Search results for: protein-protein interaction networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6623

Search results for: protein-protein interaction networks

4463 A Semantic E-Learning and E-Assessment System of Learners

Authors: Wiem Ben Khalifa, Dalila Souilem, Mahmoud Neji

Abstract:

The evolutions of Social Web and Semantic Web lead us to ask ourselves about the way of supporting the personalization of learning by means of intelligent filtering of educational resources published in the digital networks. We recommend personalized courses of learning articulated around a first educational course defined upstream. Resuming the context and the stakes in the personalization, we also suggest anchoring the personalization of learning in a community of interest within a group of learners enrolled in the same training. This reflection is supported by the display of an active and semantic system of learning dedicated to the constitution of personalized to measure courses and in the due time.

Keywords: Semantic Web, semantic system, ontology, evaluation, e-learning

Procedia PDF Downloads 336
4462 Impacts on Marine Ecosystems Using a Multilayer Network Approach

Authors: Nelson F. F. Ebecken, Gilberto C. Pereira, Lucio P. de Andrade

Abstract:

Bays, estuaries and coastal ecosystems are some of the most used and threatened natural systems globally. Its deterioration is due to intense and increasing human activities. This paper aims to monitor the socio-ecological in Brazil, model and simulate it through a multilayer network representing a DPSIR structure (Drivers, Pressures, States-Impacts-Responses) considering the concept of Management based on Ecosystems to support decision-making under the National/State/Municipal Coastal Management policy. This approach considers several interferences and can represent a significant advance in several scientific aspects. The main objective of this paper is the coupling of three different types of complex networks, the first being an ecological network, the second a social network, and the third a network of economic activities, in order to model the marine ecosystem. Multilayer networks comprise two or more "layers", which may represent different types of interactions, different communities, different points in time, and so on. The dependency between layers results from processes that affect the various layers. For example, the dispersion of individuals between two patches affects the network structure of both samples. A multilayer network consists of (i) a set of physical nodes representing entities (e.g., species, people, companies); (ii) a set of layers, which may include multiple layering aspects (e.g., time dependency and multiple types of relationships); (iii) a set of state nodes, each of which corresponds to the manifestation of a given physical node in a layer-specific; and (iv) a set of edges (weighted or not) to connect the state nodes among themselves. The edge set includes the intralayer edges familiar and interlayer ones, which connect state nodes between layers. The applied methodology in an existent case uses the Flow cytometry process and the modeling of ecological relationships (trophic and non-trophic) following fuzzy theory concepts and graph visualization. The identification of subnetworks in the fuzzy graphs is carried out using a specific computational method. This methodology allows considering the influence of different factors and helps their contributions to the decision-making process.

Keywords: marine ecosystems, complex systems, multilayer network, ecosystems management

Procedia PDF Downloads 113
4461 Design of Bidirectional Wavelength Division Multiplexing Passive Optical Network in Optisystem Environment

Authors: Ashiq Hussain, Mahwash Hussain, Zeenat Parveen

Abstract:

Now a days the demand for broadband service has increased. Due to which the researchers are trying to find a solution to provide a large amount of service. There is a shortage of bandwidth because of the use of downloading video, voice and data. One of the solutions to overcome this shortage of bandwidth is to provide the communication system with passive optical components. We have increased the data rate in this system. From experimental results we have concluded that the quality factor has increased by adding passive optical networks.

Keywords: WDM-PON, optical fiber, BER, Q-factor, eye diagram

Procedia PDF Downloads 510
4460 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study

Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa

Abstract:

The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.

Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity

Procedia PDF Downloads 415
4459 Distributed Key Management With Less Transmitted Messaged In Rekeying Process To Secure Iot Wireless Sensor Networks In Smart-Agro

Authors: Safwan Mawlood Hussien

Abstract:

Internet of Things (IoT) is a promising technology has received considerable attention in different fields such as health, industry, defence, and agro, etc. Due to the limitation capacity of computing, storage, and communication, IoT objects are more vulnerable to attacks. Many solutions have been proposed to solve security issues, such as key management using symmetric-key ciphers. This study provides a scalable group distribution key management based on ECcryptography; with less transmitted messages The method has been validated through simulations in OMNeT++.

Keywords: elliptic curves, Diffie–Hellman, discrete logarithm problem, secure key exchange, WSN security, IoT security, smart-agro

Procedia PDF Downloads 119
4458 Cluster Based Ant Colony Routing Algorithm for Mobile Ad-Hoc Networks

Authors: Alaa Eddien Abdallah, Bajes Yousef Alskarnah

Abstract:

Ant colony based routing algorithms are known to grantee the packet delivery, but they su ffer from the huge overhead of control messages which are needed to discover the route. In this paper we utilize the network nodes positions to group the nodes in connected clusters. We use clusters-heads only on forwarding the route discovery control messages. Our simulations proved that the new algorithm has decreased the overhead dramatically without affecting the delivery rate.

Keywords: ad-hoc network, MANET, ant colony routing, position based routing

Procedia PDF Downloads 425
4457 The Influence of Human Movement on the Formation of Adaptive Architecture

Authors: Rania Raouf Sedky

Abstract:

Adaptive architecture relates to buildings specifically designed to adapt to their residents and their environments. To design a biologically adaptive system, we can observe how living creatures in nature constantly adapt to different external and internal stimuli to be a great inspiration. The issue is not just how to create a system that is capable of change but also how to find the quality of change and determine the incentive to adapt. The research examines the possibilities of transforming spaces using the human body as an active tool. The research also aims to design and build an effective dynamic structural system that can be applied on an architectural scale and integrate them all into the creation of a new adaptive system that allows us to conceive a new way to design, build and experience architecture in a dynamic manner. The main objective was to address the possibility of a reciprocal transformation between the user and the architectural element so that the architecture can adapt to the user, as the user adapts to architecture. The motivation is the desire to deal with the psychological benefits of an environment that can respond and thus empathize with human emotions through its ability to adapt to the user. Adaptive affiliations of kinematic structures have been discussed in architectural research for more than a decade, and these issues have proven their effectiveness in developing kinematic structures, responsive and adaptive, and their contribution to 'smart architecture'. A wide range of strategies have been used in building complex kinetic and robotic systems mechanisms to achieve convertibility and adaptability in engineering and architecture. One of the main contributions of this research is to explore how the physical environment can change its shape to accommodate different spatial displays based on the movement of the user’s body. The main focus is on the relationship between materials, shape, and interactive control systems. The intention is to develop a scenario where the user can move, and the structure interacts without any physical contact. The soft form of shifting language and interaction control technology will provide new possibilities for enriching human-environmental interactions. How can we imagine a space in which to construct and understand its users through physical gestures, visual expressions, and response accordingly? How can we imagine a space whose interaction depends not only on preprogrammed operations but on real-time feedback from its users? The research also raises some important questions for the future. What would be the appropriate structure to show physical interaction with the dynamic world? This study concludes with a strong belief in the future of responsive motor structures. We imagine that they are developing the current structure and that they will radically change the way spaces are tested. These structures have obvious advantages in terms of energy performance and the ability to adapt to the needs of users. The research highlights the interface between remote sensing and a responsive environment to explore the possibility of an interactive architecture that adapts to and responds to user movements. This study ends with a strong belief in the future of responsive motor structures. We envision that it will improve the current structure and that it will bring a fundamental change to the way in which spaces are tested.

Keywords: adaptive architecture, interactive architecture, responsive architecture, tensegrity

Procedia PDF Downloads 157
4456 Determining Water Use Efficiency of Mung Bean (Vigna radiata L.) under Arid Climatic Conditions

Authors: Awais Ahmad, Mostafa Muhammad Selim, Ali Abdullah Alderfasi

Abstract:

Water limitation is undoubtedly a critical environmental constraint limiting the crop production under arid and semiarid areas. Mung bean is susceptible to both drought and water logging stresses. Therefore, present study was conducted to assess the water deficit stress consequences of yield components and water use efficiency in Mung bean. A field experiment was conducted at Educational Farm, Crop Production Department, College of Food and Agricultural Sciences, Kind Saud University, Saudi Arabia. Trail comprised of four irrigation levels — total amount of irrigation divided into irrigation intervals — (3, 5, 7 and 9 days interval) and three Mung bean genotypes; Kawmay-1, VC-2010 and King from Egypt, Thailand and China respectively. Experiment was arranged under split plot design having irrigation as main while genotype as subplot treatment, and replicated thrice. Plant height, 100 seed weight, biological yield, seed yield, harvest index and water use efficiency were recorded at harvesting. Results revealed that decrease in irrigation have significantly hampered all the studied parameters. Mung bean genotypes have also shown significant differences for all parameters, whereas irrigation genotype interaction was highly significant for seed yield, harvest index and water use efficiency (WUE) while it was significant for biological yield. Plant height and 100 seed weight were recorded non-significant for irrigation genotype interaction. A statistically highly significant correlation among recorded parameters was observed. Minimum irrigation interval (3 days) significantly produced maximum values while VC-2010 comparatively performed better under low irrigation levels. It was concluded that Mung bean may be successfully adopted under Saudi Arabian climate but it needs high water or frequent irrigation, however, genotypic differences are a hope to develop some improved varieties with high water use efficiency.

Keywords: mung bean, irrigation intervals, water use efficiency, genotypes, yield

Procedia PDF Downloads 274
4455 Simulating the Interaction of Strategy Development and Project Delivery

Authors: Nipun Agarwal, David Paul, Fareed Un Din

Abstract:

Every organization develops a strategy that needs to be implemented and is undertaken through project delivery. In essence, project requirements should exactly replicate an organization’s strategy. In reality this does not happen, and behavioral factors deviate the project delivery from the strategic objectives. This occurs as project stakeholders can have competing objectives. Resultantly, requirements that are implemented through projects are less aligned to the strategy. This paper develops a game theoretic model to simulate why such deviations occur. That explains the difference between strategy development and implementation.

Keywords: strategy, simulation, project management, game theory

Procedia PDF Downloads 138
4454 Virtual Approach to Simulating Geotechnical Problems under Both Static and Dynamic Conditions

Authors: Varvara Roubtsova, Mohamed Chekired

Abstract:

Recent studies on the numerical simulation of geotechnical problems show the importance of considering the soil micro-structure. At this scale, soil is a discrete particle medium where the particles can interact with each other and with water flow under external forces, structure loads or natural events. This paper presents research conducted in a virtual laboratory named SiGran, developed at IREQ (Institut de recherche d’Hydro-Quebec) for the purpose of investigating a broad range of problems encountered in geotechnics. Using Discrete Element Method (DEM), SiGran simulated granular materials directly by applying Newton’s laws to each particle. The water flow was simulated by using Marker and Cell method (MAC) to solve the full form of Navier-Stokes’s equation for non-compressible viscous liquid. In this paper, examples of numerical simulation and their comparisons with real experiments have been selected to show the complexity of geotechnical research at the micro level. These examples describe transient flows into a porous medium, interaction of particles in a viscous flow, compacting of saturated and unsaturated soils and the phenomenon of liquefaction under seismic load. They also provide an opportunity to present SiGran’s capacity to compute the distribution and evolution of energy by type (particle kinetic energy, particle internal elastic energy, energy dissipated by friction or as a result of viscous interaction into flow, and so on). This work also includes the first attempts to apply micro discrete results on a macro continuum level where the Smoothed Particle Hydrodynamics (SPH) method was used to resolve the system of governing equations. The material behavior equation is based on the results of simulations carried out at a micro level. The possibility of combining three methods (DEM, MAC and SPH) is discussed.

Keywords: discrete element method, marker and cell method, numerical simulation, multi-scale simulations, smoothed particle hydrodynamics

Procedia PDF Downloads 302
4453 Monetary Policy and Assets Prices in Nigeria: Testing for the Direction of Relationship

Authors: Jameelah Omolara Yaqub

Abstract:

One of the main reasons for the existence of central bank is that it is believed that central banks have some influence on private sector decisions which will enable the Central Bank to achieve some of its objectives especially that of stable price and economic growth. By the assumption of the New Keynesian theory that prices are fully flexible in the short run, the central bank can temporarily influence real interest rate and, therefore, have an effect on real output in addition to nominal prices. There is, therefore, the need for the Central Bank to monitor, respond to, and influence private sector decisions appropriately. This thus shows that the Central Bank and the private sector will both affect and be affected by each other implying considerable interdependence between the sectors. The interdependence may be simultaneous or not depending on the level of information, readily available and how sensitive prices are to agents’ expectations about the future. The aim of this paper is, therefore, to determine whether the interdependence between asset prices and monetary policy are simultaneous or not and how important is this relationship. Studies on the effects of monetary policy have largely used VAR models to identify the interdependence but most have found small effects of interaction. Some earlier studies have ignored the possibility of simultaneous interdependence while those that have allowed for simultaneous interdependence used data from developed economies only. This study, therefore, extends the literature by using data from a developing economy where information might not be readily available to influence agents’ expectation. In this study, the direction of relationship among variables of interest will be tested by carrying out the Granger causality test. Thereafter, the interaction between asset prices and monetary policy in Nigeria will be tested. Asset prices will be represented by the NSE index as well as real estate prices while monetary policy will be represented by money supply and the MPR respectively. The VAR model will be used to analyse the relationship between the variables in order to take account of potential simultaneity of interdependence. The study will cover the period between 1980 and 2014 due to data availability. It is believed that the outcome of the research will guide monetary policymakers especially the CBN to effectively influence the private sector decisions and thereby achieve its objectives of price stability and economic growth.

Keywords: asset prices, granger causality, monetary policy rate, Nigeria

Procedia PDF Downloads 221
4452 IT System in the Food Supply Chain Safety, Application in SMEs Sector

Authors: Mohsen Shirani, Micaela Demichela

Abstract:

Food supply chain is one of the most complex supply chain networks due to its perishable nature and customer oriented products, and food safety is the major concern for this industry. IT system could help to minimize the production and consumption of unsafe food by controlling and monitoring the entire system. However, there have been many issues in adoption of IT system in this industry specifically within SMEs sector. With this regard, this study presents a novel approach to use IT and tractability systems in the food supply chain, using application of RFID and central database.

Keywords: food supply chain, IT system, safety, SME

Procedia PDF Downloads 477
4451 The Tradition of Drinking Tuak in Batak Society againts the Law of Alcohol Usage in Indonesia

Authors: Siti Hazar Sitorus, Marini Kristina Situmeang, Mukhammad Fatkhullah, Arfan Fadli

Abstract:

This study aims to examine how the Batak tribe in the Village Lumban Sitorus Parmaksian District, Toba Samosir (Tobasa) interpret the culture of drinking Tuak as a social interaction. This research uses qualitative method with case study approach. Through this approach, the researchers obtained primary data by looking at and observing the social interaction that occurs when the activity of drinking tuak takes place on the daily life of the Batak Toba community in the village of Lumban Sitorus. The technique of data collecting is done by observation and in-depth interview. This study focuses on Batak Toba community, especially men who daily drink tuak. The results obtained from this study is Batak Toba society has a habit of drinking Tuak (a type of alcoholic beverage derived from water sapphire juice that is fermented). In Batak Toba society, tuak is not only considered as an alcoholic drink which is usually drunk in the afternoon at lapotuak (tuak shop), but tuak is also understood as a drink of honor in a traditional party at Toba Batak society. On the other hand, the activity of drinking of tuak was also considered as a medium or a means of connecting the formation of a sense of solidarity among the people of LumbanSitorous Village. In its existence, drinking tuak is defined as a mean that can facilitate the establishment to open communication with fellow members of Batak Toba community, such as at leisure, birth party, death or as medicine. Specifically, tuak in a special sense in Batak Toba society is also a symbol of intimacy, gratitude, and respect which is manifested in the activity of daily drinking tuak. In Indonesia, if we refer to the Criminal Code in articles 300 and 536 it is clear that whoever intentionally sells and consumes intoxicating / alcoholic drinks will be subject to a maximum jail term of one year. It became interesting then when looking at Indonesia as a country that has a diversity of cultures in which the law implies the prohibition of alcoholic / intoxicating beverages. However, the existence of drinking of tuak as a drink that categorized intoxicating in Batak Toba society still continues to.

Keywords: tradition of drinking tuak, meaning of tuak, Batak society, cultural studies

Procedia PDF Downloads 225
4450 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization

Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın

Abstract:

There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.

Keywords: aircraft, fatigue, joint, life, optimization, prediction.

Procedia PDF Downloads 175
4449 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 74
4448 The Role of Leisure in Older Adults Transitioning to New Homes

Authors: Kristin Prentice, Carri Hand

Abstract:

As the Canadian population ages and chronic health conditions continue to escalate, older adults will require various types of housing, such as long term care or retirement homes. Moving to a new home may require a change in leisure activities and social networks, which could be challenging to maintain identity and create a sense of home. Leisure has been known to help older adults maintain or increase their quality of life and life satisfaction and may help older adults in moving to new homes. Sense of home and identity within older adults' transitions to new homes are concepts that may also relate to leisure engagement. Literature is scant regarding the role of leisure in older adults moving to new homes and how the sense of home and identity inter-relate. This study aims to explore how leisure may play a role in older adults' transitioning to new homes, including how sense of home and identity inter-relate. An ethnographic approach will be used to understand the culture of older adults transitioning to new homes. This study will involve older adults who have recently relocated to a mid-sized city in Ontario, Canada. The study will focus on the older adult’s interactions with and connections to their home environment through leisure. Data collection will take place via video-conferencing and will include a narrative interview and two other interviews to discuss an activity diary of leisure engagement pre and post move and mental maps to capture spaces where participants engaged in leisure. Participants will be encouraged to share photographs of leisure engagement taken inside and outside their home to help understand the social spaces the participants refer to in their activity diaries and mental maps. Older adults attempt to adjust to their new homes by maintaining their identity, developing a sense of home through creating attachment to place, and maintaining social networks, all of which have been linked to engaging in leisure. This research will provide insight into the role of leisure in this transition process and the extent that the home and community can contribute to aiding their transition to the new home. This research will contribute to existing literature on the inter-relationships of leisure, sense of home, and identity and how they relate to older adults moving to new homes. This research also has potential for influencing policy and practice for meeting the housing needs of older adults.

Keywords: leisure, older adults, transition, identity

Procedia PDF Downloads 120
4447 Fault Location Detection in Active Distribution System

Authors: R. Rezaeipour, A. R. Mehrabi

Abstract:

Recent increase of the DGs and microgrids in distribution systems, disturbs the tradition structure of the system. Coordination between protection devices in such a system becomes the concern of the network operators. This paper presents a new method for fault location detection in the active distribution networks, independent of the fault type or its resistance. The method uses synchronized voltage and current measurements at the interconnection of DG units and is able to adapt to changes in the topology of the system. The method has been tested on a 38-bus distribution system, with very encouraging results.

Keywords: fault location detection, active distribution system, micro grids, network operators

Procedia PDF Downloads 789
4446 Recognition of Tifinagh Characters with Missing Parts Using Neural Network

Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui

Abstract:

In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.

Keywords: Tifinagh character recognition, neural networks, local cost computation, ANN

Procedia PDF Downloads 334
4445 Preventive Effects of Motorcycle Helmets on Clinical Outcomes in Motorcycle Crashes

Authors: Seung Chul Lee, Jooyeong Kim, Ki Ok Ahn, Juok Park

Abstract:

Background: Injuries caused by motorcycle crashes are one of the major public health burdens leading to high mortality, functional disability. The risk of death among motorcyclists is 30 times greater than that among car drivers, with head injuries the leading cause of death. The motorcycle helmet is crucial protective equipment for motorcyclists. Aims: This study aimed to measure the protective effect of motorcycle helmet use on intracranial injury and mortality and to compare the preventive effect in drivers and passengers. Methods: This is a cross-sessional study based on the Emergency Department (ED)–based Injury In-depth Surveillance (EDIIS) database from 23 EDs in Korea. All of the trauma patients injured in motorcycle crashes between January 1, 2013 and December 31, 2016 were eligible, excluding cases with unknown helmet use and outcomes. The primary and secondary outcomes were intracranial injury and in-hospital mortality. We calculated adjusted odds ratios (AORs) of helmet use for study outcomes after adjusting for potential confounders. Using interaction models, we compared the protective effect of helmet use on outcomes across driving status (driver and passenger). Results: Among 17,791 eligible patients, 10,668 (60.0%) patients were wearing helmets at the time of the crash, 2,128 (12.0%) patients had intracranial injuries and 331 (1.9%) patients had in-hospital death. 16,381 (92.1%) patients were drivers and 1410 (7.9%) patients were passengers. 62.6% of drivers and 29.1% of passengers were wearing helmets at the time of the crash. Compared to un-helmeted group, the helmeted group was less likely to have an intracranial injury(8.0% vs. 17.9%, AOR: 0.43 (0.39-0.48)) and in-hospital mortality (1.0% vs. 3.2%, AOR: 0.29 (0.22-0.37)).In the interaction model, AORs (95% CIs) of helmet use for intracranial injury were 0.42 (0.38-0.47) in drivers and 0.61(0.41-0.90) in passengers, respectively. There was a significant preventive effect of helmet use on in-hospital mortality in drivers (AOR: 0.26(0.21–0.34)). Discussion and conclusions: Wearing helmets in motorcycle crashes reduced intracranial injuries and in-hospital mortality. The preventive effect of motorcycle helmet use on intracranial injury was stronger in drivers than in passengers. There was a significant preventive effect of helmet use on in-hospital mortality in driver but not in passengers. Public health efforts to increase motorcycle helmet use are needed to reduce health burden from injuries caused by motorcycle crashes.

Keywords: intracranial injury, helmet, mortality, motorcycle crashes

Procedia PDF Downloads 184
4444 Interaction of Steel Slag and Zeolite on Ammonium Nitrogen Removal and Its Illumination on a New Carrier Filling Configuration for Constructed Wetlands

Authors: Hongtao Zhu, Dezhi Sun

Abstract:

Nitrogen and phosphorus are essential nutrients for biomass growth. But excessive nitrogen and phosphorus can contribute to accelerated eutrophication of lakes and rivers. Constructed wetland is an efficient and eco-friendly wastewater treatment technology with low operating cost and low-energy consumption. Because of high affinity with ammonium ion, zeolite, as a common substrate, is applied in constructed wetlands worldwide. Another substrate seen commonly for constructed wetlands is steel slag, which has high contents of Ca, Al, or Fe, and possesses a strong affinity with phosphate. Due to the excellent ammonium removal ability of zeolite and phosphate removal ability of steel slag, they were considered to be combined in the substrate bed of a constructed wetland in order to enhance the simultaneous removal efficiencies of nitrogen and phosphorus. In our early tests, zeolite and steel slag were combined with each other in order to simultaneously achieve a high removal efficiency of ammonium-nitrogen and phosphate-phosphorus. However, compared with the results when only zeolite was used, the removal efficiency of ammonia was sharply decreased when zeolite and steel slag were used together. The main objective of this study was to establish an overview of the interaction of steel slag and zeolite on ammonium nitrogen removal. The CaO dissolution from slag, as well as the effects of influencing parameters (i.e. pH and Ca2+ concentration) on the ammonium adsorption onto zeolite, was systematically studied. Modeling results of Ca2+ and OH- release from slag indicated that pseudo-second order reaction had a better fitness than pseudo-first order reaction. Changing pH value from 7 to 12 would result in a drastic reduction of the ammonium adsorption capacity on zeolite, from the peak at pH7. High Ca2+ concentration in solution could also inhibit the adsorption of ammonium onto zeolite. The mechanism for steel slag inhibiting the ammonium adsorption capacity of zeolite includes: on one hand, OH- released from steel slag can react with ammonium ions to produce molecular form ammonia (NH3∙H2O), which would cause the dissociation of NH4+ from zeolite. On the other hand, Ca2+ could replace the NH4+ ions to adhere onto the surface of zeolite. An innovative substrate filling configuration that zeolite and steel slag are placed sequentially was proposed to eliminate the disadvantageous effects of steel slag. Experimental results showed that the novel filling configuration was superior to the other two contrast filling configurations in terms of ammonium removal.

Keywords: ammonium nitrogen, constructed wetlands, steel slag, zeolite

Procedia PDF Downloads 255
4443 Challenges over Two Semantic Repositories - OWLIM and AllegroGraph

Authors: Paria Tajabor, Azin Azarbani

Abstract:

The purpose of this research study is exploring two kind of semantic repositories with regards to various factors to find the best approaches that an artificial manager can use to produce ontology in a system based on their interaction, association and research. To this end, as the best way to evaluate each system and comparing with others is analysis, several benchmarking over these two repositories were examined. These two semantic repositories: OWLIM and AllegroGraph will be the main core of this study. The general objective of this study is to be able to create an efficient and cost-effective manner reports which is required to support decision making in any large enterprise.

Keywords: OWLIM, allegrograph, RDF, reasoning, semantic repository, semantic-web, SPARQL, ontology, query

Procedia PDF Downloads 262
4442 Flipped Classrooms 3.0: An Investigation of Students’ Speaking Performance and Learning Engagement

Authors: I Putu Indra Kusuma

Abstract:

The rapid development of Information and Communication Technology (ICT) tools has improved the implementation of flipped classrooms in English Language Teaching (ELT), especially in speaking course. Flipped classrooms have therefore evolved from the oldest version, which uses recorded videos to the newest one (3.0 version), which combines various materials and enables out-of-class interaction and learning engagement. However, how the latest version of flipped classrooms affects students’ speaking performance and influences students’ learning engagement remains unclear. This study therefore sought (1) to examine the effect of flipped classrooms 3.0 towards students’ speaking performance and (2) to explore the students’ learning engagement during the implementation of flipped classrooms in the speaking course. This study then employed explanatory sequential mixed-method design. This study conducted a quasi-experimental study by recruiting 164 twelfth grade students of a public senior high school in Indonesia as the sample. They were distributed into experimental (80 students) and control (84 students) groups. The experimental group was treated by implementing flipped classrooms with various use of ICT tools such as Schoology, Youtube, websites, and Flipgrid for eight weeks. Meanwhile, the control group implemented a conventional method. Furthermore, there were two variables examined in this study, such as the implementation of flipped classrooms 3.0 as the independent variable and students’ speaking performance as the dependent variable. The data of these two variables were then collected through administering a speaking test to both groups. The data from this experimental study were analyzed by using independent t-test analysis. Also, five students were invited to participate in semi-structured interviews to explore their learning engagement during the implementation of flipped classrooms. The findings revealed that there was a significant difference in students’ speaking performance between experimental where t (df = 162) = 5.810, p < 0.001, d = 0.91 in which experimental group performed better in speaking than the control group. Also, the results of interviews showed that the students had positive learning engagement during the implementation of flipped classrooms 3.0, especially on out-of-class interactions and face-to-face meetings. Some relevant implications to ELT, especially in speaking courses, are also drawn from the data findings. From the findings, it can be concluded that flipped classrooms 3.0 has a significant effect on students’ speaking performance and it promotes students’ learning engagement. Therefore, flipped classrooms 3.0 should be embraced as the newest version of flipped classrooms that promotes interaction outside the classrooms and learning engagement.

Keywords: Flipped Classrooms 3.0, learning engagement, teaching speaking with technology, technology-enhanced language learning

Procedia PDF Downloads 132
4441 Impact of Gaming Environment in Education

Authors: Md. Ataur Rahman Bhuiyan, Quazi Mahabubul Hasan, Md. Rifat Ullah

Abstract:

In this research, we did explore the effectiveness of the gaming environment in education and compared it with the traditional education system. We take several workshops in both learning environments. We measured student’s performance by providing a grading score (by professional academics) on their attitude in different criteria. We also collect data from survey questionnaires to understand student’s experiences towards education and study. Finally, we examine the impact of the different learning environments by applying statistical hypothesis tests, the T-test, and the ANOVA test.

Keywords: gamification, game-based learning, education, statistical analysis, human-computer interaction

Procedia PDF Downloads 232
4440 Predicting Depth of Penetration in Abrasive Waterjet Cutting of Polycrystalline Ceramics

Authors: S. Srinivas, N. Ramesh Babu

Abstract:

This paper presents a model to predict the depth of penetration in polycrystalline ceramic material cut by abrasive waterjet. The proposed model considered the interaction of cylindrical jet with target material in upper region and neglected the role of threshold velocity in lower region. The results predicted with the proposed model are validated with the experimental results obtained with Silicon Carbide (SiC) blocks.

Keywords: abrasive waterjet cutting, analytical modeling, ceramics, micro-cutting and inter-grannular cracking

Procedia PDF Downloads 305
4439 Non-intrusive Hand Control of Drone Using an Inexpensive and Streamlined Convolutional Neural Network Approach

Authors: Evan Lowhorn, Rocio Alba-Flores

Abstract:

The purpose of this work is to develop a method for classifying hand signals and using the output in a drone control algorithm. To achieve this, methods based on Convolutional Neural Networks (CNN) were applied. CNN's are a subset of deep learning, which allows grid-like inputs to be processed and passed through a neural network to be trained for classification. This type of neural network allows for classification via imaging, which is less intrusive than previous methods using biosensors, such as EMG sensors. Classification CNN's operate purely from the pixel values in an image; therefore they can be used without additional exteroceptive sensors. A development bench was constructed using a desktop computer connected to a high-definition webcam mounted on a scissor arm. This allowed the camera to be pointed downwards at the desk to provide a constant solid background for the dataset and a clear detection area for the user. A MATLAB script was created to automate dataset image capture at the development bench and save the images to the desktop. This allowed the user to create their own dataset of 12,000 images within three hours. These images were evenly distributed among seven classes. The defined classes include forward, backward, left, right, idle, and land. The drone has a popular flip function which was also included as an additional class. To simplify control, the corresponding hand signals chosen were the numerical hand signs for one through five for movements, a fist for land, and the universal “ok” sign for the flip command. Transfer learning with PyTorch (Python) was performed using a pre-trained 18-layer residual learning network (ResNet-18) to retrain the network for custom classification. An algorithm was created to interpret the classification and send encoded messages to a Ryze Tello drone over its 2.4 GHz Wi-Fi connection. The drone’s movements were performed in half-meter distance increments at a constant speed. When combined with the drone control algorithm, the classification performed as desired with negligible latency when compared to the delay in the drone’s movement commands.

Keywords: classification, computer vision, convolutional neural networks, drone control

Procedia PDF Downloads 210
4438 Orthogonal Basis Extreme Learning Algorithm and Function Approximation

Authors: Ying Li, Yan Li

Abstract:

A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability.

Keywords: neural network, orthogonal basis extreme learning, function approximation

Procedia PDF Downloads 534
4437 Developing a Structured Example Space for Finding the Collision Points of Functions and Their Inverse

Authors: M. Saeed, A. Shahidzadeh

Abstract:

Interaction between teachers and learners requires applying a set of samples (examples) which helps to create coordination between the goals and methods. The main result and achievement and application of samples (examples) are that they can bring the teacher and learner to a shared understanding of the concept. mathematical concepts, and also one of the challenging issues in the discussion of the function is to find the collision points of functions of and, regarding that the example space of teachers is different in this issue, this paper aims to present an example space including several problems of the secondary school with the help of intuition and drawing various graphs of functions of and for more familiarity of teachers.

Keywords: inverse function, educational example, Mathematic example, example space

Procedia PDF Downloads 179
4436 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning

Authors: Madhawa Basnayaka, Jouni Paltakari

Abstract:

Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.

Keywords: artificial intelligence, chipless RFID, deep learning, machine learning

Procedia PDF Downloads 50
4435 A Goms Model for Blind Users Website Navigation

Authors: Suraina Sulong

Abstract:

Keyboard support is one of the main accessibility requirements for web pages and web applications for blind user. But it is not sufficient that the blind user can perform all actions on the page using the keyboard. In addition, designers of web sites or web applications have to make sure that keyboard users can use their pages with acceptable performance. We present GOMS models for navigation in web pages with specific task given to the blind user to accomplish. These models can be used to construct the user model for accessible website.

Keywords: GOMS analysis, usability factor, blind user, human computer interaction

Procedia PDF Downloads 150
4434 Managing Maritime Security in the Mediterranean Sea: The Roles of the EU in Tackling Irregular Migration

Authors: Shazwanis Shukri

Abstract:

The Mediterranean Sea, at the crossroads of three continents has always been the focus of pan-European and worldwide attention. Over the past decade, the Mediterranean Sea has become a hotbed for irregular migration particularly from the African continent toward the Europe. Among the major transit routes in the Mediterranean Sea include the Strait of Gibraltar, Canary Island and island of Lampedusa. In recent years, Mediterranean Sea has witnessed significant numbers of accidents and shipwrecks involving the irregular migrants and refugees trying to reach Europe via the sea. The shipwrecks and traffickers exploitation of migrants draw most of the attention particularly for the European Union (EU). This incident has been a wakeup call for the EU and become the top political agenda in the EU policy to tackle irregular migration and human smuggling at sea. EU has repeatedly addressed irregular migration as one of the threats the EU and its citizens may be confronted with and therefore immediate measures are crucial to tackle the crisis. In light of this, various initiatives have been adopted by the EU to strengthen external border control and restrict access to irregular migrants, notably through the enforcement of Frontex and Eunavfor Med. This paper analyses current development of counter-migration operations by the EU in response to migration crisis in the Mediterranean Sea. The analysis is threefold. First, this study examines the patterns and trends of irregular migration’s movements from recent perspective. Second, this study concentrates on the evolution of the EU operations that are in place in the Mediterranean Sea, notably by Frontex and Eunavfor Med to curb the influx of irregular migrants to the European countries, including, among others, Greece and Italy. Third, this study investigates the EU approaches to fight against the proliferation of human trafficking networks at sea. This study is essential to determine the roles of the EU in tackling migration crisis and human trafficking in the Mediterranean Sea and the effectiveness of their counter-migration operations to reduce the number of irregular migrants travelling via the sea. Elite interviews and document analysis were used as a methodology in this study. The study discovers that the EU operations have successfully contributed to reduce the numbers of irregular migrant’s arrival to Europe. The study also shows that the operations were effective to disrupt smugglers business models particularly from Libya. This study provides essential understanding about the roles of the EU not limited to tackle the migration crisis and disrupt trafficking networks, but also pledged to prevent further loss of lives at sea.

Keywords: European union, frontex, irregular migration, Mediterranean sea

Procedia PDF Downloads 329