Search results for: loader power
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6286

Search results for: loader power

4126 Mapping the Ties That Bind: Corruption, Political Alienation and Culture of Corruption

Authors: Mabrouka Immhemd Al-Werfalli

Abstract:

How are political alienation and corruption related? What is the nature of relationship linking corruption and political alienation? When citizens withdraw their loyalty from their political regime and leaders, they highlight their alienation from them. The link between corruption and political alienation is that the individual would intentionally involve in corruption particularly when a state of lawlessness prevails. This paper represents a challenge- how to gauge a link between political alienation culture of corruption and corruption. It aims to highlight the political alienation related factors that determine the levels of corruption in Libya. One of the most prominent reasons for the Libyan uprising in February 2011 was the pervasiveness of corruption. Corruption in Libya remained a significant problem despite a robust anti-corruption discourse and harsh legislation undertaken by the previous regime. The long-standing political corruption in Libya has offered ample opportunity for the evolution of a structure of negative values and morals. This has formed what is termed as a ‘culture of corruption’, which has induced people to accept and justify corrupt behavior. The paper is a part of a study concerns the phenomenon of political alienation in Libya which was based on a survey conducted in 2001 in the city of Benghazi. The finding shows that abuse of power, embezzlement and misuse of public funds for personal enrichment was thought to be rife within public bodies, institutions, companies, factories, banks and enterprises owned entirely or partially by the state.

Keywords: Libya, abuse of power, anti-corruption, corruption, culture of corruption, embezzlement, participation in corruption, political alienation

Procedia PDF Downloads 316
4125 Optical Properties of TlInSe₂<AU> Si̇ngle Crystals

Authors: Gulshan Mammadova

Abstract:

This paper presents the results of studying the surface microrelief in 2D and 3D models and analyzing the spectroscopy of a three-junction TlInSe₂ crystal. Analysis of the results obtained showed that with a change in the composition of the TlInSe₂ crystal, sharp changes occur in the microrelief of its surface. An X-ray optical diffraction analysis of the TlInSe₂ crystal was experimentally carried out. Based on ellipsometric data, optical functions were determined - the real and imaginary parts of the dielectric permittivity of crystals, the coefficients of optical absorption and reflection, the dependence of energy losses and electric field power on the effective density, the spectral dependences of the real (σᵣ) and imaginary (σᵢ) parts, optical electrical conductivity were experimentally studied. The fluorescence spectra of the ternary compound TlInSe₂ were isolated and analyzed when excited by light with a wavelength of 532 nm. X-ray studies of TlInSe₂ showed that this phase crystallizes into tetragonal systems. Ellipsometric measurements showed that the real (ε₁) and imaginary (ε₂) parts of the dielectric constant are components of the dielectric constant tensor of the uniaxial joints under consideration and do not depend on the angle. Analysis of the dependence of the real and imaginary parts of the refractive index of the TlInSe₂ crystal on photon energy showed that the nature of the change in the real and imaginary parts of the dielectric constant does not differ significantly. When analyzing the spectral dependences of the real (σr) and imaginary (σi) parts of the optical electrical conductivity, it was noticed that the real part of the optical electrical conductivity increases exponentially in the energy range 0.894-3.505 eV. In the energy range of 0.654-2.91 eV, the imaginary part of the optical electrical conductivity increases linearly, reaches a maximum value, and decreases at an energy of 2.91 eV. At 3.6 eV, an inversion of the imaginary part of the optical electrical conductivity of the TlInSe₂ compound is observed. From the graphs of the effective power density versus electric field energy losses, it is known that the effective power density increases significantly in the energy range of 0.805–3.52 eV. The fluorescence spectrum of the ternary compound TlInSe₂ upon excitation with light with a wavelength of 532 nm has been studied and it has been established that this phase has luminescent properties.

Keywords: optical properties, dielectric permittivity, real and imaginary dielectric permittivity, optical electrical conductivity

Procedia PDF Downloads 65
4124 Lifespan Assessment of the Fish Crossing System of Itaipu Power Plant (Brazil/Paraguay) Based on the Reaching of Its Sedimentological Equilibrium Computed by 3D Modeling and Churchill Trapping Efficiency

Authors: Anderson Braga Mendes, Wallington Felipe de Almeida, Cicero Medeiros da Silva

Abstract:

This study aimed to assess the lifespan of the fish transposition system of the Itaipu Power Plant (Brazil/Paraguay) by using 3D hydrodynamic modeling and Churchill trapping effiency in order to identify the sedimentological equilibrium configuration in the main pond of the Piracema Channel, which is part of a 10 km hydraulic circuit that enables fish migration from downstream to upstream (and vice-versa) the Itaipu Dam, overcoming a 120 m water drop. For that, bottom data from 2002 (its opening year) and 2015 were collected and analyzed, besides bed material at 12 stations to the purpose of identifying their granulometric profiles. The Shields and Yalin and Karahan diagrams for initiation of motion of bed material were used to determine the critical bed shear stress for the sedimentological equilibrium state based on the sort of sediment (grain size) to be found at the bottom once the balance is reached. Such granulometry was inferred by analyzing the grosser material (fine and medium sands) which inflows the pond and deposits in its backwater zone, being adopted a range of diameters within the upper and lower limits of that sand stratification. The software Delft 3D was used in an attempt to compute the bed shear stress at every station under analysis. By modifying the input bathymetry of the main pond of the Piracema Channel so as to the computed bed shear stress at each station fell within the intervals of acceptable critical stresses simultaneously, it was possible to foresee the bed configuration of the main pond when the sedimentological equilibrium is reached. Under such condition, 97% of the whole pond capacity will be silted, and a shallow water course with depths ranging from 0.2 m to 1.5 m will be formed; in 2002, depths ranged from 2 m to 10 m. Out of that water path, the new bottom will be practically flat and covered by a layer of water 0.05 m thick. Thus, in the future the main pond of the Piracema Channel will lack its purpose of providing a resting place for migrating fish species, added to the fact that it may become an insurmountable barrier for medium and large sized specimens. Everything considered, it was estimated that its lifespan, from the year of its opening to the moment of the sedimentological equilibrium configuration, will be approximately 95 years–almost half of the computed lifespan of Itaipu Power Plant itself. However, it is worth mentioning that drawbacks concerning the silting in the main pond will start being noticed much earlier than such time interval owing to the reasons previously mentioned.

Keywords: 3D hydrodynamic modeling, Churchill trapping efficiency, fish crossing system, Itaipu power plant, lifespan, sedimentological equilibrium

Procedia PDF Downloads 237
4123 Influence of Valve Lift Timing on Producer Gas Combustion and Its Modeling Using Two-Stage Wiebe Function

Authors: M. Sreedhar Babu, Vishal Garg, S. B. Akella, Shibu Clement, N. K. S Rajan

Abstract:

Producer gas is a biomass derived gaseous fuel which is extensively used in internal combustion engines for power generation application. Unlike the conventional hydrocarbon fuels (Gasoline and Natural gas), the combustion properties of producer gas fuel are much different. Therefore, setting of optimal spark time for efficient engine operation is required. Owing to the fluctuating tendency of producer gas composition during gasification process, the heat release patterns (dictating the power output and emissions) obtained are quite different from conventional fuels. It was found that, valve lift timing is yet another factor which influences the burn rate of producer gas fuel, and thus, the heat release rate of the engine. Therefore, the present study was motivated to estimate the influence of valve lift timing analytically (Wiebe model) on the burn rate of producer gas through curve fitting against experimentally obtained mass fraction burn curves of several producer gas compositions. Furthermore, Wiebe models are widely used in zero-dimensional codes for engine parametric studies and are quite popular. This study also addresses the influence of hydrogen and methane concentration of producer gas on combustion trends, which are known to cause dynamics in engine combustion.

Keywords: combustion duration (CD), crank angle (CA), mass fraction burnt (MFB), producer sas (PG), Wiebe Combustion Model (WCM), wide open throttle (WOT)

Procedia PDF Downloads 317
4122 Electrical Degradation of GaN-based p-channel HFETs Under Dynamic Electrical Stress

Authors: Xuerui Niu, Bolin Wang, Xinchuang Zhang, Xiaohua Ma, Bin Hou, Ling Yang

Abstract:

The application of discrete GaN-based power switches requires the collaboration of silicon-based peripheral circuit structures. However, the packages and interconnection between the Si and GaN devices can introduce parasitic effects to the circuit, which has great impacts on GaN power transistors. GaN-based monolithic power integration technology is an emerging solution which can improve the stability of circuits and allow the GaN-based devices to achieve more functions. Complementary logic circuits consisting of GaN-based E-mode p-channel heterostructure field-effect transistors (p-HFETs) and E-mode n-channel HEMTs can be served as the gate drivers. E-mode p-HFETs with recessed gate have attracted increasing interest because of the low leakage current and large gate swing. However, they suffer from a poor interface between the gate dielectric and polarized nitride layers. The reliability of p-HFETs is analyzed and discussed in this work. In circuit applications, the inverter is always operated with dynamic gate voltage (VGS) rather than a constant VGS. Therefore, dynamic electrical stress has been simulated to resemble the operation conditions for E-mode p-HFETs. The dynamic electrical stress condition is as follows. VGS is a square waveform switching from -5 V to 0 V, VDS is fixed, and the source grounded. The frequency of the square waveform is 100kHz with the rising/falling time of 100 ns and duty ratio of 50%. The effective stress time is 1000s. A number of stress tests are carried out. The stress was briefly interrupted to measure the linear IDS-VGS, saturation IDS-VGS, As VGS switches from -5 V to 0 V and VDS = 0 V, devices are under negative-bias-instability (NBI) condition. Holes are trapped at the interface of oxide layer and GaN channel layer, which results in the reduction of VTH. The negative shift of VTH is serious at the first 10s and then changes slightly with the following stress time. However, different phenomenon is observed when VDS reduces to -5V. VTH shifts negatively during stress condition, and the variation in VTH increases with time, which is different from that when VDS is 0V. Two mechanisms exists in this condition. On the one hand, the electric field in the gate region is influenced by the drain voltage, so that the trapping behavior of holes in the gate region changes. The impact of the gate voltage is weakened. On the other hand, large drain voltage can induce the hot holes generation and lead to serious hot carrier stress (HCS) degradation with time. The poor-quality interface between the oxide layer and GaN channel layer at the gate region makes a major contribution to the high-density interface traps, which will greatly influence the reliability of devices. These results emphasize that the improved etching and pretreatment processes needs to be developed so that high-performance GaN complementary logics with enhanced stability can be achieved.

Keywords: GaN-based E-mode p-HFETs, dynamic electric stress, threshold voltage, monolithic power integration technology

Procedia PDF Downloads 97
4121 Solar Building Design Using GaAs PV Cells for Optimum Energy Consumption

Authors: Hadis Pouyafar, D. Matin Alaghmandan

Abstract:

Gallium arsenide (GaAs) solar cells are widely used in applications like spacecraft and satellites because they have a high absorption coefficient and efficiency and can withstand high-energy particles such as electrons and protons. With the energy crisis, there's a growing need for efficiency and cost-effective solar cells. GaAs cells, with their 46% efficiency compared to silicon cells 23% can be utilized in buildings to achieve nearly zero emissions. This way, we can use irradiation and convert more solar energy into electricity. III V semiconductors used in these cells offer performance compared to other technologies available. However, despite these advantages, Si cells dominate the market due to their prices. In our study, we took an approach by using software from the start to gather all information. By doing so, we aimed to design the optimal building that harnesses the full potential of solar energy. Our modeling results reveal a future; for GaAs cells, we utilized the Grasshopper plugin for modeling and optimization purposes. To assess radiation, weather data, solar energy levels and other factors, we relied on the Ladybug and Honeybee plugins. We have shown that silicon solar cells may not always be the choice for meeting electricity demands, particularly when higher power output is required. Therefore, when it comes to power consumption and the available surface area for photovoltaic (PV) installation, it may be necessary to consider efficient solar cell options, like GaAs solar cells. By considering the building requirements and utilizing GaAs technology, we were able to optimize the PV surface area.

Keywords: gallium arsenide (GaAs), optimization, sustainable building, GaAs solar cells

Procedia PDF Downloads 101
4120 Numerical Modelling of Wind Dispersal Seeds of Bromeliad Tillandsia recurvata L. (L.) Attached to Electric Power Lines

Authors: Bruna P. De Souza, Ricardo C. De Almeida

Abstract:

In some cities in the State of Parana – Brazil and in other countries atmospheric bromeliads (Tillandsia spp - Bromeliaceae) are considered weeds in trees, electric power lines, satellite dishes and other artificial supports. In this study, a numerical model was developed to simulate the seed dispersal of the Tillandsia recurvata species by wind with the objective of evaluating seeds displacement in the city of Ponta Grossa – PR, Brazil, since it is considered that the region is already infested. The model simulates the dispersal of each individual seed integrating parameters from the atmospheric boundary layer (ABL) and the local wind, simulated by the Weather Research Forecasting (WRF) mesoscale atmospheric model for the 2012 to 2015 period. The dispersal model also incorporates the approximate number of bromeliads and source height data collected from most infested electric power lines. The seeds terminal velocity, which is an important input data but was not available in the literature, was measured by an experiment with fifty-one seeds of Tillandsia recurvata. Wind is the main dispersal agent acting on plumed seeds whereas atmospheric turbulence is a determinant factor to transport the seeds to distances beyond 200 meters as well as to introduce random variability in the seed dispersal process. Such variability was added to the model through the application of an Inverse Fast Fourier Transform to wind velocity components energy spectra based on boundary-layer meteorology theory and estimated from micrometeorological parameters produced by the WRF model. Seasonal and annual wind means were obtained from the surface wind data simulated by WRF for Ponta Grossa. The mean wind direction is assumed to be the most probable direction of bromeliad seed trajectory. Moreover, the atmospheric turbulence effect and dispersal distances were analyzed in order to identify likely regions of infestation around Ponta Grossa urban area. It is important to mention that this model could be applied to any species and local as long as seed’s biological data and meteorological data for the region of interest are available.

Keywords: atmospheric turbulence, bromeliad, numerical model, seed dispersal, terminal velocity, wind

Procedia PDF Downloads 142
4119 High Power Thermal Energy Storage for Industrial Applications Using Phase Change Material Slurry

Authors: Anastasia Stamatiou, Markus Odermatt, Dominic Leemann, Ludger J. Fischer, Joerg Worlitschek

Abstract:

The successful integration of thermal energy storage in industrial processes is expected to play an important role in the energy turnaround. Latent heat storage technologies can offer more compact thermal storage at a constant temperature level, in comparison to conventional, sensible thermal storage technologies. The focus of this study is the development of latent heat storage solutions based on the Phase Change Slurry (PCS) concept. Such systems promise higher energy densities both as refrigerants and as storage media while presenting better heat transfer characteristics than conventional latent heat storage technologies. This technology is expected to deliver high thermal power and high-temperature stability which makes it ideal for storage of process heat. An evaluation of important batch processes in industrial applications set the focus on materials with a melting point in the range of 55 - 90 °C. Aluminium ammonium sulfate dodecahydrate (NH₄Al(SO₄)₂·12H₂O) was chosen as the first interesting PCM for the next steps of this study. The ability of this material to produce slurries at the relevant temperatures was demonstrated in a continuous mode in a laboratory test-rig. Critical operational and design parameters were identified.

Keywords: esters, latent heat storage, phase change materials, thermal properties

Procedia PDF Downloads 302
4118 Nano-Coating for Corrosion Prevention

Authors: M. J. Suriani, F. Mansor, W. Siti Maizurah, I. Nurizwani

Abstract:

Silicon Carbide (SiC) is one of the Silicon-based materials, which get interested by the researcher. SiC is an emerging semiconductor material, which has received a great deal of attention due to their application in high frequency and high power systems. Although its superior characteristic for a semiconductor material, its outstanding mechanical properties, chemical inertness and thermal stability has gained important aspect for a surface coating for deployment in extreme environments. Very high frequency (VHF)-PECVD technique utilized to deposit nano ns-SiC film in which variation in chamber pressure, substrate temperature, RF power and precursor gases flow rate will be investigated in order to get a good quality of thin film coating. Characterization of the coating performed in order to study the surface morphology, structural information. This performance of coating evaluated through corrosion test to determine the effectiveness of the coating for corrosion prevention. Ns-SiC film expected to possess better corrosion resistance and optical properties, as well as preserving the metal from the marine environment. Through this research project, corrosion protection performance by applying coating will be explored to obtain a great corrosion prevention method to the shipping and oil and gas industry in Malaysia. Besides, the cost of repair and maintenance spending by the government of Malaysia can be reduced through practicing this method.

Keywords: composite materials, marine corrosion, nano-composite, nano structure–coating

Procedia PDF Downloads 472
4117 Renewable Energy Industry Trends and Its Contributions to the Development of Energy Resilience in an Era of Accelerating Climate Change

Authors: A. T. Asutosh, J. Woo, M. Kouhirostami, M. Sam, A. Khantawang, C. Cuales, W. Ryor, C. Kibert

Abstract:

Climate change and global warming vortex have grown to alarming proportions. Therefore, the need for a shift in the conceptualization of energy production is paramount. Energy practices have been created in the current situation. Fossil fuels continue their prominence, at the expense of renewable sources. Despite this abundance, a large percentage of the world population still has no access to electricity but there have been encouraging signs in global movement from nonrenewable to renewable energy but means to reverse climate change have been elusive. Worldwide, organizations have put tremendous effort into innovation. Conferences and exhibitions act as a platform that allows a broad exchange of information regarding trends in the renewable energy field. The Solar Power International (SPI) conference and exhibition is a gathering of concerned activists, and probably the largest convention of its kind. This study investigates current development in the renewable energy field, analyzing means by which industry is being applied to the issue. In reviewing the 2019 SPI conference, it was found innovations in recycling and assessing the environmental impacts of the solar products that need critical attention. There is a huge movement in the electrical storage but there exists a large gap in the development of security systems. This research will focus on solar energy, but impacts will be relevant to the entire renewable energy market.

Keywords: climate change, renewable energy, solar, trends, research, solar power international, SPI

Procedia PDF Downloads 112
4116 Stability Analysis of DFIG Stator Powers Control Based on Sliding Mode Approach

Authors: Abdelhak Djoudi, Hachemi Chekireb, El Madjid Berkouk

Abstract:

The doubly fed induction generator (DFIG) received recently an important consideration in medium and high power wind energy conversion systems integration, due to its advantages compared to other generators types. The stator power sliding mode control (SPSMC) proves a great efficiency judge against other control laws and schemes. In the SPSMC laws elaborated by several authors, only the slide surface tracking conditions are elaborated using Lyapunov functions, and the boundedness of the DFIG states is never treated. Some works have validated theirs approaches by experiments results in the case of specified machines, but these verifications stay insufficient to generalize to other machines range. Adding to this argument, the DFIG states boundedness demonstration is widely suggested in goal to ensure that in the application of the SPSMC, the states evaluates within theirs tolerable bounds. Our objective in the present paper is to highlight the efficiency of the SPSMC by stability analysis. The boundedness of the DFIG states such as the stator current and rotor flux is discussed. Moreover, the states trajectories are finding using analytical proves taking into consideration the SPSMC gains.

Keywords: Doubly Fed Induction Generator (DFIG), Stator Powers Sliding Mode Control (SPSMC), lyapunov function, stability, states boundedness, trajectories mathematical proves

Procedia PDF Downloads 403
4115 An Optimal Hybrid EMS System for a Hyperloop Prototype Vehicle

Authors: J. F. Gonzalez-Rojo, Federico Lluesma-Rodriguez, Temoatzin Gonzalez

Abstract:

Hyperloop, a new mode of transport, is gaining significance. It consists of the use of a ground-based transport system which includes a levitation system, that avoids rolling friction forces, and which has been covered with a tube, controlling the inner atmosphere lowering the aerodynamic drag forces. Thus, hyperloop is proposed as a solution to the current limitation on ground transportation. Rolling and aerodynamic problems, that limit large speeds for traditional high-speed rail or even maglev systems, are overcome using a hyperloop solution. Zeleros is one of the companies developing technology for hyperloop application worldwide. It is working on a concept that reduces the infrastructure cost and minimizes the power consumption as well as the losses associated with magnetic drag forces. For this purpose, Zeleros proposes a Hybrid ElectroMagnetic Suspension (EMS) for its prototype. In the present manuscript an active and optimal electromagnetic suspension levitation method based on nearly zero power consumption individual modules is presented. This system consists of several hybrid permanent magnet-coil levitation units that can be arranged along the vehicle. The proposed unit manages to redirect the magnetic field along a defined direction forming a magnetic circuit and minimizing the loses due to field dispersion. This is achieved using an electrical steel core. Each module can stabilize the gap distance using the coil current and either linear or non-linear control methods. The ratio between weight and levitation force for each unit is 1/10. In addition, the quotient between the lifted weight and power consumption at the target gap distance is 1/3 [kg/W]. One degree of freedom (DoF) (along the gap direction) is controlled by a single unit. However, when several units are present, a 5 DoF control (2 translational and 3 rotational) can be achieved, leading to the full attitude control of the vehicle. The proposed system has been successfully tested reaching TRL-4 in a laboratory test bench and is currently in TRL-5 state development if the module association in order to control 5 DoF is considered.

Keywords: active optimal control, electromagnetic levitation, HEMS, high-speed transport, hyperloop

Procedia PDF Downloads 151
4114 The Impact of Vertical Product Differentiation on Exchange Rate Pass-Through: An Empirical Investigation of IRON and Steel Industry between Thailand and Vietnam

Authors: Santi Termprasertsakul, Jakkrich Jearviriyaboonya

Abstract:

This paper studies the market power and pricing behavior of products in iron and steel industry by investigating the impact of vertical product differentiation (VPD) on exchange rate pass-through (ERPT). Vietnam has become one of the major trading partners of Thailand since 2017. The iron and steel export value to Vietnam is more than $300 million a year. Particularly, the average growth rate of importing iron and steel is approximately 30% per year. The VPD is applied to analyze the quality difference of iron and steel between Thailand and Vietnam. The 20 products in iron and steel industry are investigated. The monthly pricing behavior of Harmonized Commodity Description and Coding System 4-digit products is observed from 2010 to 2019. The Nonlinear Autoregressive Distributed Lag is also used to analyze the asymmetry of ERPT in this paper. The empirical results basically reveal an incomplete pass-through between Thai Baht and Vietnamese Dong. The ERPT also varies with the degree of VPD. The product with higher VPD, indicating higher unit values, has higher ERPT. This result suggests the higher market power of the Thai iron and steel industry. In addition, the asymmetry of ERPT exists.

Keywords: exchange rate pass-through, iron and steel industry, pricing behavior, vertical product differentiation

Procedia PDF Downloads 146
4113 Development of a Turbulent Boundary Layer Wall-pressure Fluctuations Power Spectrum Model Using a Stepwise Regression Algorithm

Authors: Zachary Huffman, Joana Rocha

Abstract:

Wall-pressure fluctuations induced by the turbulent boundary layer (TBL) developed over aircraft are a significant source of aircraft cabin noise. Since the power spectral density (PSD) of these pressure fluctuations is directly correlated with the amount of sound radiated into the cabin, the development of accurate empirical models that predict the PSD has been an important ongoing research topic. The sound emitted can be represented from the pressure fluctuations term in the Reynoldsaveraged Navier-Stokes equations (RANS). Therefore, early TBL empirical models (including those from Lowson, Robertson, Chase, and Howe) were primarily derived by simplifying and solving the RANS for pressure fluctuation and adding appropriate scales. Most subsequent models (including Goody, Efimtsov, Laganelli, Smol’yakov, and Rackl and Weston models) were derived by making modifications to these early models or by physical principles. Overall, these models have had varying levels of accuracy, but, in general, they are most accurate under the specific Reynolds and Mach numbers they were developed for, while being less accurate under other flow conditions. Despite this, recent research into the possibility of using alternative methods for deriving the models has been rather limited. More recent studies have demonstrated that an artificial neural network model was more accurate than traditional models and could be applied more generally, but the accuracy of other machine learning techniques has not been explored. In the current study, an original model is derived using a stepwise regression algorithm in the statistical programming language R, and TBL wall-pressure fluctuations PSD data gathered at the Carleton University wind tunnel. The theoretical advantage of a stepwise regression approach is that it will automatically filter out redundant or uncorrelated input variables (through the process of feature selection), and it is computationally faster than machine learning. The main disadvantage is the potential risk of overfitting. The accuracy of the developed model is assessed by comparing it to independently sourced datasets.

Keywords: aircraft noise, machine learning, power spectral density models, regression models, turbulent boundary layer wall-pressure fluctuations

Procedia PDF Downloads 139
4112 The Verification Study of Computational Fluid Dynamics Model of the Aircraft Piston Engine

Authors: Lukasz Grabowski, Konrad Pietrykowski, Michal Bialy

Abstract:

This paper presents the results of the research to verify the combustion in aircraft piston engine Asz62-IR. This engine was modernized and a type of ignition system was developed. Due to the high costs of experiments of a nine-cylinder 1,000 hp aircraft engine, a simulation technique should be applied. Therefore, computational fluid dynamics to simulate the combustion process is a reasonable solution. Accordingly, the tests for varied ignition advance angles were carried out and the optimal value to be tested on a real engine was specified. The CFD model was created with the AVL Fire software. The engine in the research had two spark plugs for each cylinder and ignition advance angles had to be set up separately for each spark. The results of the simulation were verified by comparing the pressure in the cylinder. The courses of the indicated pressure of the engine mounted on a test stand were compared. The real course of pressure was measured with an optical sensor, mounted in a specially drilled hole between the valves. It was the OPTRAND pressure sensor, which was designed especially to engine combustion process research. The indicated pressure was measured in cylinder no 3. The engine was running at take-off power. The engine was loaded by a propeller at a special test bench. The verification of the CFD simulation results was based on the results of the test bench studies. The course of the simulated pressure obtained is within the measurement error of the optical sensor. This error is 1% and reflects the hysteresis and nonlinearity of the sensor. The real indicated pressure measured in the cylinder and the pressure taken from the simulation were compared. It can be claimed that the verification of CFD simulations based on the pressure is a success. The next step was to research on the impact of changing the ignition advance timing of spark plugs 1 and 2 on a combustion process. Moving ignition timing between 1 and 2 spark plug results in a longer and uneven firing of a mixture. The most optimal point in terms of indicated power occurs when ignition is simultaneous for both spark plugs, but so severely separated ignitions are assured that ignition will occur at all speeds and loads of engine. It should be confirmed by a bench experiment of the engine. However, this simulation research enabled us to determine the optimal ignition advance angle to be implemented into the ignition control system. This knowledge allows us to set up the ignition point with two spark plugs to achieve as large power as possible.

Keywords: CFD model, combustion, engine, simulation

Procedia PDF Downloads 364
4111 Estimation of Small Hydropower Potential Using Remote Sensing and GIS Techniques in Pakistan

Authors: Malik Abid Hussain Khokhar, Muhammad Naveed Tahir, Muhammad Amin

Abstract:

Energy demand has been increased manifold due to increasing population, urban sprawl and rapid socio-economic improvements. Low water capacity in dams for continuation of hydrological power, land cover and land use are the key parameters which are creating problems for more energy production. Overall installed hydropower capacity of Pakistan is more than 35000 MW whereas Pakistan is producing up to 17000 MW and the requirement is more than 22000 that is resulting shortfall of 5000 - 7000 MW. Therefore, there is a dire need to develop small hydropower to fulfill the up-coming requirements. In this regards, excessive rainfall, snow nurtured fast flowing perennial tributaries and streams in northern mountain regions of Pakistan offer a gigantic scope of hydropower potential throughout the year. Rivers flowing in KP (Khyber Pakhtunkhwa) province, GB (Gilgit Baltistan) and AJK (Azad Jammu & Kashmir) possess sufficient water availability for rapid energy growth. In the backdrop of such scenario, small hydropower plants are believed very suitable measures for more green environment and power sustainable option for the development of such regions. Aim of this study is to estimate hydropower potential sites for small hydropower plants and stream distribution as per steam network available in the available basins in the study area. The proposed methodology will focus on features to meet the objectives i.e. site selection of maximum hydropower potential for hydroelectric generation using well emerging GIS tool SWAT as hydrological run-off model on the Neelum, Kunhar and the Dor Rivers’ basins. For validation of the results, NDWI will be computed to show water concentration in the study area while overlaying on geospatial enhanced DEM. This study will represent analysis of basins, watershed, stream links, and flow directions with slope elevation for hydropower potential to produce increasing demand of electricity by installing small hydropower stations. Later on, this study will be benefitted for other adjacent regions for further estimation of site selection for installation of such small power plants as well.

Keywords: energy, stream network, basins, SWAT, evapotranspiration

Procedia PDF Downloads 225
4110 Corruption and Anti-Corruption Policies: The Case of Iraq

Authors: Sarwan Hasan

Abstract:

This article is to investigate the main forms and causes of corruption and provides anti-corruption policies. It is significant to find out how both interact and affect each other. The research focuses particularly on the case study of Iraq from 2003 to 2023. In this way, the main methods of analysis will be the system approach to analyze the relationship of different elements of the political system of Iraq in the context of corruption, the process-tracing method to explain the reasons for corruption, and content analysis of the official documents important for the research topic. Moreover, the SWOT analysis will be used in the part about the anti-corruption policies. This article concludes that the main causes behind corruption in Iraq are power distribution based on muhassasa tayifiya (power apportionment based on ethno-sectarianism), decentralized political system, sectarian division, Iran, and socio-cultural structure. The main forms of corruption in the country are illegal enrichment, using public positions for sectarian agenda, criminal corruption, bribery, political patronage, clientelism, cronyism, nepotism, embezzlement, kickback, extortion, money laundry, speed money, theft, and justice obstruction. The main anti-corruption policies in Iraq are establishing the Commission of Integrity, Board of Supreme Audit, Inspectors General and Parliamentary Committee, Internalization (assistance from foreign actors), economic adjustment and financial reform, and the new anti-corruption program of the new Prime Minister (Mohamed Shiyah al-Sudani).

Keywords: anti-corruption, corruption, Iraq, anti-corruption policies

Procedia PDF Downloads 79
4109 Electrical Properties of Polarization-Induced Aluminum Nitride/Gallium Nitride Heterostructures Homoepitaxially Grown on Aluminum Nitride Sapphire Template by Molecular Beam Epitaxy

Authors: Guanlin Wu, Jiajia Yao, Fang Liu, Junshuai Xue, Jincheng Zhang, Yue Hao

Abstract:

Owing to the excellent thermal conductivity and ultra-wide bandgap, Aluminum nitride (AlN)/Gallium nitride (GaN) is a highly promising material to achieve high breakdown voltage and output power devices among III-nitrides. In this study, we explore the growth and characterization of polarization-induced AlN/GaN heterostructures using plasma-assisted molecular beam epitaxy (PA-MBE) on AlN-on-sapphire templates. To improve the crystal quality and demonstrate the effectiveness of the PA-MBE approach, a thick AlN buffer of 180 nm was first grown on the AlN-on sapphire template. This buffer acts as a back-barrier to enhance the breakdown characteristic and isolate leakage paths that exist in the interface between the AlN epilayer and the AlN template. A root-mean-square roughness of 0.2 nm over a scanned area of 2×2 µm2 was measured by atomic force microscopy (AFM), and the full-width at half-maximum of (002) and (102) planes on the X-ray rocking curve was 101 and 206 arcsec, respectively, using by high-resolution X-ray diffraction (HR-XRD). The electron mobility of 443 cm2/Vs with a carrier concentration of 2.50×1013 cm-2 at room temperature was achieved in the AlN/GaN heterostructures by using a polarization-induced GaN channel. The low depletion capacitance of 15 pF is resolved by the capacitance-voltage. These results indicate that the polarization-induced AlN/GaN heterostructures have great potential for next-generation high-temperature, high-frequency, and high-power electronics.

Keywords: AlN, GaN, MBE, heterostructures

Procedia PDF Downloads 89
4108 Landing Performance Improvement Using Genetic Algorithm for Electric Vertical Take Off and Landing Aircrafts

Authors: Willian C. De Brito, Hernan D. C. Munoz, Erlan V. C. Carvalho, Helder L. C. De Oliveira

Abstract:

In order to improve commute time for small distance trips and relieve large cities traffic, a new transport category has been the subject of research and new designs worldwide. The air taxi travel market promises to change the way people live and commute by using the concept of vehicles with the ability to take-off and land vertically and to provide passenger’s transport equivalent to a car, with mobility within large cities and between cities. Today’s civil air transport remains costly and accounts for 2% of the man-made CO₂ emissions. Taking advantage of this scenario, many companies have developed their own Vertical Take Off and Landing (VTOL) design, seeking to meet comfort, safety, low cost and flight time requirements in a sustainable way. Thus, the use of green power supplies, especially batteries, and fully electric power plants is the most common choice for these arising aircrafts. However, it is still a challenge finding a feasible way to handle with the use of batteries rather than conventional petroleum-based fuels. The batteries are heavy and have an energy density still below from those of gasoline, diesel or kerosene. Therefore, despite all the clear advantages, all electric aircrafts (AEA) still have low flight autonomy and high operational cost, since the batteries must be recharged or replaced. In this sense, this paper addresses a way to optimize the energy consumption in a typical mission of an aerial taxi aircraft. The approach and landing procedure was chosen to be the subject of an optimization genetic algorithm, while final programming can be adapted for take-off and flight level changes as well. A real tilt rotor aircraft with fully electric power plant data was used to fit the derived dynamic equations of motion. Although a tilt rotor design is used as a proof of concept, it is possible to change the optimization to be applied for other design concepts, even those with independent motors for hover and cruise flight phases. For a given trajectory, the best set of control variables are calculated to provide the time history response for aircraft´s attitude, rotors RPM and thrust direction (or vertical and horizontal thrust, for independent motors designs) that, if followed, results in the minimum electric power consumption through that landing path. Safety, comfort and design constraints are assumed to give representativeness to the solution. Results are highly dependent on these constraints. For the tested cases, performance improvement ranged from 5 to 10% changing initial airspeed, altitude, flight path angle, and attitude.

Keywords: air taxi travel, all electric aircraft, batteries, energy consumption, genetic algorithm, landing performance, optimization, performance improvement, tilt rotor, VTOL design

Procedia PDF Downloads 118
4107 Solar-Thermal-Electric Stirling Engine-Powered System for Residential Units

Authors: Florian Misoc, Cyril Okhio, Joshua Tolbert, Nick Carlin, Thomas Ramey

Abstract:

This project is focused on designing a Stirling engine system for a solar-thermal-electrical system that can supply electric power to a single residential unit. Since Stirling engines are heat engines operating any available heat source, is notable for its ability to generate clean and reliable energy without emissions. Due to the need of finding alternative energy sources, the Stirling engines are making a comeback with the recent technologies, which include thermal energy conservation during the heat transfer process. Recent reviews show mounting evidence and positive test results that Stirling engines are able to produce constant energy supply that ranges from 5kW to 20kW. Solar Power source is one of the many uses for Stirling engines. Using solar energy to operate Stirling engines is an idea considered by many researchers, due to the ease of adaptability of the Stirling engine. In this project, the Stirling engine developed was designed and tested to operate from biomass source of energy, i.e., wood pellets stove, during low solar radiation, with good results. A 20% efficiency of the engine was estimated, and 18% efficiency was measured, making it suitable and appropriate for residential applications. The effort reported was aimed at exploring parameters necessary to design, build and test a ‘Solar Powered Stirling Engine (SPSE)’ using Water (H₂O) as the Heat Transfer medium, with Nitrogen as the working gas that can reach or exceed an efficiency of 20%. The main objectives of this work consisted in: converting a V-twin cylinder air compressor into an alpha-type Stirling engine, construct a Solar Water Heater, by using an automotive radiator as the high-temperature reservoir for the Stirling engine, and an array of fixed mirrors that concentrate the solar radiation on the automotive radiator/high-temperature reservoir. The low-temperature reservoir is the surrounding air at ambient temperature. This work has determined that a low-cost system is sufficiently efficient and reliable. Off-the-shelf components have been used and estimates of the ability of the Engine final design to meet the electricity needs of small residence have been determined.

Keywords: stirling engine, solar-thermal, power inverter, alternator

Procedia PDF Downloads 282
4106 Social Network Analysis, Social Power in Water Co-Management (Case Study: Iran, Shemiranat, Jirood Village)

Authors: Fariba Ebrahimi, Mehdi Ghorbani, Ali Salajegheh

Abstract:

Comprehensively water management considers economic, environmental, technical and social and also sustainability of water resources for future generations. Grassland management implies cooperative approach and involves all stakeholders and also introduces issues to managers, decision and policy makers. Solving these issues needs integrated and system approach. According to the recognition of actors or key persons in necessary to apply cooperative management of Water. Therefore, based on stakeholder analysis and social network analysis can be used to demonstrate the most effective actors for environmental decisions. In this research, social powers according are specified to social network approach at Water utilizers’ level of Natural in Jirood catchment of Latian basin. In this paper, utilizers of water resources were recognized using field trips and then, trust and collaboration matrix produced using questionnaires. In the next step, degree centrality index were Examined. Finally, geometric position of each actor was illustrated in the network. The results of the research based on centrality index have a key role in recognition of cooperative management of Water in Jirood and also will help managers and planners of water in the case of recognition of social powers in order to organization and implementation of sustainable management of Water.

Keywords: social network analysis, water co-management, social power, centrality index, local stakeholders network, Jirood catchment

Procedia PDF Downloads 374
4105 Power Ultrasound Application on Convective Drying of Banana (Musa paradisiaca), Mango (Mangifera indica L.) and Guava (Psidium guajava L.)

Authors: Erika K. Méndez, Carlos E. Orrego, Diana L. Manrique, Juan D. Gonzalez, Doménica Vallejo

Abstract:

High moisture content in fruits generates post-harvest problems such as mechanical, biochemical, microbial and physical losses. Dehydration, which is based on the reduction of water activity of the fruit, is a common option for overcoming such losses. However, regular hot air drying could affect negatively the quality properties of the fruit due to the long residence time at high temperature. Power ultrasound (US) application during the convective drying has been used as a novel method able to enhance drying rate and, consequently, to decrease drying time. In the present study, a new approach was tested to evaluate the effect of US on the drying time, the final antioxidant activity (AA) and the total polyphenol content (TPC) of banana slices (BS), mango slices (MS) and guava slices (GS). There were also studied the drying kinetics with nine different models from which water effective diffusivities (Deff) (with or without shrinkage corrections) were calculated. Compared with the corresponding control tests, US assisted drying for fruit slices showed reductions in drying time between 16.23 and 30.19%, 11.34 and 32.73%, and 19.25 and 47.51% for the MS, BS and GS respectively. Considering shrinkage effects, Deff calculated values ranged from 1.67*10-10 to 3.18*10-10 m2/s, 3.96*10-10 and 5.57*10-10 m2/s and 4.61*10-10 to 8.16*10-10 m2/s for the BS, MS and GS samples respectively. Reductions of TPC and AA (as DPPH) were observed compared with the original content in fresh fruit data in all kinds of drying assays.

Keywords: banana, drying, effective diffusivity, guava, mango, ultrasound

Procedia PDF Downloads 538
4104 Dissimilar Welding Of New High Oxidation Material – Thor™ 115 With Vm-12 Shc

Authors: Michal Urzynicok, Krzysztof Kwiecinski

Abstract:

The development of materials used in the power generation industry for the production of boilers and their parts is characterized by high steam parameters, which present new challenges. Implementation of new combinations of alloying elements that lead to the best possible mechanical properties, including creep resistance, greatly affects new steels' weldability. All new grades have to undergo many different examinations, in regards to bending and welding, in order to enable the development of fabrication technologies, ensuring failure-free production and assembly of boiler components. 12% Cr martensitic steels like THOR™ 115 or VM-12 SHC are characterized by high oxidation resistance in high-temperature environments. At the moment, VM-12 SHC can be found in many boilers where both headers and superheater coils were produced. As this material is very difficult to obtain, a search for a proper replacement has begun. A new creep strength-enhanced ferritic steel for service in supercritical and ultra-supercritical boiler applications was developed by Tenaris in Italy and it is designated as Thor™115 (Tenaris High Oxidation Resistance). As high demand in power plants occurred to replace some parts of existing installations fabricated from VM12-SHC with other alternatives, a new development of welding procedures has begun to prepare fabricators for the challenges of joining old components with new THOR™ 115 material. This paper covers the first research of welding of dissimilar joints made out of VM12-SHC and THOR™ 115.

Keywords: thor, vm12, dissimilar welding, weldability

Procedia PDF Downloads 157
4103 Feasibility Study of Iraq' Decomposition and Its Effects on the Region

Authors: Ebrahim Rahmani, Siyamak Moazeni

Abstract:

According to the Iraq's first constitutional law (approved 2005), Iraq is an independent with sovereignty and its governmental structure is parliamentary democratic republic and federal. Even in reforms in 2009, this article of law did not changed at all. But considering the existence of this emphasis and clarity which is mentioned in the law, different and sometimes contradictory interpretations and positions are expressed about federalism in the way that we can say, considering the importance of the matter, federalism is a focus point to create and expansion of the cold war among leaders of different groups of the country. Iraq's today political and security position has granted the suitable opportunity to Iraq's Kurdistan in appearing of the recent security crisis to increase its share from the central political power or to achieve to its independent dream. The federalism the weakest point of Iraq's territorial integrity in a way that if different groups do not come to a consensus about it and do not think about a mechanism which is accepted by all of them, this can effect on and Iraq's political stability and security. Iraq's Kurdistan follows the option of disintegration and separation under the shadow of political and security changes, even with existence of some Iraqi groups' hopes regarding the improvement of situation after parliament election and also considering Masoud Barezani's power will for separation from Iraq as well as regarding special international changes and disintegration of Karime from Ukraine and ISIS crises; concerns have been created among regional and international powers and interior players. In this article, a paradox due constitutional law about federalism, Iraq's central government view and its politicians to the matter and the regional effect of this action on region's geopolitics are reviewed as well.

Keywords: constitutional law, federalism, decomposition, Iraq's Kurdistan

Procedia PDF Downloads 333
4102 Agony and Agency: Discursive Construction of Barren women in the Bible and Traditional African Society

Authors: Vicky Khasandi-Telewa, Sinfree Makoni

Abstract:

Barrenness is a fundamentally agonizing condition that leads to identity disruption in its victims. In Africa, women are usually referred to as ‘Mother of X,’ and this causes grief to one who does not have a child to be identified with. This paper is an examination and critical appraisal of the impact of barrenness on the self-perception of women and the underlying power relations in how they are discursively constructed in the Bible and Traditional African Society (TAS). It is an analysis of expressive practices to examine how barrenness is constructed in Christianity and TAS with the aim of understanding the intersecting power systems. We approach this from an integrationism and Critical Discourse Analysis perspective that takes seriously both the radical harassment of barren women and the possibilities offered by the ensuing desperation calling for inclusive reinterpretation. We also seek to understand barren women’s coping mechanisms and suggestions on how best to improve their lives. The purpose of this study is to explain how discursive construction of barrenness affects the fundamental rights and freedoms of women and what linguistic strategies they adopt to navigate through the maze of stigma. It seeks to illustrate a more nuanced complexity of barren women's lives through women's own exegesis of the Biblical accounts of barrenness and their traditions and to explore alternative narratives. We explore the linguistic strategies the barren women employ to communicate their coping with limitations imposed upon their rights by the negative constructions.

Keywords: integrationism, critical discourse analysis, barrenness, communication strategies, women rights

Procedia PDF Downloads 73
4101 Starting Order Eight Method Accurately for the Solution of First Order Initial Value Problems of Ordinary Differential Equations

Authors: James Adewale, Joshua Sunday

Abstract:

In this paper, we developed a linear multistep method, which is implemented in predictor corrector-method. The corrector is developed by method of collocation and interpretation of power series approximate solutions at some selected grid points, to give a continuous linear multistep method, which is evaluated at some selected grid points to give a discrete linear multistep method. The predictors were also developed by method of collocation and interpolation of power series approximate solution, to give a continuous linear multistep method. The continuous linear multistep method is then solved for the independent solution to give a continuous block formula, which is evaluated at some selected grid point to give discrete block method. Basic properties of the corrector were investigated and found to be zero stable, consistent and convergent. The efficiency of the method was tested on some linear, non-learn, oscillatory and stiff problems of first order, initial value problems of ordinary differential equations. The results were found to be better in terms of computer time and error bound when compared with the existing methods.

Keywords: predictor, corrector, collocation, interpolation, approximate solution, independent solution, zero stable, consistent, convergent

Procedia PDF Downloads 504
4100 Robotic Solution for Nuclear Facility Safety and Monitoring System

Authors: Altab Hossain, Shakerul Islam, Golamur R. Khan, Abu Zafar M. Salahuddin

Abstract:

An effective identification of breakdowns is of premier importance for the safe and reliable operation of Nuclear Power Plants (NPP) and its associated facilities. A great number of monitoring and diagnosis methodologies are applied and used worldwide in areas such as industry, automobiles, hospitals, and power plant to detect and reduce human disasters. The potential consequences of several hazardous activities may harm the society using nuclear and its associated facilities. Hence, one of the most popular and effective methods to ensure safety and monitor the entire nuclear facility and imply risk-free operation without human interference during the hazardous situation is using a robot. Therefore, in this study, an advanced autonomous robot has been designed and developed that can monitor several parameters in the NPP to ensure the safety and do some risky job in case of nuclear disaster. The robot consisted of autonomous track following unit, data processing and transmitting unit can follow a straight line and take turn as the bank greater than 90 degrees. The developed robot can analyze various parameters such as temperature, altitude, radiation, obstacle, humidity, detecting fire, measuring distance, ultrasonic scan and taking the heat of any particular object. It has an ability to broadcast live stream and can record the document to its own server memory. There is a separate control unit constructed with a baseboard which processes the recorded data and a transmitter which transmits the processed data. To make the robot user-friendly, the code is developed such a way that a user can control any of robotic arm as per types of work. To control at any place and without the track, there is an advanced code has been developed to take manual overwrite. Through this process, administrator who has logged in permission to Dynamic Host Client Protocol (DHCP) can make the handover of the control of the robot. In this process, this robot is provided maximum nuclear security from being hacked. Not only NPP, this robot can be used to maximize the real-time monitoring system of any nuclear facility as well as nuclear material transportation and decomposition system.

Keywords: nuclear power plant, radiation, dynamic host client protocol, nuclear security

Procedia PDF Downloads 211
4099 Fabrication and Characterization of PPy/rGO|PPy/ZnO Composite with Varying Zno Concentration as Anode for Fuel Cell Applications

Authors: Bryan D. Llenarizas, Maria Carla F. Manzano

Abstract:

The rapid growth of electricity demand has led to a pursuit of alternative energy sources with high power output and not harmful to the environment. The fuel cell is a device that generates electricity via chemical reactions between the fuel and oxidant. Fuel cells have been known for decades, but the development of high-power output and durability was still one of the drawbacks of this energy source. This study investigates the potential of layer-by-layer composite for fuel cell applications. A two-electrode electrochemical cell was used for the galvanostatic electrochemical deposition method to fabricate a Polypyrrole/rGO|Polypyrrole/ZnO layer-by-layer composite material for fuel cell applications. In the synthesis, the first layer comprised 0.1M pyrrole monomer and 1mg of rGO, while the second layer had 0.1M pyrrole monomer and variations of ZnO concentration ranging from 0.08M up to 0.12M. A constant current density of 8mA/cm² was applied for 1 hour in fabricating each layer. Scanning electron microscopy (SEM) for the fabricated LBL material shows a globular surface with white spots. These white spots are the ZnO particles confirmed by energy-dispersive X-ray spectroscopy, indicating a successful deposition of the second layer onto the first layer. The observed surface morphology was consistent for each variation of ZnO concentrations. AC measurements were conducted to obtain the AC resistance of the fabricated film. Results show a decrease in AC resistance as the concentration of ZnO increases.

Keywords: anode, composite material, electropolymerization, fuel cell, galvanostatic, polypyrrole

Procedia PDF Downloads 87
4098 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning

Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu

Abstract:

This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.

Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning

Procedia PDF Downloads 81
4097 A Constitutional Theory of the American Presidency

Authors: Elvin Lim

Abstract:

This article integrates the debate about presidential powers with the debate about federalism, arguing that there are two ways of exercising presidential powers, one working in tandem with expanding federal powers, and the other working against it. Alexander Hamilton and Thomas Jefferson—the former a Federalist and the latter echoing the views of many Anti-Federalists—disagreed not only on the constitutional basis of prerogative, but also on the ends for which it should be deployed. This tension has always existed in American politics, and is reproduced today. Modern Democrats and Republicans both want a strong executive, but the Democrats who want a strong executive to pass legislation to expand the reach of the federal government; naturally, they must rely on an equally empowered Congress to do so. Republicans generally do not want an intrusive federal government, which is why their defense of a strong presidency does not come alongside a call for a strong Congress. This distinction cannot be explained without recourse to foundational yet opposing views about the appropriate role of federal power. When we bring federalism back in, we see that there are indeed two presidencies; one neo-Federalist, in favor of moderate presidential prerogative alongside a robust Congress directed collectively to a national state-building agenda and expanding the federal prerogative; another, neo-Anti-Federalist, in favor of expansive presidential prerogative and an ideologically sympathetic Congress equally suspicious of federal power to retard or roll back national state-building in favour of states rights.

Keywords: US presidency, federalism, prerogative, anti-federalism

Procedia PDF Downloads 120