Search results for: spatial learning
7310 The Design Method of Artificial Intelligence Learning Picture: A Case Study of DCAI's New Teaching
Authors: Weichen Chang
Abstract:
To create a guided teaching method for AI generative drawing design, this paper develops a set of teaching models for AI generative drawing (DCAI), which combines learning modes such as problem-solving, thematic inquiry, phenomenon-based, task-oriented, and DFC . Through the information security AI picture book learning guided programs and content, the application of participatory action research (PAR) and interview methods to explore the dual knowledge of Context and ChatGPT (DCAI) for AI to guide the development of students' AI learning skills. In the interviews, the students highlighted five main learning outcomes (self-study, critical thinking, knowledge generation, cognitive development, and presentation of work) as well as the challenges of implementing the model. Through the use of DCAI, students will enhance their consensus awareness of generative mapping analysis and group cooperation, and they will have knowledge that can enhance AI capabilities in DCAI inquiry and future life. From this paper, it is found that the conclusions are (1) The good use of DCAI can assist students in exploring the value of their knowledge through the power of stories and finding the meaning of knowledge communication; (2) Analyze the transformation power of the integrity and coherence of the story through the context so as to achieve the tension of ‘starting and ending’; (3) Use ChatGPT to extract inspiration, arrange story compositions, and make prompts that can communicate with people and convey emotions. Therefore, new knowledge construction methods will be one of the effective methods for AI learning in the face of artificial intelligence, providing new thinking and new expressions for interdisciplinary design and design education practice.Keywords: artificial intelligence, task-oriented, contextualization, design education
Procedia PDF Downloads 307309 A Theoretical Framework on Using Social Stories with the Creative Arts for Individuals on the Autistic Spectrum
Authors: R. Bawazir, P. Jones
Abstract:
Social Stories are widely used to teach social and communication skills or concepts to individuals on the autistic spectrum. This paper presents a theoretical framework for using Social Stories in conjunction with the creative arts. The paper argues that Bandura’s social learning theory can be used to explain the mechanisms behind Social Stories and the way they influence changes in response, while Gardner’s multiple intelligences theory can be used simultaneously to demonstrate the role of the creative arts in learning. By using Social Stories with the creative arts for individuals on the autistic spectrum, the aim is to meet individual needs and help individuals with autism to develop in different areas of learning and communication.Keywords: individuals on the autistic spectrum, social stories, the creative arts, theoretical framework
Procedia PDF Downloads 3217308 Perception of Nursing Students’ Engagement With Emergency Remote Learning During COVID 19 Pandemic
Authors: Jansirani Natarajan, Mickael Antoinne Joseph
Abstract:
The COVID-19 pandemic has interrupted face-to-face education and forced universities into an emergency remote teaching curriculum over a short duration. This abrupt transition in the Spring 2020 semester left both faculty and students without proper preparation for continuing higher education in an online environment. Online learning took place in different formats, including fully synchronous, fully asynchronous, and blended in our university through the e-learning platform MOODLE. Studies have shown that students’ engagement, is a critical factor for optimal online teaching. Very few studies have assessed online engagement with ERT during the COVID-19 pandemic. Purpose: Therefore, this study, sought to understand how the sudden transition to emergency remote teaching impacted nursing students’ engagement with online courses in a Middle Eastern public university. Method: A cross-sectional descriptive research design was adopted in this study. Data were collected through a self-reported online survey using Dixon’s online students’ engagement questionnaire from a sample of 177 nursing students after the ERT learning semester. Results The maximum possible engagement score was 95, and the maximum scores in the domains of skills engagement, emotional engagement, participation engagement, and performance engagement were 30, 25, 30, and 10 respectively. Dixson (2010) noted that a mean item score of ≥3.5 (total score of ≥66.5) represents a highly engaged student. The majority of the participants were females (71.8%) and 84.2% were regular BSN students. Most of them (32.2%) were second-year students and 52% had a CGPA between 2 and 3. Most participants (56.5%) had low engagement scores with ERT learning during the COVID lockdown. Among the four engagement domains, 78% had low engagement scores for the participation domain. There was no significant association found between the engagement and the demographic characteristics of the participants. Conclusion The findings supported the importance of engaging students in all four categories skill, emotional, performance, and participation. Based on the results, training sessions were organized for faculty on various strategies for engaging nursing students in all domains by using the facilities available in the MOODLE (online e-learning platform). It added value as a dashboard of information regarding ERT for the administrators and nurse educators to introduce numerous active learning strategies to improve the quality of teaching and learning of nursing students in the University.Keywords: engagement, perception, emergency remote learning, COVID-19
Procedia PDF Downloads 637307 The Latency-Amplitude Binomial of Waves Resulting from the Application of Evoked Potentials for the Diagnosis of Dyscalculia
Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba
Abstract:
Recent advances in cognitive neuroscience have allowed a step forward in perceiving the processes involved in learning from the point of view of the acquisition of new information or the modification of existing mental content. The evoked potentials technique reveals how basic brain processes interact to achieve adequate and flexible behaviours. The objective of this work, using evoked potentials, is to study if it is possible to distinguish if a patient suffers a specific type of learning disorder to decide the possible therapies to follow. The methodology used, is the analysis of the dynamics of different areas of the brain during a cognitive activity to find the relationships between the different areas analyzed in order to better understand the functioning of neural networks. Also, the latest advances in neuroscience have revealed the existence of different brain activity in the learning process that can be highlighted through the use of non-invasive, innocuous, low-cost and easy-access techniques such as, among others, the evoked potentials that can help to detect early possible neuro-developmental difficulties for their subsequent assessment and cure. From the study of the amplitudes and latencies of the evoked potentials, it is possible to detect brain alterations in the learning process specifically in dyscalculia, to achieve specific corrective measures for the application of personalized psycho pedagogical plans that allow obtaining an optimal integral development of the affected people.Keywords: dyscalculia, neurodevelopment, evoked potentials, Learning disabilities, neural networks
Procedia PDF Downloads 1407306 A Geographic Information System Mapping Method for Creating Improved Satellite Solar Radiation Dataset Over Qatar
Authors: Sachin Jain, Daniel Perez-Astudillo, Dunia A. Bachour, Antonio P. Sanfilippo
Abstract:
The future of solar energy in Qatar is evolving steadily. Hence, high-quality spatial solar radiation data is of the uttermost requirement for any planning and commissioning of solar technology. Generally, two types of solar radiation data are available: satellite data and ground observations. Satellite solar radiation data is developed by the physical and statistical model. Ground data is collected by solar radiation measurement stations. The ground data is of high quality. However, they are limited to distributed point locations with the high cost of installation and maintenance for the ground stations. On the other hand, satellite solar radiation data is continuous and available throughout geographical locations, but they are relatively less accurate than ground data. To utilize the advantage of both data, a product has been developed here which provides spatial continuity and higher accuracy than any of the data alone. The popular satellite databases: National Solar radiation Data Base, NSRDB (PSM V3 model, spatial resolution: 4 km) is chosen here for merging with ground-measured solar radiation measurement in Qatar. The spatial distribution of ground solar radiation measurement stations is comprehensive in Qatar, with a network of 13 ground stations. The monthly average of the daily total Global Horizontal Irradiation (GHI) component from ground and satellite data is used for error analysis. The normalized root means square error (NRMSE) values of 3.31%, 6.53%, and 6.63% for October, November, and December 2019 were observed respectively when comparing in-situ and NSRDB data. The method is based on the Empirical Bayesian Kriging Regression Prediction model available in ArcGIS, ESRI. The workflow of the algorithm is based on the combination of regression and kriging methods. A regression model (OLS, ordinary least square) is fitted between the ground and NSBRD data points. A semi-variogram is fitted into the experimental semi-variogram obtained from the residuals. The kriging residuals obtained after fitting the semi-variogram model were added to NSRBD data predicted values obtained from the regression model to obtain the final predicted values. The NRMSE values obtained after merging are respectively 1.84%, 1.28%, and 1.81% for October, November, and December 2019. One more explanatory variable, that is the ground elevation, has been incorporated in the regression and kriging methods to reduce the error and to provide higher spatial resolution (30 m). The final GHI maps have been created after merging, and NRMSE values of 1.24%, 1.28%, and 1.28% have been observed for October, November, and December 2019, respectively. The proposed merging method has proven as a highly accurate method. An additional method is also proposed here to generate calibrated maps by using regression and kriging model and further to use the calibrated model to generate solar radiation maps from the explanatory variable only when not enough historical ground data is available for long-term analysis. The NRMSE values obtained after the comparison of the calibrated maps with ground data are 5.60% and 5.31% for November and December 2019 month respectively.Keywords: global horizontal irradiation, GIS, empirical bayesian kriging regression prediction, NSRDB
Procedia PDF Downloads 897305 Geospatial Analysis of Hydrological Response to Forest Fires in Small Mediterranean Catchments
Authors: Bojana Horvat, Barbara Karleusa, Goran Volf, Nevenka Ozanic, Ivica Kisic
Abstract:
Forest fire is a major threat in many regions in Croatia, especially in coastal areas. Although they are often caused by natural processes, the most common cause is the human factor, intentional or unintentional. Forest fires drastically transform landscapes and influence natural processes. The main goal of the presented research is to analyse and quantify the impact of the forest fire on hydrological processes and propose the model that best describes changes in hydrological patterns in the analysed catchments. Keeping in mind the spatial component of the processes, geospatial analysis is performed to gain better insight into the spatial variability of the hydrological response to disastrous events. In that respect, two catchments that experienced severe forest fire were delineated, and various hydrological and meteorological data were collected both attribute and spatial. The major drawback is certainly the lack of hydrological data, common in small torrential karstic streams; hence modelling results should be validated with the data collected in the catchment that has similar characteristics and established hydrological monitoring. The event chosen for the modelling is the forest fire that occurred in July 2019 and burned nearly 10% of the analysed area. Surface (land use/land cover) conditions before and after the event were derived from the two Sentinel-2 images. The mapping of the burnt area is based on a comparison of the Normalized Burn Index (NBR) computed from both images. To estimate and compare hydrological behaviour before and after the event, curve number (CN) values are assigned to the land use/land cover classes derived from the satellite images. Hydrological modelling resulted in surface runoff generation and hence prediction of hydrological responses in the catchments to a forest fire event. The research was supported by the Croatian Science Foundation through the project 'Influence of Open Fires on Water and Soil Quality' (IP-2018-01-1645).Keywords: Croatia, forest fire, geospatial analysis, hydrological response
Procedia PDF Downloads 1367304 Online Yoga Asana Trainer Using Deep Learning
Authors: Venkata Narayana Chejarla, Nafisa Parvez Shaik, Gopi Vara Prasad Marabathula, Deva Kumar Bejjam
Abstract:
Yoga is an advanced, well-recognized method with roots in Indian philosophy. Yoga benefits both the body and the psyche. Yoga is a regular exercise that helps people relax and sleep better while also enhancing their balance, endurance, and concentration. Yoga can be learned in a variety of settings, including at home with the aid of books and the internet as well as in yoga studios with the guidance of an instructor. Self-learning does not teach the proper yoga poses, and doing them without the right instruction could result in significant injuries. We developed "Online Yoga Asana Trainer using Deep Learning" so that people could practice yoga without a teacher. Our project is developed using Tensorflow, Movenet, and Keras models. The system makes use of data from Kaggle that includes 25 different yoga poses. The first part of the process involves applying the movement model for extracting the 17 key points of the body from the dataset, and the next part involves preprocessing, which includes building a pose classification model using neural networks. The system scores a 98.3% accuracy rate. The system is developed to work with live videos.Keywords: yoga, deep learning, movenet, tensorflow, keras, CNN
Procedia PDF Downloads 2407303 Urban Enclaves Caused by Migration: Little Aleppo in Ankara, Turkey
Authors: Sezen Aslan, N. Aydan Sat
Abstract:
The society of 21st century constantly faces with complex otherness that emerges in various forms and justifications. Otherness caused by class, race or ethnicity inevitably reflects to urban areas, and in this way, cities are diversified into totally self-centered and closed-off urban enclaves. One of the most important dynamics that creates otherness in contemporary society is migration. Immigration on an international scale is one of the most important events that have reshaped the world, and the number of immigrants in the world is increasing day by day. Forced migration and refugee statements constitute the major part of countries' immigration policies and practices. Domestic problems such as racism, violence, war, censorship and silencing, attitudes contrary to human rights, different cultural or religious identities cause populations to migrate. Immigration is one of the most important reasons for the formation of urban enclaves within cities. Turkey, which was used to face a higher rate of outward migration, has begun to host immigrant groups from foreign countries. 1980s is the breaking point about the issue as a result of internal disturbances in the Middle East. After Iranian, Iraqi and Afghan immigrants, Turkey faces the largest external migration in its story with Syrian population. Turkey has been hosting approximate three million Syrian people after Syrian Civil War which started in 2011. 92% of Syrian refugees are currently living in different urban areas in Turkey instead of camps. Syrian refugees are experiencing a spontaneous spatiality due to the lack of specific settlement and housing policies of the country. This spontaneity is one of the most important factors in the creation of urban enclaves. From this point of view, the aim of this study is to clarify processes that lead the creation of urban enclaves and to explain socio-spatial effects of these urban enclaves to the other parts of the cities. Ankara, which is one of the most registered Syrian hosting Province in Turkey, is selected as a case study area. About 55% of the total Syrian population lives in the Altındağ district in Ankara. They settled specifically in two neighborhoods in Altındağ district, named as Önder and Ulubey. These neighborhoods are old slum areas, and they were evacuated due to urban renewal on the same dates with the migration of the Syrians. Before demolition of these old slums, Syrians are settled into them as tenants. In the first part of the study, a brief explanation of the concept of urban enclave, its occurrence parameters and possible socio-spatial threats, examples from previous immigrant urban enclaves caused internal migration will be given. Emergence of slums, planning history and social processes in the case study area will be described in the second part of the study. The third part will be focused on the Syrian refugees and their socio-spatial relationship in the case study area and in-depth interviews with refugees and spatial analysis will be realized. Suggestions for the future of the case study area and recommendations to prevent immigrant groups from social and spatial exclusion will be discussed in the conclusion part of the study.Keywords: migration, immigration, Syrian refugees, urban enclaves, Ankara
Procedia PDF Downloads 2087302 An Approach to Apply Kernel Density Estimation Tool for Crash Prone Location Identification
Authors: Kazi Md. Shifun Newaz, S. Miaji, Shahnewaz Hazanat-E-Rabbi
Abstract:
In this study, the kernel density estimation tool has been used to identify most crash prone locations in a national highway of Bangladesh. Like other developing countries, in Bangladesh road traffic crashes (RTC) have now become a great social alarm and the situation is deteriorating day by day. Today’s black spot identification process is not based on modern technical tools and most of the cases provide wrong output. In this situation, characteristic analysis and black spot identification by spatial analysis would be an effective and low cost approach in ensuring road safety. The methodology of this study incorporates a framework on the basis of spatial-temporal study to identify most RTC occurrence locations. In this study, a very important and economic corridor like Dhaka to Sylhet highway has been chosen to apply the method. This research proposes that KDE method for identification of Hazardous Road Location (HRL) could be used for all other National highways in Bangladesh and also for other developing countries. Some recommendations have been suggested for policy maker to reduce RTC in Dhaka-Sylhet especially in black spots.Keywords: hazardous road location (HRL), crash, GIS, kernel density
Procedia PDF Downloads 3147301 Machine Learning Approach to Project Control Threshold Reliability Evaluation
Authors: Y. Kim, H. Lee, M. Park, B. Lee
Abstract:
Planning is understood as the determination of what has to be performed, how, in which sequence, when, what resources are needed, and their cost within the organization before execution. In most construction project, it is evident that the inherent nature of planning is dynamic, and initial planning is subject to be changed due to various uncertain conditions of construction project. Planners take a continuous revision process during the course of a project and until the very end of project. However, current practice lacks reliable, systematic tool for setting variance thresholds to determine when and what corrective actions to be taken. Rather it is heavily dependent on the level of experience and knowledge of the planner. Thus, this paper introduces a machine learning approach to evaluate project control threshold reliability incorporating project-specific data and presents a method to automate the process. The results have shown that the model improves the efficiency and accuracy of the monitoring process as an early warning.Keywords: machine learning, project control, project progress monitoring, schedule
Procedia PDF Downloads 2447300 Study of Effects of 3D Semi-Spheriacl Basin-Shape-Ratio on the Frequency Content and Spectral Amplitudes of the Basin-Generated Surface Waves
Authors: Kamal, J. P. Narayan
Abstract:
In the present wok the effects of basin-shape-ratio on the frequency content and spectral amplitudes of the basin-generated surface waves and the associated spatial variation of ground motion amplification and differential ground motion in a 3D semi-spherical basin has been studied. A recently developed 3D fourth-order spatial accurate time-domain finite-difference (FD) algorithm based on the parsimonious staggered-grid approximation of the 3D viscoelastic wave equations was used to estimate seismic responses. The simulated results demonstrated the increase of both the frequency content and the spectral amplitudes of the basin-generated surface waves and the duration of ground motion in the basin with the increase of shape-ratio of semi-spherical basin. An increase of the average spectral amplification (ASA), differential ground motion (DGM) and the average aggravation factor (AAF) towards the centre of the semi-spherical basin was obtained.Keywords: 3D viscoelastic simulation, basin-generated surface waves, basin-shape-ratio effects, average spectral amplification, aggravation factors and differential ground motion
Procedia PDF Downloads 5087299 Learning a Bayesian Network for Situation-Aware Smart Home Service: A Case Study with a Robot Vacuum Cleaner
Authors: Eu Tteum Ha, Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
The smart home environment backed up by IoT (internet of things) technologies enables intelligent services based on the awareness of the situation a user is currently in. One of the convenient sensors for recognizing the situations within a home is the smart meter that can monitor the status of each electrical appliance in real time. This paper aims at learning a Bayesian network that models the causal relationship between the user situations and the status of the electrical appliances. Using such a network, we can infer the current situation based on the observed status of the appliances. However, learning the conditional probability tables (CPTs) of the network requires many training examples that cannot be obtained unless the user situations are closely monitored by any means. This paper proposes a method for learning the CPT entries of the network relying only on the user feedbacks generated occasionally. In our case study with a robot vacuum cleaner, the feedback comes in whenever the user gives an order to the robot adversely from its preprogrammed setting. Given a network with randomly initialized CPT entries, our proposed method uses this feedback information to adjust relevant CPT entries in the direction of increasing the probability of recognizing the desired situations. Simulation experiments show that our method can rapidly improve the recognition performance of the Bayesian network using a relatively small number of feedbacks.Keywords: Bayesian network, IoT, learning, situation -awareness, smart home
Procedia PDF Downloads 5237298 Umbrella Reinforcement Learning – A Tool for Hard Problems
Authors: Egor E. Nuzhin, Nikolay V. Brilliantov
Abstract:
We propose an approach for addressing Reinforcement Learning (RL) problems. It combines the ideas of umbrella sampling, borrowed from Monte Carlo technique of computational physics and chemistry, with optimal control methods, and is realized on the base of neural networks. This results in a powerful algorithm, designed to solve hard RL problems – the problems, with long-time delayed reward, state-traps sticking and a lack of terminal states. It outperforms the prominent algorithms, such as PPO, RND, iLQR and VI, which are among the most efficient for the hard problems. The new algorithm deals with a continuous ensemble of agents and expected return, that includes the ensemble entropy. This results in a quick and efficient search of the optimal policy in terms of ”exploration-exploitation trade-off” in the state-action space.Keywords: umbrella sampling, reinforcement learning, policy gradient, dynamic programming
Procedia PDF Downloads 217297 Beyond Geometry: The Importance of Surface Properties in Space Syntax Research
Authors: Christoph Opperer
Abstract:
Space syntax is a theory and method for analyzing the spatial layout of buildings and urban environments to understand how they can influence patterns of human movement, social interaction, and behavior. While direct visibility is a key factor in space syntax research, important visual information such as light, color, texture, etc., are typically not considered, even though psychological studies have shown a strong correlation to the human perceptual experience within physical space – with light and color, for example, playing a crucial role in shaping the perception of spaciousness. Furthermore, these surface properties are often the visual features that are most salient and responsible for drawing attention to certain elements within the environment. This paper explores the potential of integrating these factors into general space syntax methods and visibility-based analysis of space, particularly for architectural spatial layouts. To this end, we use a combination of geometric (isovist) and topological (visibility graph) approaches together with image-based methods, allowing a comprehensive exploration of the relationship between spatial geometry, visual aesthetics, and human experience. Custom-coded ray-tracing techniques are employed to generate spherical panorama images, encoding three-dimensional spatial data in the form of two-dimensional images. These images are then processed through computer vision algorithms to generate saliency-maps, which serve as a visual representation of areas most likely to attract human attention based on their visual properties. The maps are subsequently used to weight the vertices of isovists and the visibility graph, placing greater emphasis on areas with high saliency. Compared to traditional methods, our weighted visibility analysis introduces an additional layer of information density by assigning different weights or importance levels to various aspects within the field of view. This extends general space syntax measures to provide a more nuanced understanding of visibility patterns that better reflect the dynamics of human attention and perception. Furthermore, by drawing parallels to traditional isovist and VGA analysis, our weighted approach emphasizes a crucial distinction, which has been pointed out by Ervin and Steinitz: the difference between what is possible to see and what is likely to be seen. Therefore, this paper emphasizes the importance of including surface properties in visibility-based analysis to gain deeper insights into how people interact with their surroundings and to establish a stronger connection with human attention and perception.Keywords: space syntax, visibility analysis, isovist, visibility graph, visual features, human perception, saliency detection, raytracing, spherical images
Procedia PDF Downloads 747296 Teaching Buddhist Meditation: An Investigation into Self-Learning Methods
Authors: Petcharat Lovichakorntikul, John Walsh
Abstract:
Meditation is in the process of becoming a globalized practice and its benefits have been widely acknowledged. The first wave of internationalized meditation techniques and practices was represented by Chan and Zen Buddhism and a new wave of practice has arisen in Thailand as part of the Phra Dhammakaya temple movement. This form of meditation is intended to be simple and straightforward so that it can easily be taught to people unfamiliar with the basic procedures and philosophy. This has made Phra Dhammakaya an important means of outreach to the international community. One notable aspect is to encourage adults to become like children to perform it – that is, to return to a naïve state prior to the adoption of ideology as a means of understanding the world. It is said that the Lord Buddha achieved the point of awakening at the age of seven and Phra Dhammakaya has a program to teach meditation to both children and adults. This brings about the research question of how practitioners respond to the practice of meditation and how should they be taught? If a careful understanding of how children behave can be achieved, then it will help in teaching adults how to become like children (albeit idealized children) in their approach to meditation. This paper reports on action research in this regard. Personal interviews and focus groups are held with a view to understanding self-learning methods with respect to Buddhist meditation and understanding and appreciation of the practices involved. The findings are considered in the context of existing knowledge about different learning techniques among people of different ages. The implications for pedagogical practice are discussed and learning methods are outlined.Keywords: Buddhist meditation, Dhammakaya, meditation technique, pedagogy, self-learning
Procedia PDF Downloads 4797295 An Implementation of Multi-Media Applications in Teaching Structural Design to Architectural Students
Authors: Wafa Labib
Abstract:
Teaching methods include lectures, workshops and tutorials for the presentation and discussion of ideas have become out of date; were developed outside the discipline of architecture from the college of engineering and do not satisfy the architectural students’ needs and causes them many difficulties in integrating structure into their design. In an attempt to improve structure teaching methods, this paper focused upon proposing a supportive teaching/learning tool using multi-media applications which seeks to better meet the architecture student’s needs and capabilities and improve the understanding and application of basic and intermediate structural engineering and technology principles. Before introducing the use of multi-media as a supportive teaching tool, a questionnaire was distributed to third year students of a structural design course who were selected as a sample to be surveyed forming a sample of 90 cases. The primary aim of the questionnaire was to identify the students’ learning style and to investigate whether the selected method of teaching could make the teaching and learning process more efficient. Students’ reaction on the use of this method was measured using three key elements indicating that this method is an appropriate teaching method for the nature of the students and the course as well.Keywords: teaching method, architecture, learning style, multi-media
Procedia PDF Downloads 4377294 Creative Skills Supported by Multidisciplinary Learning: Case Innovation Course at the Seinäjoki University of Applied Sciences
Authors: Satu Lautamäki
Abstract:
This paper presents findings from a multidisciplinary course (bachelor level) implemented at Seinäjoki University of Applied Sciences, Finland. The course aims to develop innovative thinking of students, by having projects given by companies, using design thinking methods as a tool for creativity and by integrating students into multidisciplinary teams working on the given projects. The course is obligatory for all first year bachelor students across four faculties (business and culture, food and agriculture, health care and social work, and technology). The course involves around 800 students and 30 pedagogical coaches, and it is implemented as an intensive one-week course each year. The paper discusses the pedagogy, structure and coordination of the course. Also, reflections on methods for the development of creative skills are given. Experts in contemporary, global context often work in teams, which consist of people who have different areas of expertise and represent various professional backgrounds. That is why there is a strong need for new training methods where multidisciplinary approach is at the heart of learning. Creative learning takes place when different parties bring information to the discussion and learn from each other. When students in different fields are looking for professional growth for themselves and take responsibility for the professional growth of other learners, they form a mutual learning relationship with each other. Multidisciplinary team members make decisions both individually and collectively, which helps them to understand and appreciate other disciplines. Our results show that creative and multidisciplinary project learning can develop diversity of knowledge and competences, for instance, students’ cultural knowledge, teamwork and innovation competences, time management and presentation skills as well as support a student’s personal development as an expert. It is highly recommended that higher education curricula should include various studies for students from different study fields to work in multidisciplinary teams.Keywords: multidisciplinary learning, creative skills, innovative thinking, project-based learning
Procedia PDF Downloads 1087293 Designing a Motivated Tangible Multimedia System for Preschoolers
Authors: Kien Tsong Chau, Zarina Samsudin, Wan Ahmad Jaafar Wan Yahaya
Abstract:
The paper examined the capability of a prototype of a tangible multimedia system that was augmented with tangible objects in motivating young preschoolers in learning. Preschoolers’ learning behaviour is highly captivated and motivated by external physical stimuli. Hence, conventional multimedia which solely dependent on digital visual and auditory formats for knowledge delivery could potentially place them in inappropriate state of circumstances that are frustrating, boring, or worse, impede overall learning motivations. This paper begins by discussion with the objectives of the research, followed by research questions, hypotheses, ARCS model of motivation adopted in the process of macro-design, and the research instrumentation, Persuasive Multimedia Motivational Scale was deployed for measuring the level of motivation of subjects towards the experimental tangible multimedia. At the close, a succinct description of the findings of a relevant research is provided. In the research, a total of 248 preschoolers recruited from seven Malaysian kindergartens were examined. Analyses revealed that the tangible multimedia system improved preschoolers’ learning motivation significantly more than conventional multimedia. Overall, the findings led to the conclusion that the tangible multimedia system is a motivation conducive multimedia for preschoolers.Keywords: tangible multimedia, preschoolers, multimedia, tangible objects
Procedia PDF Downloads 6097292 Data Clustering Algorithm Based on Multi-Objective Periodic Bacterial Foraging Optimization with Two Learning Archives
Authors: Chen Guo, Heng Tang, Ben Niu
Abstract:
Clustering splits objects into different groups based on similarity, making the objects have higher similarity in the same group and lower similarity in different groups. Thus, clustering can be treated as an optimization problem to maximize the intra-cluster similarity or inter-cluster dissimilarity. In real-world applications, the datasets often have some complex characteristics: sparse, overlap, high dimensionality, etc. When facing these datasets, simultaneously optimizing two or more objectives can obtain better clustering results than optimizing one objective. However, except for the objectives weighting methods, traditional clustering approaches have difficulty in solving multi-objective data clustering problems. Due to this, evolutionary multi-objective optimization algorithms are investigated by researchers to optimize multiple clustering objectives. In this paper, the Data Clustering algorithm based on Multi-objective Periodic Bacterial Foraging Optimization with two Learning Archives (DC-MPBFOLA) is proposed. Specifically, first, to reduce the high computing complexity of the original BFO, periodic BFO is employed as the basic algorithmic framework. Then transfer the periodic BFO into a multi-objective type. Second, two learning strategies are proposed based on the two learning archives to guide the bacterial swarm to move in a better direction. On the one hand, the global best is selected from the global learning archive according to the convergence index and diversity index. On the other hand, the personal best is selected from the personal learning archive according to the sum of weighted objectives. According to the aforementioned learning strategies, a chemotaxis operation is designed. Third, an elite learning strategy is designed to provide fresh power to the objects in two learning archives. When the objects in these two archives do not change for two consecutive times, randomly initializing one dimension of objects can prevent the proposed algorithm from falling into local optima. Fourth, to validate the performance of the proposed algorithm, DC-MPBFOLA is compared with four state-of-art evolutionary multi-objective optimization algorithms and one classical clustering algorithm on evaluation indexes of datasets. To further verify the effectiveness and feasibility of designed strategies in DC-MPBFOLA, variants of DC-MPBFOLA are also proposed. Experimental results demonstrate that DC-MPBFOLA outperforms its competitors regarding all evaluation indexes and clustering partitions. These results also indicate that the designed strategies positively influence the performance improvement of the original BFO.Keywords: data clustering, multi-objective optimization, bacterial foraging optimization, learning archives
Procedia PDF Downloads 1397291 Hate Speech Detection Using Machine Learning: A Survey
Authors: Edemealem Desalegn Kingawa, Kafte Tasew Timkete, Mekashaw Girmaw Abebe, Terefe Feyisa, Abiyot Bitew Mihretie, Senait Teklemarkos Haile
Abstract:
Currently, hate speech is a growing challenge for society, individuals, policymakers, and researchers, as social media platforms make it easy to anonymously create and grow online friends and followers and provide an online forum for debate about specific issues of community life, culture, politics, and others. Despite this, research on identifying and detecting hate speech is not satisfactory performance, and this is why future research on this issue is constantly called for. This paper provides a systematic review of the literature in this field, with a focus on approaches like word embedding techniques, machine learning, deep learning technologies, hate speech terminology, and other state-of-the-art technologies with challenges. In this paper, we have made a systematic review of the last six years of literature from Research Gate and Google Scholar. Furthermore, limitations, along with algorithm selection and use challenges, data collection, and cleaning challenges, and future research directions, are discussed in detail.Keywords: Amharic hate speech, deep learning approach, hate speech detection review, Afaan Oromo hate speech detection
Procedia PDF Downloads 1787290 University Short Courses Web Application Using ASP.Net
Authors: Ahmed Hariri
Abstract:
E-Learning has become a necessity in the advanced education. It is easier for the student and teacher communication also it speed up the process with less time and less effort. With the progress and the enormous development of distance education must keep up with this age of making a website that allows students and teachers to take all the advantages of advanced education. In this regards, we developed University Short courses web application which is specially designed for Faculty of computing and information technology, Rabigh, Kingdom of Saudi Arabia. After an elaborate review of the current state-of-the-art methods of teaching and learning, we found that instructors deliver extra short courses and workshop to students to enhance the knowledge of students. Moreover, this process is completely manual. The prevailing methods of teaching and learning consume a lot of time; therefore in this context, University Short courses web application will help to make process easy and user friendly. The site allows for students can view and register short courses online conducted by instructor also they can see courses starting dates, finishing date and locations. It also allows the instructor to put things on his courses on the site and see the students enrolled in the study material. Finally, student can print the certificate after finished the course online. ASP.NET, SQLSERVER, JavaScript SQL SERVER Database will use to develop the University Short Courses web application.Keywords: e-learning, short courses, ASP.NET, SQL SERVER
Procedia PDF Downloads 1347289 Thick Data Analytics for Learning Cataract Severity: A Triplet Loss Siamese Neural Network Model
Authors: Jinan Fiaidhi, Sabah Mohammed
Abstract:
Diagnosing cataract severity is an important factor in deciding to undertake surgery. It is usually conducted by an ophthalmologist or through taking a variety of fundus photography that needs to be examined by the ophthalmologist. This paper carries out an investigation using a Siamese neural net that can be trained with small anchor samples to score cataract severity. The model used in this paper is based on a triplet loss function that takes the ophthalmologist best experience in rating positive and negative anchors to a specific cataract scaling system. This approach that takes the heuristics of the ophthalmologist is generally called the thick data approach, which is a kind of machine learning approach that learn from a few shots. Clinical Relevance: The lens of the eye is mostly made up of water and proteins. A cataract occurs when these proteins at the eye lens start to clump together and block lights causing impair vision. This research aims at employing thick data machine learning techniques to rate the severity of the cataract using Siamese neural network.Keywords: thick data analytics, siamese neural network, triplet-loss model, few shot learning
Procedia PDF Downloads 1117288 Re-Conceptualizing the Indigenous Learning Space for Children in Bangladesh Placing Built Environment as Third Teacher
Authors: Md. Mahamud Hassan, Shantanu Biswas Linkon, Nur Mohammad Khan
Abstract:
Over the last three decades, the primary education system in Bangladesh has experienced significant improvement, but it has failed to cope with different social and cultural aspects, which present many challenges for children, families, and the public school system. Neglecting our own contextual learning environment, it is a matter of sorrow that much attention has been paid to the more physical outcome-focused model, which is nothing but mere infrastructural development, and less subtle to the environment that suits the child's psychology and improves their social, emotional, physical, and moral competency. In South Asia, the symbol of education was never the little red house of colonial architecture but “A Guru sitting under a tree", whereas a responsive and inclusive design approach could help to create more innovative learning environments. Such an approach incorporates how the built, natural, and cultural environment shapes the learner; in turn, learners shape the learning. This research will be conducted to, i) identify the major issues and drawbacks of government policy for primary education development programs; ii) explore and evaluate the morphology of the conventional model of school, and iii) propose an alternative model in a collaborative design process with the stakeholders for maximizing the relationship between the physical learning environments and learners by treating “the built environment” as “the third teacher.” Based on observation, this research will try to find out to what extent built, and natural environments can be utilized as a teaching tool for a more optimal learning environment. It should also be evident that there is a significant gap in the state policy, predetermined educational specifications, and implementation process in response to stakeholders’ involvement. The outcome of this research will contribute to a people-place sensitive design approach through a more thoughtful and responsive architectural process.Keywords: built environment, conventional planning, indigenous learning space, responsive design
Procedia PDF Downloads 1077287 A Comparative Analysis of Vocabulary Learning Strategies among EFL Freshmen and Senior Medical Sciences Students across Different Fields of Study
Authors: M. Hadavi, Z. Hashemi
Abstract:
Learning strategies play an important role in the development of language skills. Vocabulary learning strategies as the backbone of these strategies have become a major part of English language teaching. This study is a comparative analysis of Vocabulary Learning Strategies (VLS) use and preference among freshmen and senior EFL medical sciences students with different fields of study. 449 students (236 freshman and 213 seniors) participated in the study. 64.6% were female and 35.4% were male. The instrument utilized in this research was a questionnaire consisting of 41 items related to the students’ approach to vocabulary learning. The items were classified under eight sections as dictionary strategies, guessing strategies, study preferences, memory strategies, autonomy, note- taking strategies, selective attention, and social strategies. The participants were asked to answer each item with a 5-point Likert-style frequency scale as follows:1) I never or almost never do this, 2) I don’t usually do this, 3) I sometimes do this, 4) I usually do this, and 5)I always or almost always do this. The results indicated that freshmen students and particularly surgical technology students used more strategies compared to the seniors. Overall guessing and dictionary strategies were the most frequently used strategies among all the learners (p=0/000). The mean and standard deviation of using VLS in the students who had no previous history of participating in the private English language classes was less than the students who had attended these type of classes (p=0/000). Female students tended to use social and study preference strategies whereas male students used mostly guessing and dictionary strategies. It can be concluded that the senior students under instruction from the university have learned to rely on themselves and choose the autonomous strategies more, while freshmen students use more strategies that are related to the study preferences.Keywords: vocabulary leaning strategies, medical sciences, students, linguistics
Procedia PDF Downloads 4517286 Integrating Cultures in Institutions of Higher Learning in South Africa
Authors: N. Mesatywa
Abstract:
The aim of the article is to emphasize and motivate for the role of integrating cultures in institutions of learning. The article has used a literature review methodology. Findings indicate that cultures espouse immense social capital that can: facilitate and strengthen moral education that will help learners in mitigating moral decadence and HIV/AIDS; embrace and strengthen the tenets of peace and tranquility among learners from different backgrounds; can form education against xenophobia; can facilitate the process of cultural paradigm shift that will slow down cultural attrition and decadence; can bring back cultural strength, cultural revival, cultural reawakening and cultural emancipation, etc. The article recommends governments to finance cultural activities in institutions of learning; to allow cultural practitioners to be part and parcel of cultural education; and challenge people to pride in the social capital of their indigenous cultures.Keywords: cultures, cultural practitioners, integration, traditional healers
Procedia PDF Downloads 4597285 The Impact of WhatsApp Groups as Supportive Technology in Teaching
Authors: Pinn Tsin Isabel Yee
Abstract:
With the advent of internet technologies, students are increasingly turning toward social media and cross-platform messaging apps such as WhatsApp, Line, and WeChat to support their teaching and learning processes. Although each messaging app has varying features, WhatsApp remains one of the most popular cross-platform apps that allow for fast, simple, secure messaging and free calls anytime, anywhere. With a plethora of advantages, students could easily assimilate WhatsApp as a supportive technology in their learning process. There could be peer to peer learning, and a teacher will be able to share knowledge digitally via the creation of WhatsApp groups. Content analysis techniques were utilized to analyze data collected by closed-ended question forms. Studies demonstrated that 98.8% of college students (n=80) from the Monash University foundation year agreed that the employment of WhatsApp groups was helpful as a learning tool. Approximately 71.3% disagreed that notifications and alerts from the WhatsApp group were disruptions in their studies. Students commented that they could silence the notifications and hence, it would not disturb their flow of thoughts. In fact, an overwhelming majority of students (95.0%) found it enjoyable to participate in WhatsApp groups for educational purposes. It was a common perception that some students felt pressured to post a reply in such groups, but data analysis showed that 72.5% of students did not feel pressured to comment or reply. It was good that 93.8% of students felt satisfactory if their posts were not responded to speedily, but was eventually attended to. Generally, 97.5% of students found it useful if their teachers provided their handphone numbers to be added to a WhatsApp group. If a teacher posts an explanation or a mathematical working in the group, all students would be able to view the post together, as opposed to individual students asking their teacher a similar question. On whether students preferred using Facebook as a learning tool, there was a 50-50 divide in the replies from the respondents as 51.3% of students liked WhatsApp, while 48.8% preferred Facebook as a supportive technology in teaching and learning. Taken altogether, the utilization of WhatsApp groups as a supportive technology in teaching and learning should be implemented in all classes to continuously engage our generation Y students in the ever-changing digital landscape.-Keywords: education, learning, messaging app, technology, WhatsApp groups
Procedia PDF Downloads 1577284 Media-Based Interventions to Influence English Language Learning: A Case of Bangladesh
Authors: Md. Mizanoor Rahman, Md. Zakir Hossain Talukder, M. Mahruf C. Shohel, Prithvi Shrestha
Abstract:
In Bangladesh, classroom practice and English Learning (EL) competencies acquired both by the teacher and learner in primary and secondary schools are still very weak. Therefore, English is the most commonly failed examination subject at the school level; in addition, there are severe problems in communicative English by the Bangladeshi nationals– this has been characterized as a constraint to economic development. Job applicants and employees often lack English language skills necessary to work effectively. As a result; both government and its international development partners such as DFID, UNESCO, and CIDA have been very active to uplift the quality of the English language learning and implementing projects with innovative approaches. Recently; the economy has been increasing and in line with this, the technology has been deployed in English learning to improve reading, writing, speaking and listening skills. Young Bangladeshi creative, from a variety of backgrounds including film, animation, photography, and digital media are being trained to develop ideas for English Language Teaching (ELT) media. They are being motivated to develop a wide range of ideas for low cost English learning media products. English Language education policy in Bangladesh supports communicative language teaching practices and accordingly, actors have been influencing curriculum, textbook, deployment of technology and assessment changes supporting communicative ELT. The various projects are also being implemented to reform the curriculum, revise the textbook and adjust the assessment mechanism so that the country can increase in proficiency in communicative English among the population. At present; the numbers of teachers, students and adult learners classified at higher levels of proficiency because of deployment of technology and motivation for learning and using English among school population of Bangladesh. The current paper discusses the various interventions in Bangladesh with appropriate media to improve the competencies of the ELT among population.Keywords: English learning, technology, education, psychological sciences
Procedia PDF Downloads 4167283 Spatial Pattern of Environmental Noise Levels and Auditory Ailments in Abeokuta Metropolis, Southwestern Nigeria
Authors: Olusegun Oguntoke, Aramide Y. Tijani, Olayide R. Adetunji
Abstract:
Environmental noise has become a major threat to the quality of human life, and it is generally more severe in cities. This study assessed the level of environmental noise, mapped the spatial pattern at different times of the day and examined the association with morbidity of auditory ailments in Abeokuta metropolis. The entire metropolis was divided into 80 cells (areas) of 1000 m by 1000 m; out of which 33 were randomly selected for noise levels assessment. Portable noise meter (AR824) was used to measure noise level, and Global Positioning System (Garmin GPS-72H) was employed to take the coordinates of the sample sites for mapping. Risk map of the noise levels was produced using Kriging interpolation techniques based on the spatial spread of measured noise values across the study area. Data on cases of hearing impairments were collected from four major hospitals in the city. Data collected from field measurements and medical records were subjected to descriptive (frequency and percentage) and inferential (mean, ANOVA and correlation) statistics using SPSS (version 20.0). ArcMap 10.1 was employed for spatial analysis and mapping. Results showed mean noise levels range at morning (42.4 ± 4.14 – 88.2 ± 15.1 dBA), afternoon (45.0 ± 6.72– 86.4 ± 12.5 dBA) and evening (51.0 ± 6.55–84.4 ± 5.19 dBA) across the study area. The interpolated maps identified Kuto, Okelowo, Isale-Igbein, and Sapon as high noise risk areas. These are the central business district and nucleus of Abeokuta metropolis where commercial activities, high traffic volume, and clustered buildings exist. The monitored noise levels varied significantly among the sampled areas in the morning, afternoon and evening (p < 0.05). A significant correlation was found between diagnosed cases of auditory ailments and noise levels measured in the morning (r=0.39 at p < 0.05). Common auditory ailments found across the metropolis included impaired hearing (25.8%), tinnitus (16.4%) and otitis (15.0%). The most affected age groups were between 11-30 years while the male gender had more cases of hearing impairments (51.2%) than the females. The study revealed that environmental noise levels exceeded the recommended standards in the morning, afternoon and evening in 60.6%, 61% and 72.7% of the sampled areas respectively. Summarily, environmental noise in the study area is high and contributes to the morbidity of auditory ailments. Areas identified as hot spots of noise pollution should be avoided in the location of noise sensitive activities while environmental noise monitoring should be included as part of the mandate of the regulatory agencies in Nigeria.Keywords: noise pollution, associative analysis, auditory impairment, urban, human exposure
Procedia PDF Downloads 1447282 PaSA: A Dataset for Patent Sentiment Analysis to Highlight Patent Paragraphs
Authors: Renukswamy Chikkamath, Vishvapalsinhji Ramsinh Parmar, Christoph Hewel, Markus Endres
Abstract:
Given a patent document, identifying distinct semantic annotations is an interesting research aspect. Text annotation helps the patent practitioners such as examiners and patent attorneys to quickly identify the key arguments of any invention, successively providing a timely marking of a patent text. In the process of manual patent analysis, to attain better readability, recognising the semantic information by marking paragraphs is in practice. This semantic annotation process is laborious and time-consuming. To alleviate such a problem, we proposed a dataset to train machine learning algorithms to automate the highlighting process. The contributions of this work are: i) we developed a multi-class dataset of size 150k samples by traversing USPTO patents over a decade, ii) articulated statistics and distributions of data using imperative exploratory data analysis, iii) baseline Machine Learning models are developed to utilize the dataset to address patent paragraph highlighting task, and iv) future path to extend this work using Deep Learning and domain-specific pre-trained language models to develop a tool to highlight is provided. This work assists patent practitioners in highlighting semantic information automatically and aids in creating a sustainable and efficient patent analysis using the aptitude of machine learning.Keywords: machine learning, patents, patent sentiment analysis, patent information retrieval
Procedia PDF Downloads 917281 The Role of Gender in English Language Acquisition for Chinese Medical Students
Authors: Christopher Celozzi, Sarah Kochav
Abstract:
Our research investigates the numerous challenges faced by Chinese ESL university students enrolled in the medical and related healthcare professional fields. The over-arching research question is how gender influences classroom participation and learning. The second research question addressed is 'what instructional strategies may be utilized to promote student participation and language acquisition?'. Participants’ language ability has been assessed and evaluated in order to facilitate the establishment of a statistical baseline for the subsequent intervention. This research delves deeper into each individual’s personal and academic circumstances, in an effort to reveal any held intrinsic gender beliefs and social identities that may influence learning. Also considered is the impact on learning for a homogenized student population within a uniform, highly structured learning environment. Specially, what is the influence of China’s ‘one-child policy’ on individual learning habits? The impact of their millennial identity and reliance on social media is also examined. A qualitative methodology with a case study approach is employed, with interviews conducted among the participants. Student response to the intervention and selected remediation strategies are documented, analyzed and discussed. The findings of the study may serve to inform educator instructional practice, while advancing the student learner in their pursuit of English competency in highly competitive professions.Keywords: Chinese students, gender, English, language acquisition
Procedia PDF Downloads 205