Search results for: boundary layer interaction
5104 A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors
Authors: Maryam Kheirollahpour, Mahmoud Danaee, Amir Faisal Merican, Asma Ahmad Shariff
Abstract:
Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy.Keywords: hybrid model, structural equation modeling, artificial neural networks, eating behavior patterns
Procedia PDF Downloads 1565103 Wrinkling Prediction of Membrane Composite of Varying Orientation under In-Plane Shear
Abstract:
In this article, the wrinkling failure of orthotropic composite membranes due to in-plane shear deformation is investigated using nonlinear finite element analyses. A nonlinear post-buckling analysis is performed to show the evolution of shear-induced wrinkles. The method of investigation is based on the post-buckling finite element analysis adopted from commercial FEM code; ANSYS. The resulting wrinkling patterns, their amplitude and their wavelengths under the prescribed loads and boundary conditions were confirmed by experimental results. Our study reveals that wrinkles develop when both the magnitudes and coverage of the minimum principal stresses in the laminated composite laminates are sufficiently large to trigger wrinkling.Keywords: composite, FEM, membrane, wrinkling
Procedia PDF Downloads 2755102 Reactive Fabrics for Chemical Warfare Agent Decomposition Using Particle Crystallization
Authors: Myungkyu Park, Minkun Kim, Sunghoon Kim, Samgon Ryu
Abstract:
Recently, research for reactive fabrics which have the characteristics of CWA (Chemical Warfare Agent) decomposition is being performed actively. The performance level of decomposition for CWA decomposition in various environmental condition is one of the critical factors in applicability as protective materials for NBC (Nuclear, Biological, and Chemical) protective clothing. In this study, results of performance test for CWA decomposition by reactive fabric made of electrospinning web and reactive particle are presented. Currently, the MOF (metal organic framework) type of UiO-66-NH₂ is frequently being studied as material for decomposing CWA especially blister agent HD [Bis(2-chloroethyl) sulfide]. When we test decomposition rate with electrospinning web made of PVB (Polyvinyl Butiral) polymer and UiO-66-NH₂ particle, we can get very high protective performance than the case other particles are applied. Furthermore, if the repellant surface fabric is added on reactive material as the component of protective fabric, the performance of layer by layered reactive fabric could be approached to the level of current NBC protective fabric for HD decomposition rate. Reactive fabric we used in this study is manufactured by electrospinning process of polymer which contains the reactive particle of UiO-66-NH₂, and we performed crystalizing process once again on that polymer fiber web in solvent systems as a second step for manufacturing reactive fabric. Three kinds of polymer materials are used in this process, but PVB was most suitable as an electrospinning fiber polymer considering the shape of product. The density of particle on fiber web and HD decomposition rate is enhanced by secondary crystallization compared with the results which are not processed. The amount of HD penetration by 24hr AVLAG (Aerosol Vapor Liquid Assessment Group) swatch test through the reactive fabrics with secondary crystallization and without crystallization is 24 and 146μg/cm² respectively. Even though all of the reactive fiber webs for this test are combined with repellant surface layer at outer side of swatch, the effects of secondary crystallization of particle for the reactive fiber web are remarkable.Keywords: CWA, Chemical Warfare Agent, gas decomposition, particle growth, protective clothing, reactive fabric, swatch test
Procedia PDF Downloads 2955101 Modeling and Simulating Drop Interactions in Spray Structure of High Torque Low Speed Diesel Engine
Authors: Rizwan Latif, Syed Adnan Qasim, Muzaffar Ali
Abstract:
Fuel direct injection represents one of the key aspects in the development of the diesel engines, the idea of controlling the auto-ignition and the consequent combustion of a liquid spray injected in a reacting atmosphere during a time scale of few milliseconds has been a challenging task for the engine community and pushed forward to a massive research in this field. The quality of the air-fuel mixture defines the combustion efficiency, and therefore the engine efficiency. A droplet interaction in dense as well as thin portion of the spray receives equal importance as other parameters in spray structure. Usually, these are modeled along with breakup process and analyzed alike. In this paper, droplet interaction is modeled and simulated for high torque low speed scenario. Droplet interactions may further be subdivided into droplet collision and coalescence, spray wall impingement, droplets drag, etc. Droplet collisions may occur in almost all spray applications, but especially in diesel like conditions such as high pressure sprays as utilized in combustion engines. These collisions have a strong influence on the mean droplet size and its spatial distribution and can, therefore, affect sub-processes of spray combustion such as mass, momentum and energy transfer between gas and droplets. Similarly, for high-pressure injection systems spray wall impingement is an inherent sub-process of mixture formation. However, its influence on combustion is in-explicit.Keywords: droplet collision, coalescence, low speed, diesel fuel
Procedia PDF Downloads 2365100 Bile Salt Induced Microstructural Changes of Gemini Surfactant Micelles
Authors: Vijaykumar Patel, P. Bahadur
Abstract:
Microstructural evolution of a cationic gemini surfactant 12-4-12 micelles in the presence of bile salts has been investigated using different techniques. A negative value of interaction parameter evaluated from surface tension measurements is a signature of strong synergistic interaction between oppositely charged surfactants. Both the bile salts compete with each other in inducing the micellar transition of 12-4-12 micelles depending on their hydrophobicity. Viscosity measurements disclose that loading of bile salts induces morphological changes in 12-4-12 micelles; sodium deoxycholate is more efficient in altering the aggregation behaviour of 12-4-12 micelles compared to sodium cholate and presents pronounced increase in viscosity and micellar growth which is suppressed at elevated temperatures. A remarkable growth of 12-4-12 micelles in the presence of sodium deoxycholate at low pH has been ascribed to the solubilization of bile acids formed in acidic medium. Small angle neutron scattering experiments provided size and shape of 12-4-12/bile salt mixed micelles are explicated on the basis of hydrophobicity of bile salts. The location of bile salts in micelle was determined from nuclear overhauser effect spectroscopy. The present study characterizes 12-4-12 gemini-bile salt mixed systems which significantly enriches our knowledge, and such a structural transition provides an opportunity to use these bioamphiphiles as delivery vehicles and in some pharmaceutical formulations.Keywords: gemini surfactants, bile salts, SANS (small angle neutron scattering), NOESY (nuclear overhauser effect spectroscopy)
Procedia PDF Downloads 1515099 Method for Controlling the Groundwater Polluted by the Surface Waters through Injection Wells
Authors: Victorita Radulescu
Abstract:
Introduction: The optimum exploitation of agricultural land in the presence of an aquifer polluted by the surface sources requires close monitoring of groundwater level in both periods of intense irrigation and in absence of the irrigations, in times of drought. Currently in Romania, in the south part of the country, the Baragan area, many agricultural lands are confronted with the risk of groundwater pollution in the absence of systematic irrigation, correlated with the climate changes. Basic Methods: The non-steady flow of the groundwater from an aquifer can be described by the Bousinesq’s partial differential equation. The finite element method was used, applied to the porous media needed for the water mass balance equation. By the proper structure of the initial and boundary conditions may be modeled the flow in drainage or injection systems of wells, according to the period of irrigation or prolonged drought. The boundary conditions consist of the groundwater levels required at margins of the analyzed area, in conformity to the reality of the pollutant emissaries, following the method of the double steps. Major Findings/Results: The drainage condition is equivalent to operating regimes on the two or three rows of wells, negative, as to assure the pollutant transport, modeled with the variable flow in groups of two adjacent nodes. In order to obtain the level of the water table, in accordance with the real constraints, are needed, for example, to be restricted its top level below of an imposed value, required in each node. The objective function consists of a sum of the absolute values of differences of the infiltration flow rates, increased by a large penalty factor when there are positive values of pollutant. In these conditions, a balanced structure of the pollutant concentration is maintained in the groundwater. The spatial coordinates represent the modified parameters during the process of optimization and the drainage flows through wells. Conclusions: The presented calculation scheme was applied to an area having a cross-section of 50 km between two emissaries with various levels of altitude and different values of pollution. The input data were correlated with the measurements made in-situ, such as the level of the bedrock, the grain size of the field, the slope, etc. This method of calculation can also be extended to determine the variation of the groundwater in the aquifer following the flood wave propagation in envoys.Keywords: environmental protection, infiltrations, numerical modeling, pollutant transport through soils
Procedia PDF Downloads 1555098 Thermal Energy Storage Based on Molten Salts Containing Nano-Particles: Dispersion Stability and Thermal Conductivity Using Multi-Scale Computational Modelling
Authors: Bashar Mahmoud, Lee Mortimer, Michael Fairweather
Abstract:
New methods have recently been introduced to improve the thermal property values of molten nitrate salts (a binary mixture of NaNO3:KNO3in 60:40 wt. %), by doping them with minute concentration of nanoparticles in the range of 0.5 to 1.5 wt. % to form the so-called: Nano-heat-transfer-fluid, apt for thermal energy transfer and storage applications. The present study aims to assess the stability of these nanofluids using the advanced computational modelling technique, Lagrangian particle tracking. A multi-phase solid-liquid model is used, where the motion of embedded nanoparticles in the suspended fluid is treated by an Euler-Lagrange hybrid scheme with fixed time stepping. This technique enables measurements of various multi-scale forces whose characteristic (length and timescales) are quite different. Two systems are considered, both consisting of 50 nm Al2O3 ceramic nanoparticles suspended in fluids of different density ratios. This includes both water (5 to 95 °C) and molten nitrate salt (220 to 500 °C) at various volume fractions ranging between 1% to 5%. Dynamic properties of both phases are coupled to the ambient temperature of the fluid suspension. The three-dimensional computational region consists of a 1μm cube and particles are homogeneously distributed across the domain. Periodic boundary conditions are enforced. The particle equations of motion are integrated using the fourth order Runge-Kutta algorithm with a very small time-step, Δts, set at 10-11 s. The implemented technique demonstrates the key dynamics of aggregated nanoparticles and this involves: Brownian motion, soft-sphere particle-particle collisions, and Derjaguin, Landau, Vervey, and Overbeek (DLVO) forces. These mechanisms are responsible for the predictive model of aggregation of nano-suspensions. An energy transport-based method of predicting the thermal conductivity of the nanofluids is also used to determine thermal properties of the suspension. The simulation results confirms the effectiveness of the technique. The values are in excellent agreement with the theoretical and experimental data obtained from similar studies. The predictions indicates the role of Brownian motion and DLVO force (represented by both the repulsive electric double layer and an attractive Van der Waals) and its influence in the level of nanoparticles agglomeration. As to the nano-aggregates formed that was found to play a key role in governing the thermal behavior of nanofluids at various particle concentration. The presentation will include a quantitative assessment of these forces and mechanisms, which would lead to conclusions about nanofluids, heat transfer performance and thermal characteristics and its potential application in solar thermal energy plants.Keywords: thermal energy storage, molten salt, nano-fluids, multi-scale computational modelling
Procedia PDF Downloads 1915097 An Eulerian Method for Fluid-Structure Interaction Simulation Applied to Wave Damping by Elastic Structures
Authors: Julien Deborde, Thomas Milcent, Stéphane Glockner, Pierre Lubin
Abstract:
A fully Eulerian method is developed to solve the problem of fluid-elastic structure interactions based on a 1-fluid method. The interface between the fluid and the elastic structure is captured by a level set function, advected by the fluid velocity and solved with a WENO 5 scheme. The elastic deformations are computed in an Eulerian framework thanks to the backward characteristics. We use the Neo Hookean or Mooney Rivlin hyperelastic models and the elastic forces are incorporated as a source term in the incompressible Navier-Stokes equations. The velocity/pressure coupling is solved with a pressure-correction method and the equations are discretized by finite volume schemes on a Cartesian grid. The main difficulty resides in that large deformations in the fluid cause numerical instabilities. In order to avoid these problems, we use a re-initialization process for the level set and linear extrapolation of the backward characteristics. First, we verify and validate our approach on several test cases, including the benchmark of FSI proposed by Turek. Next, we apply this method to study the wave damping phenomenon which is a mean to reduce the waves impact on the coastline. So far, to our knowledge, only simulations with rigid or one dimensional elastic structure has been studied in the literature. We propose to place elastic structures on the seabed and we present results where 50 % of waves energy is absorbed.Keywords: damping wave, Eulerian formulation, finite volume, fluid structure interaction, hyperelastic material
Procedia PDF Downloads 3235096 Paper-Like and Battery Free Sensor Patches for Wound Monitoring
Authors: Xiaodi Su, Xin Ting Zheng, Laura Sutarlie, Nur Asinah binte Mohamed Salleh, Yong Yu
Abstract:
Wound healing is a dynamic process with multiple phases. Rapid profiling and quantitative characterization of inflammation and infection remain challenging. We have developed paper-like battery-free multiplexed sensors for holistic wound assessment via quantitative detection of multiple inflammation and infection markers. In one of the designs, the sensor patch consists of a wax-printed paper panel with five colorimetric sensor channels arranged in a pattern resembling a five-petaled flower (denoted as a ‘Petal’ sensor). The five sensors are for temperature, pH, trimethylamine, uric acid, and moisture. The sensor patch is sandwiched between a top transparent silicone layer and a bottom adhesive wound contact layer. In the second design, a palm-like-shaped paper strip is fabricated by a paper-cutter printer (denoted as ‘Palm’ sensor). This sensor strip carries five sensor regions connected by a stem sampling entrance that enables rapid colorimetric detection of multiple bacteria metabolites (aldehyde, lactate, moisture, trimethylamine, tryptophan) from wound exudate. For both the “\’ Petal’ and ‘Palm’ sensors, color images can be captured by a mobile phone. According to the color changes, one can quantify the concentration of the biomarkers and then determine wound healing status and identify/quantify bacterial species in infected wounds. The ‘Petal’ and ‘Palm’ sensors are validated with in-situ animal and ex-situ skin wound models, respectively. These sensors have the potential for integration with wound dressing to allow early warning of adverse events without frequent removal of the plasters. Such in-situ and early detection of non-healing condition can trigger immediate clinical intervention to facilitate wound care management.Keywords: wound infection, colorimetric sensor, paper fluidic sensor, wound care
Procedia PDF Downloads 815095 Numerical Investigation of Tsunami Flow Characteristics and Energy Reduction through Flexible Vegetation
Authors: Abhishek Mukherjee, Juan C. Cajas, Jenny Suckale, Guillaume Houzeaux, Oriol Lehmkuhl, Simone Marras
Abstract:
The investigation of tsunami flow characteristics and the quantification of tsunami energy reduction through the coastal vegetation is important to understand the protective benefits of nature-based mitigation parks. In the present study, a three-dimensional non-hydrostatic incompressible Computational Fluid Dynamics model with a two-way coupling enabled fluid-structure interaction approach (FSI) is used. After validating the numerical model against experimental data, tsunami flow characteristics have been investigated by varying vegetation density, modulus of elasticity, the gap between stems, and arrangement or distribution of vegetation patches. Streamwise depth average velocity profiles, turbulent kinetic energy, energy flux reflection, and dissipation extracted by the numerical study will be presented in this study. These diagnostics are essential to assess the importance of different parameters to design the proper coastal defense systems. When a tsunami wave reaches the shore, it transforms into undular bores, which induce scour around offshore structures and sediment transport. The bed shear stress, instantaneous turbulent kinetic energy, and the vorticity near-bed will be presented to estimate the importance of vegetation to prevent tsunami-induced scour and sediment transport.Keywords: coastal defense, energy flux, fluid-structure interaction, natural hazards, sediment transport, tsunami mitigation
Procedia PDF Downloads 1505094 A Clear Language Is Essential: A Qualitative Exploration of Doctor-Patient Health Interaction in Jordan
Authors: Etaf Khlaed Haroun Alkhlaifat
Abstract:
When doctors and patients do not share the same first language, language barriers may exist, which may have negative effects on the quality of communication and care provided. Doctors’ use of medical jargon and patients’ inability to fully express their illness, to a potential loss of relevant information can often create misunderstanding. This study sought to examine the extent to which a lack of “common” language represents one of the linguistic obstacles that may adversely influence the quality of healthcare services in Jordan. Communication Accommodation Theory (CAT) was used to interpret the phenomena under study. Doctors (n=9) and patients (n=18) were observed and interviewed in natural Jordanian medical settings. A thematic qualitative approach was employed to analyse the data. The preliminary findings of the study revealed that most doctors appeared to have a good sense of appropriate ways to break through communication barriers by changing medical terminologies or jargons into lay terms. However, for some, there were two main challenges: 1) the use of medical jargon in explaining medication and side effects and 2) the lack of patients’ knowledge in providing a full explanation about their illnesses. The study revealed that language barriers adversely affect health outcomes for patients with limited fluency in the English language. It argues that it is doctors’ responsibility to guarantee mutual understanding, educate patients on their condition and improve their health outcomes.Keywords: communication accommodation theory, doctor-patient interaction, language barrier, medical jargon, misunderstanding
Procedia PDF Downloads 845093 A Note on the Fractal Dimension of Mandelbrot Set and Julia Sets in Misiurewicz Points
Authors: O. Boussoufi, K. Lamrini Uahabi, M. Atounti
Abstract:
The main purpose of this paper is to calculate the fractal dimension of some Julia Sets and Mandelbrot Set in the Misiurewicz Points. Using Matlab to generate the Julia Sets images that match the Misiurewicz points and using a Fractal software, we were able to find different measures that characterize those fractals in textures and other features. We are actually focusing on fractal dimension and the error calculated by the software. When executing the given equation of regression or the log-log slope of image a Box Counting method is applied to the entire image, and chosen settings are available in a FracLAc Program. Finally, a comparison is done for each image corresponding to the area (boundary) where Misiurewicz Point is located.Keywords: box counting, FracLac, fractal dimension, Julia Sets, Mandelbrot Set, Misiurewicz Points
Procedia PDF Downloads 2165092 Dimensions of Public Spaces in Indian Market Places Feelings through Human Senses
Authors: Piyush Hajela
Abstract:
Public spaces in Indian market places are vibrant, colorful and carry latent dimensions that make them attractive and popular gathering spaces. These markets satisfy the household needs of the people and also their social, cultural and traditional aspirations. Going to a market place for shopping in India is a great source of entertainment for the people. They would love to spend as much time as possible and stay for longer durations than otherwise required. It is this desire of the people that generates public spaces. Much of these public spaces emerge as squares, plazas, corners of varied shapes and sizes at different locations, and yet provide a conducive environment. Such public spaces grow organically and are discovered by the people themselves. Indian markets serve people of different culture, religion, caste, age, gender which keeps them alive all the year round. Indian is a diverse country and this diversity is reflected clearly in the market places. They hold the people together and promote harmony across cultures. Free access to these market places makes them magnets for social interaction. Public spaces are spread across a city and more or less have established their existence and prominence in a social set up. While few of them are created, others are discovered by the people themselves in their constant search for desirable interactive public spaces. These are the most sought after gathering spaces that have the quality of promoting social interaction, providing free accessibility, provide desirable scale etc. The paper aims at identifying these freely accessible public spaces and the dimensions within it that make these public spaces hold the people for significant duration of time. The dimensions present shall be judged through collective response of human senses in form of safety, comfort and so on through the expressions of the participants. The aim therefore would be to trace the freely accessible public spaces emerged in Indian markets and evaluate them for human response and behavior. The hierarchy of market places in the city of Bhopal is well established as, city center level, sub city-center level, community level, local and convenient level market places. While many city-centers are still referred to as the old or traditional or the core area of the city, the others are part of the planned city. These different levels of market places are studied for emerged public spaces. These emerged public spaces are then documented in detail for unveiling the dimensions they offer through, photographs, visual observations, questionnaires and response of the participants of these public spaces.Keywords: human comfort, enclosure, safety, social interaction
Procedia PDF Downloads 4175091 Analysis of the Development of Communicative Skills After Participating in the Equine-Assisted-Therapy Program Step-By-Step in Communication
Authors: Leticia Souza Guirra, Márcia Eduarda Vieira Ramos, Edlaine Souza Pereira, Leticia Correa Celeste
Abstract:
Introduction: Studies indicate that equine-assisted therapy enables improvements in several areas of functioning that are impaired in children with autism spectrum disorder (ASD), such as social interaction and communication. Objective: The study proposes to analyze the development of dialogic skills of a verbal child with ASD after participating in the equine-assisted therapy Step By Step in Communication. Method: This is quantitative and qualitative research through a case study. It refers to a 6 years old child diagnosed with ASD belonging to a group of practitioners of the Brazilian National Equine-Assited-Therapy Association. The Behavioral Observation Protocol (PROC) was used to evaluate communicative skills before and after the intervention, which consisted of 24 sessions once a week. Results: All conversational skills increased their frequency, with participation in dialogue and initiation of interaction. The child also increases the habit of waiting for his turn and answering the interlocutor. The emission of topics not related to conversation and echolalia showed a significant decrease after the intervention. Conclusion: The studied child showed improvement in communicative skills after participating in the equine-assisted therapy Step By Step in Communication. Contributions: This study contributes to a greater understanding of the impact of equine-assisted therapy on the communicative abilities of children with ASD.Keywords: equine-assisted-therapy, autism spectrum disorder, language, communication, language and hearing sciences
Procedia PDF Downloads 815090 A Novel Method for Solving Nonlinear Whitham–Broer–Kaup Equation System
Authors: Ayda Nikkar, Roghayye Ahmadiasl
Abstract:
In this letter, a new analytical method called homotopy perturbation method, which does not need small parameter in the equation is implemented for solving the nonlinear Whitham–Broer–Kaup (WBK) partial differential equation. In this method, a homotopy is introduced to be constructed for the equation. The initial approximations can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of exact solution has led us to significant consequences. The results reveal that the HPM is very effective, convenient and quite accurate to systems of nonlinear equations. It is predicted that the HPM can be found widely applicable in engineering.Keywords: homotopy perturbation method, Whitham–Broer–Kaup (WBK) equation, Modified Boussinesq, Approximate Long Wave
Procedia PDF Downloads 3115089 The Impact of Bilateral Investment Treaties on Health-Related Intellectual Property Rights in the Agreement on Trade-Related Aspects of Intellectual Property Rights in the Kingdom of Saudi Arabia and Australia
Authors: Abdulrahman Fahim M. Alsulami
Abstract:
This paper is dedicated to a detailed investigation of the interaction between the agreement on trade-related aspects of intellectual property rights (TRIPS) and bilateral investment treaties (BITs) in the regulation of health-related intellectual property rights in Australia and the Kingdom of Saudi Arabia. The chosen research object is complex and requires a thorough examination of a set of factors influencing the problem under investigation. At the moment, to the author’s best knowledge’ there is no academic research that would conceptualize and critically compare the regulation of health-related intellectual property rights in these two countries. While there is a substantial amount of information in the literature on certain aspects of the problem, the existing knowledge about certain aspects of the health-related regulatory frameworks in Australia and Saudi Arabia barely explains in detail the specifics of the ways in which the TRIPS agreement interacts with (BITs) in the regulation of health-related intellectual property rights. Therefore, this paper will address an evident research gap by studying an intriguing yet under-researched problem. The paper comprises five subsections. The first subsection provides an overview of the investment climate in Saudi Arabia and Australia with an emphasis on the health care industry. It will cover political, economic, and social factors influencing the investment climate in these countries, the systems of intellectual property rights protection, recent patterns relevant to the investment climate’s development, and key characteristics of the investment climate in the health care industry. The second subsection analyses BITs in Saudi Arabia and Australia in light of the countries’ responsibilities under the TRIPS Agreement. The third subsection provides a critical examination of the interaction between the TRIPS Agreement and BITs in Saudi Arabia on the basis of data collected and analyzed in previous subsections. It will investigate key discrepancies concerning the regulation of health-related intellectual property rights in Saudi Arabia and Australia from the position of BITs’ interaction with the TRIPS Agreement and explore the existing procedures for clarifying priorities between them in regulating health-related intellectual property rights. The fourth subsection of the paper provides recommendations concerning the transformation of BITS into a TRIPS+ dimension in regulating health-related intellectual property rights in Saudi Arabia and Australia. The final subsection provides a summary of differences between the Australian and Saudi BITs from the perspective of the regulation of health-related intellectual property rights under the TRIPS agreement and bilateral investment treaties.Keywords: Australia, bilateral investment treaties, IP law, public health sector, Saudi Arabia
Procedia PDF Downloads 1445088 Passive Seismic in Hydrogeological Prospecting: The Case Study from Hard Rock and Alluvium Plain
Authors: Prarabdh Tiwari, M. Vidya Sagar, K. Bhima Raju, Joy Choudhury, Subash Chandra, E. Nagaiah, Shakeel Ahmed
Abstract:
Passive seismic, a wavefield interferometric imaging, low cost and rapid tool for subsurface investigation is used for various geotechnical purposes such as hydrocarbon exploration, seismic microzonation, etc. With the recent advancement, its application has also been extended to groundwater exploration by means of finding the bedrock depth. Council of Scientific & Industrial Research (CSIR)-National Geophysical Research Institute (NGRI) has experimented passive seismic studies along with electrical resistivity tomography for groundwater in hard rock (Choutuppal, Hyderabad). Passive Seismic with Electrical Resistivity (ERT) can give more clear 2-D subsurface image for Groundwater Exploration in Hard Rock area. Passive seismic data were collected using a Tromino, a three-component broadband seismometer, to measure background ambient noise and processed using GRILLA software. The passive seismic results are found corroborating with ERT (Electrical Resistivity Tomography) results. For data acquisition purpose, Tromino was kept over 30 locations consist recording of 20 minutes at each station. These location shows strong resonance frequency peak, suggesting good impedance contrast between different subsurface layers (ex. Mica rich Laminated layer, Weathered layer, granite, etc.) This paper presents signature of passive seismic for hard rock terrain. It has been found that passive seismic has potential application for formation characterization and can be used as an alternative tool for delineating litho-stratification in an urban condition where electrical and electromagnetic tools cannot be applied due to high cultural noise. In addition to its general application in combination with electrical and electromagnetic methods can improve the interpreted subsurface model.Keywords: passive seismic, resonant frequency, Tromino, GRILLA
Procedia PDF Downloads 1885087 Dimensions of Public Spaces: Feelings through Human Senses
Authors: Piyush Hajela
Abstract:
The significance of public spaces is on a rise in Indian cities as a strong interaction space across cultures and community. It is a pertinent gathering space for people across age and gender, where the face keeps changing with time. A public space is directly related to the social dimension, people, comfort, safety, and security, that, it proposes to provide, as inherent qualities. The presence of these and other dimensions of space, together with related equitable environments, impart certain quality to a public space. The higher the optimum contents of these dimensions, the better the quality of public space. Public is represented by PEOPLE through society and community, and space is created by dimensions. Society contains children, women and the elderly, community is composed of social, and religious groups. These behave differently in a different setting and call for varied quality of spaces, created and generated. Public spaces are spread across a city and have more or less established their existence and prominence in a social set up. While few of them are created others are discovered by the people themselves in their constant search for desirable interactive public spaces. These are the most sought after gathering spaces that have the quality of promoting social interaction, providing free accessibility, provide desirable scale etc. The emergence of public space dates back to the times when people started forming communities, display cultures and traditions publicly, gathered for religious observations and celebrations, and address the society. Traditional cities and societies in India were feudal and orthodox in their nature and yet had public spaces. When the gathering of people at one point in a city became more frequent the point became more accessible and occupied. Baras (large courts, Chowks (public squares) and Maidans (large grounds) became well-known gathering spaces in the towns and cities. As the population grew such points grew in number, each becoming a public space in itself and with a different and definite social character. The author aims at studying the various dimensions of public spaces with which a public space has power to hold people for a significant period of time. The human senses here are note referred to as taste, sight, hearing, touch or smell, but how human senses collectively respond to when stationed in a given public space. The collectives may reflect in dimensions like comfort, safety, environment, freedom etc. Various levels of similar other responses would be studied through interviews, observations and other scientific methods for both qualitative and quantitative analysis.Keywords: society, interaction, people, accessibility, comfort, enclosure
Procedia PDF Downloads 4565086 Determination of Activation Energy for Thermal Decomposition of Selected Soft Tissues Components
Authors: M. Ekiert, T. Uhl, A. Mlyniec
Abstract:
Tendons are the biological soft tissue structures composed of collagen, proteoglycan, glycoproteins, water and cells of extracellular matrix (ECM). Tendons, which primary function is to transfer force generated by the muscles to the bones causing joints movement, are exposed to many micro and macro damages. In fact, tendons and ligaments trauma are one of the most numerous injuries of human musculoskeletal system, causing for many people (particularly for athletes and physically active people), recurring disorders, chronic pain or even inability of movement. The number of tendons reconstruction and transplantation procedures is increasing every year. Therefore, studies on soft tissues storage conditions (influencing i.e. tissue aging) seem to be an extremely important issue. In this study, an atomic-scale investigation on the kinetics of decomposition of two selected tendon components – collagen type I (which forms a 60-85% of a tendon dry mass) and elastin protein (which combine with ECM creates elastic fibers of connective tissues) is presented. A molecular model of collagen and elastin was developed based on crystal structure of triple-helical collagen-like 1QSU peptide and P15502 human elastin protein, respectively. Each model employed 4 linear strands collagen/elastin strands per unit cell, distributed in 2x2 matrix arrangement, placed in simulation box filled with water molecules. A decomposition phenomena was simulated with molecular dynamics (MD) method using ReaxFF force field and periodic boundary conditions. A set of NVT-MD runs was performed for 1000K temperature range in order to obtained temperature-depended rate of production of decomposition by-products. Based on calculated reaction rates activation energies and pre-exponential factors, required to formulate Arrhenius equations describing kinetics of decomposition of tested soft tissue components, were calculated. Moreover, by adjusting a model developed for collagen, system scalability and correct implementation of the periodic boundary conditions were evaluated. An obtained results provide a deeper insight into decomposition of selected tendon components. A developed methodology may also be easily transferred to other connective tissue elements and therefore might be used for further studies on soft tissues aging.Keywords: decomposition, molecular dynamics, soft tissue, tendons
Procedia PDF Downloads 2105085 A Solution to Analyze the Geosynthetic Reinforced Piled Embankments Considering Pile-Soil Interaction
Authors: Feicheng Liu, Weiming Liao, Jianjing Zhang
Abstract:
A pile-supported embankment with geosynthetic-reinforced mat (PSGR embankment) has been considered as an effective solution to reduce the total and differential settlement of the embankment constructed over soft soil. In this paper, a new simplified method proposed firstly incorporates the load transfer between piles and surrounding soil and the settlement of pile, and also considers arching effect in embankment fill, membrane effect of geosynthetic reinforcement, and subsoil resistance, to evaluate the behavior of PSGR embankment. Subsoil settlement is assumed to consist of two parts:(1) the settlement of subsoil surface between piles equivalent to that of pile caps assuming the geosynthetic reinforcement without deformation yet; (2) the subsoil subsiding along with the geosynthetic deforming, and the deflected geosynthetic being considered as centenary. The force equilibrium, including loads acting on the upper surface of geosynthetic, subsoil resistance, as well as the stress-strain relationship of the geosynthetic reinforcement at the edge of pile cap, is established, thus the expression of subsoil resistance is deduced, and subsequently the tension of geosynthetic and stress concentration ratio between piles can be calculated. The proposed method is validated through observed data from three field tests and also compared with other eight analytical solutions available in the literature. In addition, a sensitive analysis is provided to demonstrate the influence of with/without considering pile-soil interaction for evaluating the performance of PSGR embankment.Keywords: pile-supported embankment, geosynthetic, analytical solution, soil arching effect, the settlement of pile, sensitive analysis
Procedia PDF Downloads 1575084 Quality Management in Spice Paprika Production as a Synergy of Internal and External Quality Measures
Authors: É. Kónya, E. Szabó, I. Bata-Vidács, T. Deák, M. Ottucsák, N. Adányi, A. Székács
Abstract:
Spice paprika is a major spice commodity in the European Union (EU), produced locally and imported from non-EU countries, reported not only for chemical and microbiological contamination, but also for fraud. The effective interaction between producers’ quality management practices and government and EU activities is described on the example of spice paprika production and control in Hungary, a country of leading spice paprika producer and per capita consumer in Europe. To demonstrate the importance of various contamination factors in the Hungarian production and EU trade of spice paprika, several aspects concerning food safety of this commodity are presented. Alerts in the Rapid Alert System for Food and Feed (RASFF) of the EU between 2005 and 2013, as well as Hungarian state inspection results on spice paprika in 2004 are discussed, and quality non-compliance claims regarding spice paprika among EU member states are summarized in by means of network analysis. Quality assurance measures established along the spice paprika production technology chain at the leading Hungarian spice paprika manufacturer, Kalocsai Fűszerpaprika Zrt. are surveyed with main critical control points identified. The structure and operation of the Hungarian state food safety inspection system is described. Concerted performance of the latter two quality management systems illustrates the effective interaction between internal (manufacturer) and external (state) quality control measures.Keywords: spice paprika, quality control, reporting mechanisms, RASFF, vulnerable points, HACCP
Procedia PDF Downloads 2875083 Angiogenic Potential of Collagen Based Biomaterials Implanted on Chick Embryo Chorioallantoic Membrane as Alternative Microenvironment for in Vitro and in Vivo Angiogenesis Assays
Authors: Anca Maria Cimpean, Serban Comsa
Abstract:
Chick embryo chorioallantoic membrane (CAM) is a well vascularised in vivo experimental model used as a platform for testing the behavior of different implants inserted on it from tumor fragments to therapeutic agents or various biomaterials. Five types of collagen-based biomaterials with 2D and 3D structure (MotifMesh, Optimaix2D, Optimaix3D, Dual Layer Collagen and Xenoderm) were implanted on CAM and continuously evaluated by stereomicroscope for up to 5 days post-implant with an emphasis of their ability to requisite and develop new blood vessels (BVs) followed by microscopic analysis. MotifMEsh did not induce any angiogenic response lacking to be invaded by BVs from the CAM, but it induced intense inflammatory response necrosis and fibroblastic reaction around the implant. Optimaix2D has good adherence. CAM with minimal or no inflammatory reaction, a good integration of the CAM between the collagen mesh’s fibers, consistent adhesion of the cells to the collagen fibers,and a good ability to form pseudo-vascular channels filled with cells. Optimaix3D induced the highest angiogenic effects on CAM. The material shows good integration on CAM. The collagen fibers of the material show the ability to organize themselves into linear and tubular structures. It is possible to see blood elements, especially at the periphery of the implant. Dual-layer collagen behaves similar to Optimaix 3D, while Xenoderm induced a moderate angiogenic effect on CAM. Based on these data, we may conclude that collagen-based materials have variable ability to requisite and develop new blood vessels. A proper selection of collagen-based biomaterial scaffolds may crucially influence the acquisition and development of blood vessels during angiogenesis assays.Keywords: chick embryo chorioallantoic membrane, collagen scaffolds, blood vessels, vascular microenvironment
Procedia PDF Downloads 1935082 Preparation of Li Ion Conductive Ceramics via Liquid Process
Authors: M. Kotobuki, M. Koishi
Abstract:
Li1.5Al0.5Ti1.5 (PO4)3(LATP) has received much attention as a solid electrolyte for lithium batteries. In this study, the LATP solid electrolyte is prepared by the co-precipitation method using Li3PO4 as a Li source. The LATP is successfully prepared and the Li ion conductivities of bulk (inner crystal) and total (inner crystal and grain boundary) are 1.1 × 10-3 and 1.1 × 10-4 S cm-1, respectively. These values are comparable to the reported values, in which Li2C2O4 is used as the Li source. It is conclude that the LATP solid electrolyte can be prepared by the co-precipitation method using Li3PO4 as the Li source and this procedure has an advantage in mass production over previous procedure using Li2C2O4 because Li3PO4 is lower price reagent compared with Li2C2O4.Keywords: co-precipitation method, lithium battery, NASICON-type electrolyte, solid electrolyte
Procedia PDF Downloads 3525081 A Deep Learning Approach to Online Social Network Account Compromisation
Authors: Edward K. Boahen, Brunel E. Bouya-Moko, Changda Wang
Abstract:
The major threat to online social network (OSN) users is account compromisation. Spammers now spread malicious messages by exploiting the trust relationship established between account owners and their friends. The challenge in detecting a compromised account by service providers is validating the trusted relationship established between the account owners, their friends, and the spammers. Another challenge is the increase in required human interaction with the feature selection. Research available on supervised learning (machine learning) has limitations with the feature selection and accounts that cannot be profiled, like application programming interface (API). Therefore, this paper discusses the various behaviours of the OSN users and the current approaches in detecting a compromised OSN account, emphasizing its limitations and challenges. We propose a deep learning approach that addresses and resolve the constraints faced by the previous schemes. We detailed our proposed optimized nonsymmetric deep auto-encoder (OPT_NDAE) for unsupervised feature learning, which reduces the required human interaction levels in the selection and extraction of features. We evaluated our proposed classifier using the NSL-KDD and KDDCUP'99 datasets in a graphical user interface enabled Weka application. The results obtained indicate that our proposed approach outperformed most of the traditional schemes in OSN compromised account detection with an accuracy rate of 99.86%.Keywords: computer security, network security, online social network, account compromisation
Procedia PDF Downloads 1195080 Transverse Vibration of Non-Homogeneous Rectangular Plates of Variable Thickness Using GDQ
Abstract:
The effect of non-homogeneity on the free transverse vibration of thin rectangular plates of bilinearly varying thickness has been analyzed using generalized differential quadrature (GDQ) method. The non-homogeneity of the plate material is assumed to arise due to linear variations in Young’s modulus and density of the plate material with the in-plane coordinates x and y. Numerical results have been computed for fully clamped and fully simply supported boundary conditions. The solution procedure by means of GDQ method has been implemented in a MATLAB code. The effect of various plate parameters has been investigated for the first three modes of vibration. A comparison of results with those available in literature has been presented.Keywords: rectangular, non-homogeneous, bilinear thickness, generalized differential quadrature (GDQ)
Procedia PDF Downloads 3845079 Interaction between NiCl2 and Selenium on Energy Profiles in Wistar albino Preimplanted Rats
Authors: O. Adjroud
Abstract:
The present study was conducted to investigate the interaction between selenium (Se) and chloride nickel (NiCl2) on energy profiles in Wistar albino preimplanted rats. NiCl2 was given on day 3 of pregnancy either in distilled drinking water at a dose of 20 mg/L/day for 16 consecutive days or as a single subcutaneous (s.c.) dose of 25, 50, or 100 mg/kg. Se was given as a s.c. injection (0.3 mg/kg) together with the higher dose (100 mg/kg) of NiCl2. Changes in energy profiles were evaluated in treated and control groups on days 5 and 20 of gestation. NiCl2 s.c. induced a significant increase in plasma glucose on day 20 of pregnancy. NiCl2 s.c. induced on day 5 and 20 of gestation a significant decrease in plasma triglycerides, with the higher dose. This decrease was maintained at day 20 of gestation with doses of 50 mg /kg. In addition, NiCl2 s.c. caused on day 5 of gestation a significant decrease in plasma total cholesterol with the low and medium doses. The pretreatment with Se reversed the effects of NiCl2 on plasma glucose, total cholesterol and triglycerides levels. NiCl2 administered in the drinking water augmented significantly the plasma triglycerides and total cholesterol levels and slighty the plasma glucose on day 20 of gestation, while on day 5 of gestation NiCl2 s.c. Induced a significant decrease in cholesterol. Three doses of NiCl2 (sc) induced severe alterations in liver and architecture which are markedly improved by Selenium. These results suggested that selenium has protective effects on energy profiles against the toxicity induced by NiCl2 administered subcutaneously in preimplanted rats.Keywords: hepatotoxicity, nickel chloride, preimplanted rat, biochemical parameters
Procedia PDF Downloads 4085078 Regulating Nanocarrier and Mononuclear Phagocyte System Interactions through Esomeprazole-Based Preconditioning Strategy
Authors: Zakia Belhadj, Bing He, Hua Zhang, Xueqing Wang, Wenbing Dai, Qiang Zhang
Abstract:
Mononuclear phagocyte system (MPS) forms an abominable obstacle hampering the tumor delivery efficiency of nanoparticles. Passively targeted nanocarriers have received clinical approval over the past 20 years. However, none of the actively targeted nanocarriers have entered clinical trials. Thus it is important to endue effective targeting ability to actively targeted approaches by overcoming biological barriers to nanoparticle drug delivery. Here, it presents that an Esomeprazole-based preconditioning strategy for regulating nanocarrier-MPS interaction to substantially prolong circulation time and enhance tumor targeting of nanoparticles. In vitro, the clinically approved proton pump inhibitor Esomeprazole “ESO” was demonstrated to reduce interactions between macrophages and subsequently injected targeted vesicles by interfering with their lysosomal trafficking. Of note, in vivo studies demonstrated that ESO pretreatment greatly decreased the liver and spleen uptake of c(RGDm7)-modified vesicles, highly enhanced their tumor accumulation, thereby provided superior therapeutic efficacy of c(RGDm7)-modified vesicles co-loaded with Doxorubicin (DOX) and Gefitinib (GE). This MPS-preconditioning strategy using ESO provides deeper insights into regulating nanoparticles interaction with the phagocytic system and enhancing their cancer cells' accessibility for anticancer therapy.Keywords: esomeprazole (ESO), mononuclear phagocyte system (MPS), preconditioning strategy, targeted lipid vesicles
Procedia PDF Downloads 1765077 Influence of Synergistic/Antagonistic Mixtures of Oligomeric Stabilizers on the Biodegradation of γ-Sterilized Polyolefins
Authors: Sameh A. S. Thabit Alariqi
Abstract:
Our previous studies aimed to investigate the biodegradation of γ-sterilized polyolefins in composting and microbial culture environments at different doses and γ-dose rates. It was concluded from the previous studies that the pretreatment of γ-irradiation can accelerate the biodegradation of neat polymer matrix in biotic conditions significantly. A similar work was carried out to study the stabilization of γ-sterilized polyolefins using different mixtures of stabilizers which are approved for food-contact applications. Ethylene-propylene (EP) copolymer has been melt-mixed with hindered amine stabilizers (HAS), phenolic antioxidants and hydroperoxide decomposers. Results were discussed by comparing the stabilizing efficiency, combination and consumption of stabilizers and the synergistic and antagonistic effects was explained through the interaction between the stabilizers. In this attempt, we have aimed to study the influence of the synergistic and antagonistic mixtures of oligomeric stabilizers on the biodegradation of the γ-irradiated polyolefins in composting and microbial culture. Neat and stabilized films of EP copolymer irradiated under γ-radiation and incubated in compost and fungal culture environments. The changes in functional groups, surface morphology, mechanical properties and intrinsic viscosity in polymer chains were characterized by FT-IR spectroscopy, SEM, instron, and viscometric measurements respectively. Results were discussed by comparing the effect of different stabilizers, stabilizers mixtures on the biodegradation of the γ-irradiated polyolefins. It was found that the biodegradation significantly depends on the components of stabilization system, mobility, interaction, and consumption of stabilizers.Keywords: biodegradation, γ-irradiation, polyolefins, stabilization
Procedia PDF Downloads 3885076 Axial, Bending Interaction Diagrams of Reinforced Concrete Columns Exposed to Chloride Attack
Authors: Rita Greco, Giuseppe Carlo Marano
Abstract:
Chloride induced reinforcement corrosion is widely accepted to be the most frequent mechanism causing premature degradation of reinforced concrete members, whose economic and social consequences are growing up continuously. Prevention of these phenomena has a great importance in structural design, and modern Codes and Standard impose prescriptions concerning design details and concrete mix proportion for structures exposed to different external aggressive conditions, grouped in environmental classes. This paper focuses on reinforced concrete columns load carrying capacity degradation over time due to chloride induced steel pitting corrosion. The structural element is considered to be exposed to marine environment and the effects of corrosion are described by the time degradation of the axial-bending interaction diagram. Because chlorides ingress and consequent pitting corrosion propagation are both time-dependent mechanisms, the study adopts a time-variant predictive approach to evaluate the residual strength of corroded reinforced concrete columns at different lifetimes. Corrosion initiation and propagation process is modelled by taking into account all the parameters, such as external environmental conditions, concrete mix proportion, concrete cover and so on, which influence the time evolution of the corrosion phenomenon and its effects on the residual strength of RC columns.Keywords: pitting corrosion, strength deterioration, diffusion coefficient, surface chloride concentration, concrete structures, marine environment
Procedia PDF Downloads 3215075 Surface Acoustic Wave (SAW)-Induced Mixing Enhances Biomolecules Kinetics in a Novel Phase-Interrogation Surface Plasmon Resonance (SPR) Microfluidic Biosensor
Authors: M. Agostini, A. Sonato, G. Greco, M. Travagliati, G. Ruffato, E. Gazzola, D. Liuni, F. Romanato, M. Cecchini
Abstract:
Since their first demonstration in the early 1980s, surface plasmon resonance (SPR) sensors have been widely recognized as useful tools for detecting chemical and biological species, and the interest of the scientific community toward this technology has known a rapid growth in the past two decades owing to their high sensitivity, label-free operation and possibility of real-time detection. Recent works have suggested that a turning point in SPR sensor research would be the combination of SPR strategies with other technologies in order to reduce human handling of samples, improve integration and plasmonic sensitivity. In this light, microfluidics has been attracting growing interest. By properly designing microfluidic biochips it is possible to miniaturize the analyte-sensitive areas with an overall reduction of the chip dimension, reduce the liquid reagents and sample volume, improve automation, and increase the number of experiments in a single biochip by multiplexing approaches. However, as the fluidic channel dimensions approach the micron scale, laminar flows become dominant owing to the low Reynolds numbers that typically characterize microfluidics. In these environments mixing times are usually dominated by diffusion, which can be prohibitively long and lead to long-lasting biochemistry experiments. An elegant method to overcome these issues is to actively perturb the liquid laminar flow by exploiting surface acoustic waves (SAWs). With this work, we demonstrate a new approach for SPR biosensing based on the combination of microfluidics, SAW-induced mixing and the real-time phase-interrogation grating-coupling SPR technology. On a single lithium niobate (LN) substrate the nanostructured SPR sensing areas, interdigital transducer (IDT) for SAW generation and polydimethylsiloxane (PDMS) microfluidic chambers were fabricated. SAWs, impinging on the microfluidic chamber, generate acoustic streaming inside the fluid, leading to chaotic advection and thus improved fluid mixing, whilst analytes binding detection is made via SPR method based on SPP excitation via gold metallic grating upon azimuthal orientation and phase interrogation. Our device has been fully characterized in order to separate for the very first time the unwanted SAW heating effect with respect to the fluid stirring inside the microchamber that affect the molecules binding dynamics. Avidin/biotin assay and thiol-polyethylene glycol (bPEG-SH) were exploited as model biological interaction and non-fouling layer respectively. Biosensing kinetics time reduction with SAW-enhanced mixing resulted in a ≈ 82% improvement for bPEG-SH adsorption onto gold and ≈ 24% for avidin/biotin binding—≈ 50% and 18% respectively compared to the heating only condition. These results demonstrate that our biochip can significantly reduce the duration of bioreactions that usually require long times (e.g., PEG-based sensing layer, low concentration analyte detection). The sensing architecture here proposed represents a new promising technology satisfying the major biosensing requirements: scalability and high throughput capabilities. The detection system size and biochip dimension could be further reduced and integrated; in addition, the possibility of reducing biological experiment duration via SAW-driven active mixing and developing multiplexing platforms for parallel real-time sensing could be easily combined. In general, the technology reported in this study can be straightforwardly adapted to a great number of biological system and sensing geometry.Keywords: biosensor, microfluidics, surface acoustic wave, surface plasmon resonance
Procedia PDF Downloads 281