskingum method and accordingly, the Design Flood was computed after adding the routed flood ordinates with flood ordinates of catchment C2. The total Design Flood (i.e. 2-Day PMF) with a peak of 15473 cumec was obtained. Conclusion: Even though, several factors are relevant while deciding the method to be used for design flood estimation, data availability and the purpose of study are the most important factors. Since, generally, we cannot wait for the hydrological data of adequate quality and quantity to be available, flood estimation has to be done using whatever data is available. Depending upon the type of data available for a particular catchment, the method to be used is to be selected.

Keywords: design flood, design storm, flood frequency, PMF, PMP, unit hydrograph

Procedia PDF Downloads 327
25319 Analysis on the Building Energy Performance of a Retrofitted Residential Building with RETScreen Expert Software

Authors: Abdulhameed Babatunde Owolabi, Benyoh Emmanuel Kigha Nsafon, Jeung-Soo Huh

Abstract:

Energy efficiency measures for residential buildings in South Korea is a national issue because most of the apartments built in the last decades were constructed without proper energy efficiency measures making the energy performance of old buildings to be very poor when compared with new buildings. However, the adoption of advanced building technologies and regulatory building codes are effective energy efficiency strategies for new construction. There is a need to retrofits the existing building using energy conservation measures (ECMs) equipment’s in order to conserve energy and reduce GHGs emissions. To achieve this, the Institute for Global Climate Change and Energy (IGCCE), Kyungpook National University (KNU), Daegu, South Korea employed RETScreen Expert software to carry out measurement and verification (M&V) analysis on an existing building in Korea by using six years gas consumption data collected from Daesung Energy Co., Ltd in order to determine the building energy performance after the introduction of ECM. Through the M&V, energy efficiency is attained, and the resident doubt was reduced. From the analysis, a total of 657 Giga Joules (GJ) of liquefied natural gas (LNG) was consumed at the rate of 0.34 GJ/day having a peak in the year 2015, which cost the occupant the sum of $10,821.

Keywords: energy efficiency, measurement and verification, performance analysis, RETScreen experts

Procedia PDF Downloads 139
25318 Artificial Intelligence Based Comparative Analysis for Supplier Selection in Multi-Echelon Automotive Supply Chains via GEP and ANN Models

Authors: Seyed Esmail Seyedi Bariran, Laysheng Ewe, Amy Ling

Abstract:

Since supplier selection appears as a vital decision, selecting supplier based on the best and most accurate ways has a lot of importance for enterprises. In this study, a new Artificial Intelligence approach is exerted to remove weaknesses of supplier selection. The paper has three parts. First part is choosing the appropriate criteria for assessing the suppliers’ performance. Next one is collecting the data set based on experts. Afterwards, the data set is divided into two parts, the training data set and the testing data set. By the training data set the best structure of GEP and ANN are selected and to evaluate the power of the mentioned methods the testing data set is used. The result obtained shows that the accuracy of GEP is more than ANN. Moreover, unlike ANN, a mathematical equation is presented by GEP for the supplier selection.

Keywords: supplier selection, automotive supply chains, ANN, GEP

Procedia PDF Downloads 631
25317 The Effects of Future Priming on Resource Concern

Authors: Calvin Rong, Regina Agassian, Mindy Engle-Friedman

Abstract:

Climate changes, including rising sea levels and increases in global temperature, can have major effects on resource availability, leading to increased competition for resources and rising food prices. The abstract nature and often delayed consequences of many ecological problems cause people focus on immediate, specific, and personal events and circumstances that compel immediate and emotional involvement. This finding may be explained by the challenges humans have in imagining themselves in the future, a shortcoming that interferes with decision-making involving far-off rewards, and leads people to indicate a lower concern toward the future than to present circumstances. The present study sought to assess whether priming people to think of themselves in the future might strengthen the connection to their future selves and stimulate environmentally-protective behavior. We hypothesize that priming participants to think about themselves in the future would increase concern for the future environment. 45 control participants were primed to think about themselves in the present, and 42 participants were primed to think about themselves in the futures. After priming, the participants rated their concern over access to clean water, food, and energy on a scale of 1 to 10. They also rated their predicted care levels for the environment at age points 40, 50, 60, 70, 80, and 90 on a scale of 1(not at all) to 10 (very much). Predicted care levels at age 90 for the experimental group was significantly higher than for the control group. Overall the experimental group rated their concern for resources higher than the control. In comparison to the control group (M=7.60, SD=2.104) participants in the experimental group had greater concern for clean water (M=8.56, SD=1.534). In comparison to the control group (M=7.49, SD=2.041) participants in the experimental group were more concerned about food resources (M=8.41, SD=1.830). In comparison to the control group (M=7.22, SD=1.999) participants in the experimental group were more concerned about energy resources (M=8.07, SD=1.967). This study assessed whether a priming strategy could be used to encourage pro-environmental practices that protect limited resources. Future-self priming helped participants see past short term issues and focus on concern for the future environment.

Keywords: climate change, future, priming, global warming

Procedia PDF Downloads 257
25316 Reuse of Wastewater from the Treated Water Pre-treatment Plant for Agricultural Purposes

Authors: Aicha Assal, El Mostapha Lotfi

Abstract:

According to data from the Directorate General of Meteorology (DGM), the average amount of precipitation recorded nationwide between September 1, 2021, and January 31, 2022, is 38.8 millimeters. This is well below the climatological normal of 106.8 millimeters for the same period between 1981 and 2010. This situation is becoming increasingly worrying, particularly for farmers who are finding it difficult to irrigate their land and feed their livestock. Drought is greatly influenced by the effects of climate change, mainly caused by pollution and greenhouse gases (GHGs). The aim of this work is to contribute to the purification of wastewater (considered as polluting) in order to reuse it for irrigation in agricultural areas or for livestock watering. This will be achieved once physico-chemical treatment tests on these waters have been carried out and validated. The main parameters analyzed in this study, after carrying out discoloration tests on domestic wastewater, include COD (chemical oxygen demand), BOD5 (biochemical oxygen demand), pH, conductivity, dissolved oxygen, suspended solids (SS), phosphate, nitrate, nitrite and ammonium ions, faecal and total coliforms, as well as monitoring heavy metal concentrations. This work is also aimed at reclaiming the sludge produced by the decantation process, which will enable the waste to be transformed and reused as compost in agriculture and gardening.

Keywords: wastewater, irrigation, COD, COB, SS

Procedia PDF Downloads 68
25315 Economic Valuation of Emissions from Mobile Sources in the Urban Environment of Bogotá

Authors: Dayron Camilo Bermudez Mendoza

Abstract:

Road transportation is a significant source of externalities, notably in terms of environmental degradation and the emission of pollutants. These emissions adversely affect public health, attributable to criteria pollutants like particulate matter (PM2.5 and PM10) and carbon monoxide (CO), and also contribute to climate change through the release of greenhouse gases, such as carbon dioxide (CO2). It is, therefore, crucial to quantify the emissions from mobile sources and develop a methodological framework for their economic valuation, aiding in the assessment of associated costs and informing policy decisions. The forthcoming congress will shed light on the externalities of transportation in Bogotá, showcasing methodologies and findings from the construction of emission inventories and their spatial analysis within the city. This research focuses on the economic valuation of emissions from mobile sources in Bogotá, employing methods like hedonic pricing and contingent valuation. Conducted within the urban confines of Bogotá, the study leverages demographic, transportation, and emission data sourced from the Mobility Survey, official emission inventories, and tailored estimates and measurements. The use of hedonic pricing and contingent valuation methodologies facilitates the estimation of the influence of transportation emissions on real estate values and gauges the willingness of Bogotá's residents to invest in reducing these emissions. The findings are anticipated to be instrumental in the formulation and execution of public policies aimed at emission reduction and air quality enhancement. In compiling the emission inventory, innovative data sources were identified to determine activity factors, including information from automotive diagnostic centers and used vehicle sales websites. The COPERT model was utilized to ascertain emission factors, requiring diverse inputs such as data from the national transit registry (RUNT), OpenStreetMap road network details, climatological data from the IDEAM portal, and Google API for speed analysis. Spatial disaggregation employed GIS tools and publicly available official spatial data. The development of the valuation methodology involved an exhaustive systematic review, utilizing platforms like the EVRI (Environmental Valuation Reference Inventory) portal and other relevant sources. The contingent valuation method was implemented via surveys in various public settings across the city, using a referendum-style approach for a sample of 400 residents. For the hedonic price valuation, an extensive database was developed, integrating data from several official sources and basing analyses on the per-square meter property values in each city block. The upcoming conference anticipates the presentation and publication of these results, embodying a multidisciplinary knowledge integration and culminating in a master's thesis.

Keywords: economic valuation, transport economics, pollutant emissions, urban transportation, sustainable mobility

Procedia PDF Downloads 58
25314 Increasing the Apparent Time Resolution of Tc-99m Diethylenetriamine Pentaacetic Acid Galactosyl Human Serum Albumin Dynamic SPECT by Use of an 180-Degree Interpolation Method

Authors: Yasuyuki Takahashi, Maya Yamashita, Kyoko Saito

Abstract:

In general, dynamic SPECT data acquisition needs a few minutes for one rotation. Thus, the time-activity curve (TAC) derived from the dynamic SPECT is relatively coarse. In order to effectively shorten the interval, between data points, we adopted a 180-degree interpolation method. This method is already used for reconstruction of the X-ray CT data. In this study, we applied this 180-degree interpolation method to SPECT and investigated its effectiveness.To briefly describe the 180-degree interpolation method: the 180-degree data in the second half of one rotation are combined with the 180-degree data in the first half of the next rotation to generate a 360-degree data set appropriate for the time halfway between the first and second rotations. In both a phantom and a patient study, the data points from the interpolated images fell in good agreement with the data points tracking the accumulation of 99mTc activity over time for appropriate region of interest. We conclude that data derived from interpolated images improves the apparent time resolution of dynamic SPECT.

Keywords: dynamic SPECT, time resolution, 180-degree interpolation method, 99mTc-GSA.

Procedia PDF Downloads 493
25313 Downscaling Grace Gravity Models Using Spectral Combination Techniques for Terrestrial Water Storage and Groundwater Storage Estimation

Authors: Farzam Fatolazadeh, Kalifa Goita, Mehdi Eshagh, Shusen Wang

Abstract:

The Gravity Recovery and Climate Experiment (GRACE) is a satellite mission with twin satellites for the precise determination of spatial and temporal variations in the Earth’s gravity field. The products of this mission are monthly global gravity models containing the spherical harmonic coefficients and their errors. These GRACE models can be used for estimating terrestrial water storage (TWS) variations across the globe at large scales, thereby offering an opportunity for surface and groundwater storage (GWS) assessments. Yet, the ability of GRACE to monitor changes at smaller scales is too limited for local water management authorities. This is largely due to the low spatial and temporal resolutions of its models (~200,000 km2 and one month, respectively). High-resolution GRACE data products would substantially enrich the information that is needed by local-scale decision-makers while offering the data for the regions that lack adequate in situ monitoring networks, including northern parts of Canada. Such products could eventually be obtained through downscaling. In this study, we extended the spectral combination theory to simultaneously downscale spatiotemporally the 3o spatial coarse resolution of GRACE to 0.25o degrees resolution and monthly coarse resolution to daily resolution. This method combines the monthly gravity field solution of GRACE and daily hydrological model products in the form of both low and high-frequency signals to produce high spatiotemporal resolution TWSA and GWSA products. The main contribution and originality of this study are to comprehensively and simultaneously consider GRACE and hydrological variables and their uncertainties to form the estimator in the spectral domain. Therefore, it is predicted that we reach downscale products with an acceptable accuracy.

Keywords: GRACE satellite, groundwater storage, spectral combination, terrestrial water storage

Procedia PDF Downloads 83
25312 Rainfall and Temperature Characteristics of the Middle and Lower Awash Areas of Ethiopia

Authors: Melese Tadesse Morebo

Abstract:

Pastoral and agro-pastoral communities in East Africa, particularly in Ethiopia, are vulnerable to climate-related risks. The aim of this study is to characterize the annual, seasonal, and monthly rainfall and temperature of the middle and lower awash areas of Ethiopia. Start of season (SOS), end of season (EOS), length of growing season (LGS), number of rainy days, and probability of dry spell occurrences were analyzed using INSTAT Plus (v3.7) software. Daily rainfall and temperature data for 33 years (1990–2022) from six stations were analyzed. The result of the study revealed that the annual rainfall in the study area as a whole showed an increasing trend, but its trend was statistically non-significant. During the study period, the Kiremt rainfall at Amibara station showed statistically significant increasing trends. The trend analysis of SOS, EOS, and LGS shows up and down trends at all stations. The mean lengths of growing seasons in the study area ranged from 20 to 61 days during the study period. In the study area, the annual mean maximum temperature ranged between 34.1°C and 38.3°C over the last three decades. All stations within the research area during the study period, the annual minimum temperature exhibited a substantial impact.

Keywords: annual rainfall, LGS, minimum temperature, Mann-Kendall test

Procedia PDF Downloads 25
25311 Predictive Analytics for Theory Building

Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim

Abstract:

Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.

Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building

Procedia PDF Downloads 276
25310 Development and Evaluation of a Cognitive Behavioural Therapy Based Smartphone App for Low Moods and Anxiety

Authors: David Bakker, Nikki Rickard

Abstract:

Smartphone apps hold immense potential as mental health and wellbeing tools. Support can be made easily accessible and can be used in real-time while users are experiencing distress. Furthermore, data can be collected to enable machine learning and automated tailoring of support to users. While many apps have been developed for mental health purposes, few have adhered to evidence-based recommendations and even fewer have pursued experimental validation. This paper details the development and experimental evaluation of an app, MoodMission, that aims to provide support for low moods and anxiety, help prevent clinical depression and anxiety disorders, and serve as an adjunct to professional clinical supports. MoodMission was designed to deliver cognitive behavioural therapy for specifically reported problems in real-time, momentary interactions. Users report their low moods or anxious feelings to the app along with a subjective units of distress scale (SUDS) rating. MoodMission then provides a choice of 5-10 short, evidence-based mental health strategies called Missions. Users choose a Mission, complete it, and report their distress again. Automated tailoring, gamification, and in-built data collection for analysis of effectiveness was also included in the app’s design. The development process involved construction of an evidence-based behavioural plan, designing of the app, building and testing procedures, feedback-informed changes, and a public launch. A randomized controlled trial (RCT) was conducted comparing MoodMission to two other apps and a waitlist control condition. Participants completed measures of anxiety, depression, well-being, emotional self-awareness, coping self-efficacy and mental health literacy at the start of their app use and 30 days later. At the time of submission (November 2016) over 300 participants have participated in the RCT. Data analysis will begin in January 2017. At the time of this submission, MoodMission has over 4000 users. A repeated-measures ANOVA of 1390 completed Missions reveals that SUDS (0-10) ratings were significantly reduced between pre-Mission ratings (M=6.20, SD=2.39) and post-Mission ratings (M=4.93, SD=2.25), F(1,1389)=585.86, p < .001, np2=.30. This effect was consistent across both low moods and anxiety. Preliminary analyses of the data from the outcome measures surveys reveal improvements across mental health and wellbeing measures as a result of using the app over 30 days. This includes a significant increase in coping self-efficacy, F(1,22)=5.91, p=.024, np2=.21. Complete results from the RCT in which MoodMission was evaluated will be presented. Results will also be presented from the continuous outcome data being recorded by MoodMission. MoodMission was successfully developed and launched, and preliminary analysis suggest that it is an effective mental health and wellbeing tool. In addition to the clinical applications of MoodMission, the app holds promise as a research tool to conduct component analysis of psychological therapies and overcome restraints of laboratory based studies. The support provided by the app is discrete, tailored, evidence-based, and transcends barriers of stigma, geographic isolation, financial limitations, and low health literacy.

Keywords: anxiety, app, CBT, cognitive behavioural therapy, depression, eHealth, mission, mobile, mood, MoodMission

Procedia PDF Downloads 271
25309 Structural Equation Modelling Based Approach to Integrate Customers and Suppliers with Internal Practices for Lean Manufacturing Implementation in the Indian Context

Authors: Protik Basu, Indranil Ghosh, Pranab K. Dan

Abstract:

Lean management is an integrated socio-technical system to bring about a competitive state in an organization. The purpose of this paper is to explore and integrate the role of customers and suppliers with the internal practices of the Indian manufacturing industries towards successful implementation of lean manufacturing (LM). An extensive literature survey is carried out. An attempt is made to build an exhaustive list of all the input manifests related to customers, suppliers and internal practices necessary for LM implementation, coupled with a similar exhaustive list of the benefits accrued from its successful implementation. A structural model is thus conceptualized, which is empirically validated based on the data from the Indian manufacturing sector. With the current impetus on developing the industrial sector, the Government of India recently introduced the Lean Manufacturing Competitiveness Scheme that aims to increase competitiveness with the help of lean concepts. There is a huge scope to enrich the Indian industries with the lean benefits, the implementation status being quite low. Hardly any survey-based empirical study in India has been found to integrate customers and suppliers with the internal processes towards successful LM implementation. This empirical research is thus carried out in the Indian manufacturing industries. The basic steps of the research methodology followed in this research are the identification of input and output manifest variables and latent constructs, model proposition and hypotheses development, development of survey instrument, sampling and data collection and model validation (exploratory factor analysis, confirmatory factor analysis, and structural equation modeling). The analysis reveals six key input constructs and three output constructs, indicating that these constructs should act in unison to maximize the benefits of implementing lean. The structural model presented in this paper may be treated as a guide to integrating customers and suppliers with internal practices to successfully implement lean. Integrating customers and suppliers with internal practices into a unified, coherent manufacturing system will lead to an optimum utilization of resources. This work is one of the very first researches to have a survey-based empirical analysis of the role of customers, suppliers and internal practices of the Indian manufacturing sector towards an effective lean implementation.

Keywords: customer management, internal manufacturing practices, lean benefits, lean implementation, lean manufacturing, structural model, supplier management

Procedia PDF Downloads 179