Search results for: shrinkage regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3412

Search results for: shrinkage regression

1252 Postpartum Depression and Its Association with Food Insecurity and Social Support among Women in Post-Conflict Northern Uganda

Authors: Kimton Opiyo, Elliot M. Berry, Patil Karamchand, Barnabas K. Natamba

Abstract:

Background: Postpartum depression (PPD) is a major psychiatric disorder that affects women soon after birth and in some cases, is a continuation of antenatal depression. Food insecurity (FI) and social support (SS) are known to be associated with major depressive disorder, and vice versa. This study was conducted to examine the interrelationships among FI, SS, and PPD among postpartum women in Gulu, a post-conflict region in Uganda. Methods: Cross-sectional data from postpartum women on depression symptoms, FI and SS were, respectively, obtained using the Center for Epidemiologic Studies-Depression (CES-D) scale, Individually Focused FI Access scale (IFIAS) and Duke-UNC functional social support scale. Standard regression methods were used to assess associations among FI, SS, and PPD. Results: A total of 239 women were studied, and 40% were found to have any PPD, i.e., with depressive symptom scores of ≥ 17. The mean ± standard deviation (SD) for FI score and SS scores were 6.47 ± 5.02 and 19.11 ± 4.23 respectively. In adjusted analyses, PPD symptoms were found to be positively associated with FI (unstandardized beta and standardized beta of 0.703 and 0.432 respectively, standard errors =0.093 and p-value < 0.0001) and negatively associated with SS (unstandardized beta and standardized beta of -0.263 and -0.135 respectively, standard errors = 0.111 and p-value = 0.019). Conclusions: Many women in this post-conflict region reported experiencing PPD. In addition, this data suggest that food security and psychosocial support interventions may help mitigate women’s experience of PPD or its severity.

Keywords: postpartum depression, food insecurity, social support, post-conflict region

Procedia PDF Downloads 168
1251 Analysis of a Lignocellulose Degrading Microbial Consortium to Enhance the Anaerobic Digestion of Rice Straws

Authors: Supanun Kangrang, Kraipat Cheenkachorn, Kittiphong Rattanaporn, Malinee Sriariyanun

Abstract:

Rice straw is lignocellulosic biomass which can be utilized as substrate for the biogas production. However, due to the property and composition of rice straw, it is difficult to be degraded by hydrolysis enzymes. One of the pretreatment method that modifies such properties of lignocellulosic biomass is the application of lignocellulose-degrading microbial consortia. The aim of this study is to investigate the effect of microbial consortia to enhance biogas production. To select the high efficient consortium, cellulase enzymes were extracted and their activities were analyzed. The results suggested that microbial consortium culture obtained from cattle manure is the best candidate compared to decomposed wood and horse manure. A microbial consortium isolated from cattle manure was then mixed with anaerobic sludge and used as inoculum for biogas production. The optimal conditions for biogas production were investigated using response surface methodology (RSM). The tested parameters were the ratio of amount of microbial consortium isolated and amount of anaerobic sludge (MI:AS), substrate to inoculum ratio (S:I) and temperature. Here, the value of the regression coefficient R2 = 0.7661 could be explained by the model which is high to advocate the significance of the model. The highest cumulative biogas yield was 104.6 ml/g-rice straw at optimum ratio of MI:AS, ratio of S:I, and temperature of 2.5:1, 15:1 and 44°C respectively.

Keywords: lignocellulolytic biomass, microbial consortium, cellulase, biogas, Response Surface Methodology (RSM)

Procedia PDF Downloads 398
1250 Multi-Temporal Cloud Detection and Removal in Satellite Imagery for Land Resources Investigation

Authors: Feng Yin

Abstract:

Clouds are inevitable contaminants in optical satellite imagery, and prevent the satellite imaging systems from acquiring clear view of the earth surface. The presence of clouds in satellite imagery bring negative influences for remote sensing land resources investigation. As a consequence, detecting the locations of clouds in satellite imagery is an essential preprocessing step, and further remove the existing clouds is crucial for the application of imagery. In this paper, a multi-temporal based satellite imagery cloud detection and removal method is proposed, which will be used for large-scale land resource investigation. The proposed method is mainly composed of four steps. First, cloud masks are generated for cloud contaminated images by single temporal cloud detection based on multiple spectral features. Then, a cloud-free reference image of target areas is synthesized by weighted averaging time-series images in which cloud pixels are ignored. Thirdly, the refined cloud detection results are acquired by multi-temporal analysis based on the reference image. Finally, detected clouds are removed via multi-temporal linear regression. The results of a case application in Hubei province indicate that the proposed multi-temporal cloud detection and removal method is effective and promising for large-scale land resource investigation.

Keywords: cloud detection, cloud remove, multi-temporal imagery, land resources investigation

Procedia PDF Downloads 278
1249 Understanding Willingness to Engage in pro-Environmental Behaviour among Recreational Anglers in South Africa

Authors: Kelvin Mwaba, Nicole Strickland

Abstract:

Background and Objectives: Overexploitation and illegal fishing have been identified as the primary cause of the global decline in the fish stock. While commercial companies and small-scale fishing sectors are strictly regulated in South Africa, recreational anglers are not. The underlying assumption seems to be that recreational anglers can self-regulate. The aim of the present study was to investigate the relationship that recreational anglers have with nature and how this relationship can predict unlawful fishing practices. Methods: Using a survey design, 99 self-identified recreational anglers were recruited through convenient sampling. The anglers were accessed from fishing tackle shops around False Bay in the Western Cape province of South Africa. Data was collected using a self-administered questionnaire that consisted of pro-environmental behavior survey and the Nature Relatedness Scale. Results: Data analyses indicated that significant differences with regard to nature relatedness on the basis of participants’ age and level of education. Older and more educated anglers scored higher on nature relatedness than younger and less educated anglers. Logistic regression analysis showed that nature relatedness was a significant predictor of pro-environmental behaviors (R²= 0.061). Discussion and Conclusion: The findings of the present study provide support regarding the importance of encouraging healthy and sustainable relationships between humans and nature. Combating harmful fishing practices can achieve through understanding and promoting human care for nature among anglers and others involved in fishing.

Keywords: pro-environmental, behavior, anglers, South Africa

Procedia PDF Downloads 369
1248 Allometric Models for Biomass Estimation in Savanna Woodland Area, Niger State, Nigeria

Authors: Abdullahi Jibrin, Aishetu Abdulkadir

Abstract:

The development of allometric models is crucial to accurate forest biomass/carbon stock assessment. The aim of this study was to develop a set of biomass prediction models that will enable the determination of total tree aboveground biomass for savannah woodland area in Niger State, Nigeria. Based on the data collected through biometric measurements of 1816 trees and destructive sampling of 36 trees, five species specific and one site specific models were developed. The sample size was distributed equally between the five most dominant species in the study site (Vitellaria paradoxa, Irvingia gabonensis, Parkia biglobosa, Anogeissus leiocarpus, Pterocarpus erinaceous). Firstly, the equations were developed for five individual species. Secondly these five species were mixed and were used to develop an allometric equation of mixed species. Overall, there was a strong positive relationship between total tree biomass and the stem diameter. The coefficient of determination (R2 values) ranging from 0.93 to 0.99 P < 0.001 were realised for the models; with considerable low standard error of the estimates (SEE) which confirms that the total tree above ground biomass has a significant relationship with the dbh. The F-test value for the biomass prediction models were also significant at p < 0.001 which indicates that the biomass prediction models are valid. This study recommends that for improved biomass estimates in the study site, the site specific biomass models should preferably be used instead of using generic models.

Keywords: allometriy, biomass, carbon stock , model, regression equation, woodland, inventory

Procedia PDF Downloads 448
1247 Serum 25-Hydroxyvitamin D Levels and Depression in Persons with Human Immunodeficiency Virus Infection: A Cross-Sectional and Prospective Study

Authors: Kalpana Poudel-Tandukar

Abstract:

Background: Human Immunodeficiency Virus (HIV) infection has been frequently associated with vitamin D deficiency and depression. Vitamin D deficiency increases the risk of depression in people without HIV. We assessed the cross-sectional and prospective associations between serum concentrations of 25-hydroxyvitamin D (25[OH]D) and depression in a HIV-positive people. Methods: A survey was conducted among 316 HIV-positive people aged 20-60 years residing in Kathmandu, Nepal for a cross-sectional association at baseline, and among 184 participants without depressive symptoms at baseline who responded to both baseline (2010) and follow-up (2011) surveys for prospective association. The competitive protein-binding assay was used to measure 25(OH)D levels and the Beck Depression Inventory-Ia method was used to measure depression, with cut off score 20 or higher. Relationships were assessed using multiple logistic regression analysis with adjustment of potential confounders. Results: The proportion of participants with 25(OH)D level of <20ng/mL, 20-30ng/mL, and >30ng/mL were 83.2%, 15.5%, and 1.3%, respectively. Only four participants with 25(OH)D level of >30ng/mL were excluded in the further analysis. The mean 25(OH)D level in men and women were 15.0ng/mL and 14.4ng/mL, respectively. Twenty six percent of participants (men:23%; women:29%) were depressed. Participants with 25(OH)D level of < 20 ng/mL had a 1.4 fold higher odds of depression in a cross-sectional and 1.3 fold higher odds of depression after 18 months of baseline compared to those with 25(OH)D level of 20-30ng/mL (p=0.40 and p=0.78, respectively). Conclusion: Vitamin D may not have significant impact against depression among HIV-positive people with 25(OH)D level below normal ( > 30ng/mL).

Keywords: depression, HIV, Nepal, vitamin D

Procedia PDF Downloads 332
1246 The Impact of Inflation Rate and Interest Rate on Islamic and Conventional Banking in Afghanistan

Authors: Tareq Nikzad

Abstract:

Since the first bank was established in 1933, Afghanistan's banking sector has seen a number of variations but hasn't been able to grow to its full potential because of the civil war. The implementation of dual banks in Afghanistan is investigated in this study in relation to the effects of inflation and interest rates. This research took data from World Bank Data (WBD) over a period of nineteen years. For the banking sector, inflation, which is the general rise in prices of goods and services over time, presents considerable difficulties. The objectives of this research are to analyze the effect of inflation and interest rates on conventional and Islamic banks in Afghanistan, identify potential differences between these two banking models, and provide insights for policymakers and practitioners. A mixed-methods approach is used in the research to analyze quantitative data and qualitatively examine the unique difficulties that banks in Afghanistan's economic atmosphere encounter. The findings contribute to the understanding of the relationship between interest rate, inflation rate, and the performance of both banking systems in Afghanistan. The paper concludes with recommendations for policymakers and banking institutions to enhance the stability and growth of the banking sector in Afghanistan. Interest is described as "a prefixed rate for use or borrowing of money" from an Islamic perspective. This "prefixed rate," known in Islamic economics as "riba," has been described as "something undesirable." Furthermore, by using the time series regression data technique on the annual data from 2003 to 2021, this research examines the effect of CPI inflation rate and interest rate of Banking in Afghanistan.

Keywords: inflation, Islamic banking, conventional banking, interest, Afghanistan, impact

Procedia PDF Downloads 72
1245 Adult Attachment Security as a Predictor of Career Decision-Making Self-Efficacy among College Students in the United States

Authors: Mai Kaneda, Sarah Feeney

Abstract:

This study examined the association between adult attachment security and career decision-making self-efficacy (CDMSE) among college students in the United States. Previous studies show that attachment security is associated with levels of CDMSE among college students. Given that a majority of studies examining career development variables have used parental attachment measures, this study adds to understanding of this phenomenon by utilizing a broader measure of attachment. The participants included 269 college students (76% female) between the ages of 19-29. An anonymous survey was distributed online via social media as well as in hard copy format in classrooms. Multiple regression analyses were conducted to determine the relationship between anxious and avoidant attachment and CDMSE. Results revealed anxious attachment was a significant predictor of CDMSE (B = -.13, p = .01), such that greater anxiety in attachment was associated with lower levels of CDMSE. When accounting for anxious attachment, avoidant attachment was no longer significant as a predictor of CDMSE (B = -.12, p = .10). The variance in college CDMSE explained by the model was 7%, F(2,267) = 9.51, p < .001. Results for anxious attachment are consistent with existing literature that finds insecure attachment to be related to lower levels of CDMSE, however the non-significant results for avoidant attachment as a predictor of CDMSE suggest not all types of attachment insecurity are equally related to CDMSE. Future research is needed to explore the nature of the relationship between different dimensions of attachment insecurity and CDMSE.

Keywords: attachment, career decision-making, college students, self-efficacy

Procedia PDF Downloads 221
1244 The Impact of Sustainable Farm Management on Paddy Farmers’ Livelihood: The Case of Malaysia

Authors: Roslina Kamaruddin

Abstract:

The paddy farmer’s performance and ability to improve productivity for increased incomes is driven by their level of farm management practices. Knowledge on the nature and level of sustainable farm management (SFM) practice provides opportunities for supporting the competitive advantages of paddy farmers to sustainably break away from the poverty cycle. Little attention has been given to measuring the performance and impact of SFM for the improvement of paddy farmer's livelihood in Malaysia. Without understanding SFM, it is difficult to make policies and provide targeted, impactful support to paddy farmers. The objective of this study is to assess the level of SFM among paddy farmers by calculating the Sustainable Farm Management Index (SFMI) using the Rice Check (RC) guideline established by the Department of Agriculture. The structured questionnaire was designed to capture the nine elements of farming practices based on the RC and was then distributed to 788 paddy farmers in Malaysia's main granary areas, namely MADA, KADA, and BLS. Each practice was given a score to determine whether the guidelines were followed. The index ranges from 0 to 100, with 0 being unsustainable and 100 being highly sustainable. A multiple regression analysis was employed as well to estimate the effects of SFM adoption on farmer livelihoods. The findings show that adopting SFM has a positive and significant effect on farmers' livelihoods. The paper, therefore, recommends that farmers should be educated on the importance of sustainable farming practices as this is essential for the sustainable livelihood development of poor farmers who rely on government subsidies.

Keywords: sustainable farm management, paddy farming, rice check, granary areas, farmers livelihood

Procedia PDF Downloads 99
1243 Valuing Public Urban Street Trees and Their Environmental Spillover Benefits

Authors: Sofia F. Franco, Jacob Macdonald

Abstract:

This paper estimates the value of urban public street trees and their complementary and substitution value with other broader urban amenities and dis-amenities via the residential housing market. We estimate a lower bound value on a city’s tree amenities under instrumental variable and geographic regression discontinuity approaches with an application to Lisbon, Portugal. For completeness, we also explore how urban trees and in particular public street trees impact house prices across the city. Finally, we jointly analyze the planting and maintenance costs and benefits of urban street trees. The estimated value of all public trees in Lisbon is €8.84M. When considering specifically trees planted alongside roads and in public squares, the value is €6.06M or €126.64 per tree. This value is conditional on the distribution of trees in terms of their broader density, with higher effects coming from the overall greening of larger areas of the city compared to the greening of the direct neighborhood. Detrimental impacts are found when the number of trees is higher near street canyons, where they may exacerbate the stagnation of air pollution from traffic. Urban street trees also have important spillover benefits due to pollution mitigation around €6.21 million, or an additional €129.93 per tree. There are added benefits of €26.32 and €28.58 per tree in terms of flooding and heat mitigation, respectively. With significant resources and policies aimed at urban greening, the value obtained is shown to be important for discussions on the benefits of urban trees as compared to mitigation and abatement costs undertaken by a municipality.

Keywords: urban public goods, urban street trees, spatial boundary discontinuities, geospatial and remote sensing methods

Procedia PDF Downloads 177
1242 Urban Vegetative Planning for Ambient Ozone Pollution: An Eco-Management Approach

Authors: M. Anji Reddy, R. Uma Devi

Abstract:

Environmental planning for urban development is very much needed to reduce air pollution through the enhancement of vegetative cover in the cities like Hyderabad. This can be mainly based on the selection of appropriate native plant species as bioindicators to assess the impact of ambient Ozone. In the present study, tolerant species are suggested aimed to reduce the magnitude of ambient ozone concentrations which not only increase eco-friendly vegetation but also moderate air pollution. Hyderabad city is divided into 5 zones based on Land Use/Land Cover category further each zone divided into residential, traffic, industrial, and peri-urban areas. Highest ambient ozone levels are recorded in Industrial areas followed by traffic areas in the entire study area ( > 180 µg/m3). Biomonitoring of selected sixteen local urban plant species with the help of Air Pollution Tolerance Index (APTI) showed its susceptibility to air pollution. Statistical regression models in between the tolerant plant species and ambient ozone levels suggested five plant species namely Azardirachta indica A. Juss which have a high tolerant response to ambient ozone followed by Delonix regia Hook. along with Millingtonia hortensis L.f., Alestonia Scholaries L., and Samania saman Jacq. in the industrial and traffic areas of the study area to mitigate ambient Ozone pollution and also to improve urban greenery.

Keywords: air pollution tolerance index, bio-indicators, eco-friendly vegetation, urban greenery

Procedia PDF Downloads 454
1241 The “Bright Side” of COVID-19: Effects of Livestream Affordances on Consumer Purchase Willingness: Explicit IT Affordances Perspective

Authors: Isaac Owusu Asante, Yushi Jiang, Hailin Tao

Abstract:

Live streaming marketing, the new electronic commerce element, became an optional marketing channel following the COVID-19 pandemic. Many sellers have leveraged the features presented by live streaming to increase sales. Studies on live streaming have focused on gaming and consumers’ loyalty to brands through live streaming, using interview questionnaires. This study, however, was conducted to measure real-time observable interactions between consumers and sellers. Based on the affordance theory, this study conceptualized constructs representing the interactive features and examined how they drive consumers’ purchase willingness during live streaming sessions using 1238 datasets from Amazon Live, following the manual observation of transaction records. Using structural equation modeling, the ordinary least square regression suggests that live viewers, new followers, live chats, and likes positively affect purchase willingness. The Sobel and Monte Carlo tests show that new followers, live chats, and likes significantly mediate the relationship between live viewers and purchase willingness. The study introduces a new way of measuring interactions in live streaming commerce and proposes a way to manually gather data on consumer behaviors in live streaming platforms when the application programming interface (API) of such platforms does not support data mining algorithms.

Keywords: livestreaming marketing, live chats, live viewers, likes, new followers, purchase willingness

Procedia PDF Downloads 81
1240 Quantitative Structure-Activity Relationship Analysis of Binding Affinity of a Series of Anti-Prion Compounds to Human Prion Protein

Authors: Strahinja Kovačević, Sanja Podunavac-Kuzmanović, Lidija Jevrić, Milica Karadžić

Abstract:

The present study is based on the quantitative structure-activity relationship (QSAR) analysis of eighteen compounds with anti-prion activity. The structures and anti-prion activities (expressed in response units, RU%) of the analyzed compounds are taken from CHEMBL database. In the first step of analysis 85 molecular descriptors were calculated and based on them the hierarchical cluster analysis (HCA) and principal component analysis (PCA) were carried out in order to detect potential significant similarities or dissimilarities among the studied compounds. The calculated molecular descriptors were physicochemical, lipophilicity and ADMET (absorption, distribution, metabolism, excretion and toxicity) descriptors. The first stage of the QSAR analysis was simple linear regression modeling. It resulted in one acceptable model that correlates Henry's law constant with RU% units. The obtained 2D-QSAR model was validated by cross-validation as an internal validation method. The validation procedure confirmed the model’s quality and therefore it can be used for prediction of anti-prion activity. The next stage of the analysis of anti-prion activity will include 3D-QSAR and molecular docking approaches in order to select the most promising compounds in treatment of prion diseases. These results are the part of the project No. 114-451-268/2016-02 financially supported by the Provincial Secretariat for Science and Technological Development of AP Vojvodina.

Keywords: anti-prion activity, chemometrics, molecular modeling, QSAR

Procedia PDF Downloads 304
1239 Access to Apprenticeships and the Impact of Individual and School Level Characteristics

Authors: Marianne Dæhlen

Abstract:

Periods of apprenticeships are characteristic of many vocational educational training (VET) systems. In many countries, becoming a skilled worker implies that the journey starts with an application for apprenticeships at a company or another relevant training establishment. In Norway, where this study is conducted, VET students start their journey with two years of school-based training before applying for two years of apprenticeship. Previous research has shown that access to apprenticeships differs by family background (socio-economic, immigrant, etc.), gender, school grades, and region. The question we raise in this study is whether the status, reputation, or position of the vocational school contributes to VET students’ access to apprenticeships. Data and methods: Register data containing information about schools’ and VET students’ characteristics will be analyzed in multilevel regression analyses. At the school level, the data will contain information on school size, shares of immigrants and/or share of male/female students, and grade requirements for admission. At the VET-student level, the register contains information on e.g., gender, school grades, educational program/trade, obtaining apprenticeship or not. The data set comprises about 3,000 students. Results: The register data is expected to be received in November 2024 and consequently, any results are not present at the point of this call. The planned article is part of a larger research project granted from the Norwegian Research Council and will, accordingly to the plan, start up in December 2024.

Keywords: apprenticeships, VET-students’ characteristics, vocational schools, quantitative methods

Procedia PDF Downloads 9
1238 Commuters Trip Purpose Decision Tree Based Model of Makurdi Metropolis, Nigeria and Strategic Digital City Project

Authors: Emmanuel Okechukwu Nwafor, Folake Olubunmi Akintayo, Denis Alcides Rezende

Abstract:

Decision tree models are versatile and interpretable machine learning algorithms widely used for both classification and regression tasks, which can be related to cities, whether physical or digital. The aim of this research is to assess how well decision tree algorithms can predict trip purposes in Makurdi, Nigeria, while also exploring their connection to the strategic digital city initiative. The research methodology involves formalizing household demographic and trips information datasets obtained from extensive survey process. Modelling and Prediction were achieved using Python Programming Language and the evaluation metrics like R-squared and mean absolute error were used to assess the decision tree algorithm's performance. The results indicate that the model performed well, with accuracies of 84% and 68%, and low MAE values of 0.188 and 0.314, on training and validation data, respectively. This suggests the model can be relied upon for future prediction. The conclusion reiterates that This model will assist decision-makers, including urban planners, transportation engineers, government officials, and commuters, in making informed decisions on transportation planning and management within the framework of a strategic digital city. Its application will enhance the efficiency, sustainability, and overall quality of transportation services in Makurdi, Nigeria.

Keywords: decision tree algorithm, trip purpose, intelligent transport, strategic digital city, travel pattern, sustainable transport

Procedia PDF Downloads 20
1237 Role of Pulp Volume Method in Assessment of Age and Gender in Lucknow, India, an Observational Study

Authors: Anurag Tripathi, Sanad Khandelwal

Abstract:

Age and gender determination are required in forensic for victim identification. There is secondary dentine deposition throughout life, resulting in decreased pulp volume and size. Evaluation of pulp volume using Cone Beam Computed Tomography (CBCT)is a noninvasive method to evaluate the age and gender of an individual. The study was done to evaluate the efficacy of pulp volume method in the determination of age and gender.Aims/Objectives: The study was conducted to estimate age and determine sex by measuring tooth pulp volume with the help of CBCT. An observational study of one year duration on CBCT data of individuals was conducted in Lucknow. Maxillary central incisors (CI) and maxillary canine (C) of the randomly selected samples were assessed for measurement of pulp volume using a software. Statistical analysis: Chi Square Test, Arithmetic Mean, Standard deviation, Pearson’s Correlation, Linear & Logistic regression analysis. Results: The CBCT data of Ninety individuals with age range between 18-70 years was evaluated for pulp volume of central incisor and canine (CI & C). The Pearson correlation coefficient between the tooth pulp volume (CI & C) and chronological age suggested that pulp volume decreased with age. The validation of the equations for sex determination showed higher prediction accuracy for CI (56.70%) and lower for C (53.30%).Conclusion: Pulp volume obtained from CBCT is a reliable indicator for age estimation and gender prediction.

Keywords: forensic, dental age, pulp volume, cone beam computed tomography

Procedia PDF Downloads 99
1236 Reducing Uncertainty in Climate Projections over Uganda by Numerical Models Using Bias Correction

Authors: Isaac Mugume

Abstract:

Since the beginning of the 21st century, climate change has been an issue due to the reported rise in global temperature and changes in the frequency as well as severity of extreme weather and climatic events. The changing climate has been attributed to rising concentrations of greenhouse gases, including environmental changes such as ecosystems and land-uses. Climatic projections have been carried out under the auspices of the intergovernmental panel on climate change where a couple of models have been run to inform us about the likelihood of future climates. Since one of the major forcings informing the changing climate is emission of greenhouse gases, different scenarios have been proposed and future climates for different periods presented. The global climate models project different areas to experience different impacts. While regional modeling is being carried out for high impact studies, bias correction is less documented. Yet, the regional climate models suffer bias which introduces uncertainty. This is addressed in this study by bias correcting the regional models. This study uses the Weather Research and Forecasting model under different representative concentration pathways and correcting the products of these models using observed climatic data. This study notes that bias correction (e.g., the running-mean bias correction; the best easy systematic estimator method; the simple linear regression method, nearest neighborhood, weighted mean) improves the climatic projection skill and therefore reduce the uncertainty inherent in the climatic projections.

Keywords: bias correction, climatic projections, numerical models, representative concentration pathways

Procedia PDF Downloads 119
1235 Sedimentology and Geochemistry of Carbonate Bearing-Argillites on the Southeastern Flank of Mount Cameroon, Likomba

Authors: Chongwain G. Mbzighaa, Christopher M. Agyingi, Josepha-Forba-Tendo

Abstract:

Background and aim: Sedimentological, geochemical and petrographic studies were carried out on carbonate-bearing argillites outcropping at the southeastern flank of Mount Cameroon (Likomba) to determine the lithofacies and their associations, major element geochemistry and mineralogy. Methods: Major elements of the rocks were analyzed using XRF technique. Thermal analysis and thin section studies were carried out accompanied with the determination of insoluble components of the carbonates. Results: The carbonates are classed as biomicrites with siderite being the major carbonate mineral. Clay, quartz and pyrite constitute the major insoluble components of these rocks. Geochemical results depict a broad variation in their concentrations with silica and iron showing the highest concentrations and sodium and manganese with the least concentrations. Two factors were revealed with the following elemental associations, Fe2O3-MgO-Mn2O3 (72.56 %) and TiO2-SiO2-Al2O3-K2O (23.20%) indicating both Fe-enrichment, the subsequent formation of the siderite and the contribution of the sediments to the formation of these rocks. Conclusion: The rocks consist of cyclic iron-rich carbonates alternating with sideritic-shales and might have been formed as a result of variations in the sea conditions as well as variation in sediment influx resulting from transgression and regression sequences occurring in a shallow to slightly deep marine environments.

Keywords: sedimentology, geochemistry, petrography, iron carbonates, Likomba

Procedia PDF Downloads 444
1234 Statistical Time-Series and Neural Architecture of Malaria Patients Records in Lagos, Nigeria

Authors: Akinbo Razak Yinka, Adesanya Kehinde Kazeem, Oladokun Oluwagbenga Peter

Abstract:

Time series data are sequences of observations collected over a period of time. Such data can be used to predict health outcomes, such as disease progression, mortality, hospitalization, etc. The Statistical approach is based on mathematical models that capture the patterns and trends of the data, such as autocorrelation, seasonality, and noise, while Neural methods are based on artificial neural networks, which are computational models that mimic the structure and function of biological neurons. This paper compared both parametric and non-parametric time series models of patients treated for malaria in Maternal and Child Health Centres in Lagos State, Nigeria. The forecast methods considered linear regression, Integrated Moving Average, ARIMA and SARIMA Modeling for the parametric approach, while Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Network were used for the non-parametric model. The performance of each method is evaluated using the Mean Absolute Error (MAE), R-squared (R2) and Root Mean Square Error (RMSE) as criteria to determine the accuracy of each model. The study revealed that the best performance in terms of error was found in MLP, followed by the LSTM and ARIMA models. In addition, the Bootstrap Aggregating technique was used to make robust forecasts when there are uncertainties in the data.

Keywords: ARIMA, bootstrap aggregation, MLP, LSTM, SARIMA, time-series analysis

Procedia PDF Downloads 75
1233 Impact of Economic Crisis on Secondary Education in Anambra State

Authors: Stella Nkechi Ezeaku, Ifunanya Nkechi Ohamobi

Abstract:

This study investigated the impact of economic crisis on education in Anambra state. The population of the study comprised of all principals and teachers in Anambra state numbering 5,887 (253 principles and 5,634 teachers). To guide the study, three research questions and one hypothesis were formulated correlational design was adopted. Stratified random sampling technique was used to select 200 principals and 300 teachers as respondents for the study. A researcher-developed instrument tagged Impact of Economic Crisis on Education questionnaire (IECEQ) was used to collect data needed for the study. The instrument was validated by experts in measurement and evaluation. The reliability of the instrument was established using randomly selected members of the population who did not take part in the study. The data obtained was analyzed using Cronbach alpha technique and reliability co-efficient of .801 and .803 was obtained. The data were analyzed using simple and Multiple Regression Analysis. The formulated hypothesis was tested at .05 level of significance. Findings revealed that: there is a significant relationship between economic crisis and realization of goals of secondary education. The result also shows that economic crisis affect students' academic performance, teachers' morale and productivity and principals' administrative capability. This study therefore concludes that certain strategies must be devised to minimize the impact of economic crisis on secondary education. It is recommended that all stakeholders to education should be more resourceful and self-sufficient in order to cushion the effects of economic crisis currently gripping most world economies Nigeria inclusive.

Keywords: impact, economic, crisis, education

Procedia PDF Downloads 244
1232 Assessment of Availability and Factors Associated with Improved Sanitation Facilities in Urban Kebeles of Dire Dawa City, Eastern Ethiopia in 2022

Authors: Meki Detamo, Ahmed

Abstract:

Access to improved sanitation facilities is crucial for promoting community sanitation worldwide. In Ethiopia, however, sanitation remains a major development challenge despite growing attention and efforts by governments and donors. This study aimed to assess the availability of improved sanitation facilities and associated factors in urban kebeles of Dire Dawa City, Eastern Ethiopia, in 2022. A community-based cross-sectional study was conducted from March 6 to 30, 2022, using a multi-stage sampling technique to select 508 households. Data was collected through structured and pre-tested questionnaires using face-to-face interviews and observations and analyzed using SPSS Version 23. The availability of improved sanitation facilities was found to be remarkably high at 98.2% (95% CI: 97.0, 99.2), with 60.8% of households having a handwashing facility in or around the latrine, 86.0% using soap and water, and 89.0% using an improved water source for drinking. Logistic regression analysis revealed that households with a family size of less than four, those who owned their own house, and those who had self-initiated latrine construction were significantly associated with the availability of improved sanitation facilities. The study recommends the implementation of continuous refreshment training to emphasize the benefits of improved sanitation facilities in the urban community and family planning. This study provides valuable insights into the high availability of improved sanitation facilities in urban areas of Ethiopia and can inform future efforts to improve community sanitation.

Keywords: sanitation facilities, availability, improved, Dire Dawa, Ethiopia

Procedia PDF Downloads 77
1231 Correlation between Overweightness and the Extent of Coronary Atherosclerosis among the South Caspian Population

Authors: Maryam Nabati, Mahmood Moosazadeh, Ehsan Soroosh, Hanieh Shiraj, Mahnaneh Gholami, Ali Ghaemian

Abstract:

Background: Reported effects of obesity on the extent of angiographic coronary artery disease(CAD) have beeninconsistent. The present study aimed to investigate the relationships between the indices of obesity and otheranthropometric markers with the extent of CAD. Methods: This study was conducted on 1008 consecutive patients who underwent coronary angiography. Bodymass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR) wereseparately calculated for each patient. Extent, severity, and complexity of CAD were determined by the Gensini andSYNTAX scores. Results: According to the results, there was a significant inverse correlation between the SYNTAX score with BMI(r = − 0.110; P < 0.001), WC (r = − 0.074; P = 0.018), and WHtR (r = − 0.089; P = 0.005). Furthermore, a significant inversecorrelation was observed between the Gensini score with BMI (r = − 0.090; P = 0.004) and WHtR (r = − 0.065; P =0.041). However, the results of multivariate linear regression analysis did not show any association between theSYNTAX and Gensini scores with the indices of obesity and overweight. On the other hand, the patients with anunhealthy WC had a higher prevalence of diabetes mellitus (DM) (P = 0.004) and hypertension (HTN) (P < 0.001) compared to the patients with healthy values. Coexistence of HTN and DM was more prevalent in subjects with anunhealthy WC and WHR compared to that in those with healthy values (P = 0.002 and P = 0.032, respectively). Conclusion: It seems that the anthropometric indices of obesity are not the predictors of the angiographic severityof CAD. However, they are associated with an increased risk of cardiovascular risk factors and higher risk profile.

Keywords: body mass index, BMI, coronary artery disease, waist circumference

Procedia PDF Downloads 140
1230 Variability of Climatic Elements in Nigeria Over Recent 100 Years

Authors: T. Salami, O. S. Idowu, N. J. Bello

Abstract:

Climatic variability is an essential issue when dealing with the issue of climate change. Variability of some climate parameter helps to determine how variable the climatic condition of a region will behave. The most important of these climatic variables which help to determine the climatic condition in an area are both the Temperature and Precipitation. This research deals with Longterm climatic variability in Nigeria. Variables examined in this analysis include near-surface temperature, near surface minimum temperature, maximum temperature, relative humidity, vapour pressure, precipitation, wet-day frequency and cloud cover using data ranging between 1901-2010. Analyses were carried out and the following methods were used: - Regression and EOF analysis. Results show that the annual average, minimum and maximum near-surface temperature all gradually increases from 1901 to 2010. And they are in the same case in a wet season and dry season. Minimum near-surface temperature, with its linear trends are significant for annual, wet season and dry season means. However, the diurnal temperature range decreases in the recent 100 years imply that the minimum near-surface temperature has increased more than the maximum. Both precipitation and wet day frequency decline from the analysis, demonstrating that Nigeria has become dryer than before by the way of rainfall. Temperature and precipitation variability has become very high during these periods especially in the Northern areas. Areas which had excessive rainfall were confronted with flooding and other related issues while area that had less precipitation were all confronted with drought. More practical issues will be presented.

Keywords: climate, variability, flooding, excessive rainfall

Procedia PDF Downloads 384
1229 Prevalence of Cerebral Microbleeds in Apparently Healthy, Elderly Population: A Meta-Analysis

Authors: Vidishaa Jali, Amit Sinha, Kameshwar Prasad

Abstract:

Background and Objective: Cerebral microbleeds are frequently found in healthy elderly individuals. We performed a meta- analysis to determine the prevalence of cerebral microbleeds in apparently healthy, elderly population and to determine the effect of age, smoking and hypertension on the occurrence of cerebral microbleeds. Methods: Relevant literature was searched using electronic databases such as MEDLINE, EMBASE, PubMed, Cochrane database, Google scholar to identify studies on the prevalence of cerebral microbleeds in general elderly population till March 2016. STATA version 13 software was used for analysis. Fixed effect model was used if heterogeneity was less than 50%. Otherwise, random effect model was used. Meta- regression analysis was performed to check any effect of important variables such as age, smoking, hypertension. Selection Criteria: We included cross-sectional studies performed in apparently healthy elderly population, who had age more than 50 years. Results: The pooled proportion of cerebral microbleeds in healthy population is 12% (95% CI, 0.11 to 0.13). No significant effect of age was found on the prevalence of cerebral microbleeds (p= 0.99). A linear relationship between increase in hypertension and the prevalence of cerebral microbleeds was found, however, this linear relationship was not statistically significant (p=0.16). Similarly, A linear relationship between increase in smoking and the prevalence of cerebral microbleeds was found, however, this linear relationship was also not statistically significant (p=0.21). Conclusion: Presence of cerebral microbleeds is evident in apparently healthy, elderly population, in more than 10% of individuals.

Keywords: apparently healthy, elderly, prevalence, cerebral microbleeds

Procedia PDF Downloads 296
1228 Impact of Behavioral Biases on Indian Investors: Case Analysis of a Mutual Fund Investment Company

Authors: Priyal Motwani, Garvit Goel

Abstract:

In this study, we have studied and analysed the transaction data of investors of a mutual fund investment company based in India. Based on the data available, we have identified the top four biases that affect the investors of the emerging market economies through regression analysis and three uniquely defined ratios. We found that the four most prominent biases that affected the investment making decisions in India are– Chauffer Knowledge, investors tend to make ambitious decisions about sectors they know little about; Bandwagon effect – the response of the market indices to macroeconomic events are more profound and seem to last longer compared to western markets; base-rate neglect – judgement about stocks are too much based on the most recent development ignoring the long-term fundamentals of the stock; availability bias – lack of proper communication channels of market information lead people to be too reliant on limited information they already have. After segregating the investors into six groups, the results have further been studied to identify a correlation among the demographics, gender and unique cultural identity of the derived groups and the corresponding prevalent biases. On the basis of the results obtained from the derived groups, our study recommends six methods, specific to each group, to educate the investors about the prevalent biases and their role in investment decision making.

Keywords: Bandwagon effect, behavioural biases, Chauffeur knowledge, demographics, investor literacy, mutual funds

Procedia PDF Downloads 230
1227 Predicting Entrepreneurial Intentions among Undergraduates Using Theory of Planned Behaviour

Authors: Mohammed Abubakar Mawoli

Abstract:

Theory of Planned Behavior (TPB) is a useful tool for predicting entrepreneurial intentions among individuals or groups of people. In view of the Nigerian government’s renewed educational policies and programs to prepare Nigerian undergraduates towards self-reliance and employers of labor after graduation, it becomes pertinent to empirically examine and predict the undergraduate’s entrepreneurial intentions at graduation. Thus, this study primarily examines the undergraduates entrepreneurial intentions using TPB, which includes perceived desirability, perceived social norm, and perceived feasibility factors. In so doing, a questionnaire research method was adopted in which 219 copies of a questionnaire distributed to final year undergraduates were belonging to five departments with a total population of 487 students. A combination of relative frequency, mean standard deviation and multiple regression statistical tools were employed for data analysis. The study found that TPB components exert a significant composite effect on undergraduate’s entrepreneurial intentions. Based on individual contribution of the independent variables, Perceived Desirability is the strongest predictor of the undergraduate’s entrepreneurial intentions, while Perceived Social Norm is a strong predictor of the undergraduate’s entrepreneurial intentions. However, Perceived Feasibility is not a strong predictor of student’s entrepreneurial intentions. The study therefore, recommends that the Perceived desirability, which is formed and shaped by ones level of education and skills acquisition, be improved upon to create the expected positive impact on graduates entrepreneurial intentions and possible venture creation.

Keywords: entrepreneurship, entrepreneurship education, entrepreneurial intentions, planned behaviour, prediction, Nigeria

Procedia PDF Downloads 299
1226 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall

Procedia PDF Downloads 277
1225 A Study of Relational Factors Associated with Online Celebrity Business and Consumer Purchase Intention

Authors: Sixing Chen, Shuai Yang

Abstract:

Online celebrity business, also known as Internet celebrity business (or Wanghong business in Chinese), is an emerging relational C2C business model, and an alternative to traditional C2C transactional business models. There are already millions of these consumers, and this number is growing. In this model, consumer purchase decisions are driven by recommendations and endorsements in videos posted online by celebrities. The purpose of this paper is to determine the relational constructs within consumer relationships in the Internet celebrity business model and to investigate relationships between the constructs and consumer purchase intention. A questionnaire-based study was conducted with consumers who had an awareness of, or prior purchase experience with online celebrities. The results of exploratory factor analysis (EFA) and multiple regression analysis revealed three valid relational constructs: product experience sharing, lifestyle association, and real-time interaction. This study indicated that these constructs had the direct effect on consumer preference and purchase intention. The findings of this study provide insight into a business model in which online shopping is driven by celebrities. They suggest that online celebrities should pay more attention to product experience sharing, life style association and real-time interaction for managing their product promotions. These are the most salient factors with respect to the relational constructs identified in this study.

Keywords: customer relationship, customer to customer, Internet celebrity, online celebrity, online marketing, purchase intention

Procedia PDF Downloads 318
1224 Farmers' Perception of the Effects of Climate Change on Rice Production in Nasarawa State, Nigeria

Authors: P. O. Fatoki, R. S. Olaleye, B. O. Adeniji

Abstract:

The study investigated farmers’ perception of the effects of climate change on rice production in Nasarawa State, Nigeria. Multi-stage sampling technique was used in selecting a total of 248 rice farmers from the study area. Data for the study were collected through the use of interview schedule. The data were analysed using both descriptive and inferential statistics. Results showed that majority (71.8%) of the respondents were married and the mean age of the respondents was 44.54 years. The results also showed that most adapted strategies for mitigating the effects of climate change on rice production were change of planting and harvesting date (67.7%), movement to another site (63.7%) and increased or reduced land size (58.5%). Relationship between the roles of extension agents in mitigating climate change effects on rice production and farmers’ perception were significant as revealed Chi-Square analysis from the study ; Dissemination of information ( = 2.16, P < 0.05) and use of demonstration methods ( = 2.15, P < 0.05). Poisson regression analysis revealed that educational status, farm size, experience and yield had significant relationship with the perception of the effects of climate change at 0.01 significance level while household size was as well significant at 0.05. It is recommended that some of the adaptive strategies and practices for mitigating the effects of climate change in rice production should be improved, while the extension outfits should be strengthened to ensure adequate dissemination of relevant information on climate change with a view to mitigate its effects on rice production.

Keywords: perception, rice farmers, climate change, mitigation, adaptive strategies

Procedia PDF Downloads 357
1223 Value of Willingness to Pay for a Quality-Adjusted Life Years Gained in Iran; A Modified Chained-Approach

Authors: Seyedeh-Fariba Jahanbin, Hasan Yusefzadeh, Bahram Nabilou, Cyrus Alinia, Cyrus Alinia

Abstract:

Background: Due to the lack of a constant Willingness to Pay per one additional Quality Adjusted Life Years gained based on the preferences of Iran’s general public, the cost-efectiveness of health system interventions is unclear and making it challenging to apply economic evaluation to health resources priority setting. Methods: We have measured this cost-efectiveness threshold with the participation of 2854 individuals from fve provinces, each representing an income quintile, using a modifed Time Trade-Of-based Chained-Approach. In this online-based empirical survey, to extract the health utility value, participants were randomly assigned to one of two green (21121) and yellow (22222) health scenarios designed based on the earlier validated EQ-5D-3L questionnaire. Results: Across the two health state versions, mean values for one QALY gain (rounded) ranged from $6740-$7400 and $6480-$7120, respectively, for aggregate and trimmed models, which are equivalent to 1.35-1.18 times of the GDP per capita. Log-linear Multivariate OLS regression analysis confrmed that respondents were more likely to pay if their income, disutility, and education level were higher than their counterparts. Conclusions: In the health system of Iran, any intervention that is with the incremental cost-efectiveness ratio, equal to and less than 7402.12 USD, will be considered cost-efective.

Keywords: willingness to Pay, QALY, chained-approach, cost-efectiveness threshold, Iran

Procedia PDF Downloads 85