Search results for: 2d and 3d data conversion
24171 Building Green Infrastructure Networks Based on Cadastral Parcels Using Network Analysis
Authors: Gon Park
Abstract:
Seoul in South Korea established the 2030 Seoul City Master Plan that contains green-link projects to connect critical green areas within the city. However, the plan does not have detailed analyses for green infrastructure to incorporate land-cover information to many structural classes. This study maps green infrastructure networks of Seoul for complementing their green plans with identifying and raking green areas. Hubs and links of main elements of green infrastructure have been identified from incorporating cadastral data of 967,502 parcels to 135 of land use maps using geographic information system. Network analyses were used to rank hubs and links of a green infrastructure map with applying a force-directed algorithm, weighted values, and binary relationships that has metrics of density, distance, and centrality. The results indicate that network analyses using cadastral parcel data can be used as the framework to identify and rank hubs, links, and networks for the green infrastructure planning under a variable scenarios of green areas in cities.Keywords: cadastral data, green Infrastructure, network analysis, parcel data
Procedia PDF Downloads 21124170 Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms
Authors: Shaik Ayesha Fathima, Shaik Noor Jahan, Duvvada Rajeswara Rao
Abstract:
Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.Keywords: area calculation, atrous convolution, deep globe land cover classification, deepLabv3, land cover classification, resnet 50
Procedia PDF Downloads 14524169 The Effect of CPU Location in Total Immersion of Microelectronics
Authors: A. Almaneea, N. Kapur, J. L. Summers, H. M. Thompson
Abstract:
Meeting the growth in demand for digital services such as social media, telecommunications, and business and cloud services requires large scale data centres, which has led to an increase in their end use energy demand. Generally, over 30% of data centre power is consumed by the necessary cooling overhead. Thus energy can be reduced by improving the cooling efficiency. Air and liquid can both be used as cooling media for the data centre. Traditional data centre cooling systems use air, however liquid is recognised as a promising method that can handle the more densely packed data centres. Liquid cooling can be classified into three methods; rack heat exchanger, on-chip heat exchanger and full immersion of the microelectronics. This study quantifies the improvements of heat transfer specifically for the case of immersed microelectronics by varying the CPU and heat sink location. Immersion of the server is achieved by filling the gap between the microelectronics and a water jacket with a dielectric liquid which convects the heat from the CPU to the water jacket on the opposite side. Heat transfer is governed by two physical mechanisms, which is natural convection for the fixed enclosure filled with dielectric liquid and forced convection for the water that is pumped through the water jacket. The model in this study is validated with published numerical and experimental work and shows good agreement with previous work. The results show that the heat transfer performance and Nusselt number (Nu) is improved by 89% by placing the CPU and heat sink on the bottom of the microelectronics enclosure.Keywords: CPU location, data centre cooling, heat sink in enclosures, immersed microelectronics, turbulent natural convection in enclosures
Procedia PDF Downloads 27724168 Carbon Footprint Assessment and Application in Urban Planning and Geography
Authors: Hyunjoo Park, Taehyun Kim, Taehyun Kim
Abstract:
Human life, activity, and culture depend on the wider environment. Cities offer economic opportunities for goods and services, but cannot exist in environments without food, energy, and water supply. Technological innovation in energy supply and transport speeds up the expansion of urban areas and the physical separation from agricultural land. As a result, division of urban agricultural areas causes more energy demand for food and goods transport between the regions. As the energy resources are leaking all over the world, the impact on the environment crossing the boundaries of cities is also growing. While advances in energy and other technologies can reduce the environmental impact of consumption, there is still a gap between energy supply and demand by current technology, even in technically advanced countries. Therefore, reducing energy demand is more realistic than relying solely on the development of technology for sustainable development. The purpose of this study is to introduce the application of carbon footprint assessment in fields of urban planning and geography. In urban studies, carbon footprint has been assessed at different geographical scales, such as nation, city, region, household, and individual. Carbon footprint assessment for a nation and a city is available by using national or city level statistics of energy consumption categories. By means of carbon footprint calculation, it is possible to compare the ecological capacity and deficit among nations and cities. Carbon footprint also offers great insight on the geographical distribution of carbon intensity at a regional level in the agricultural field. The study shows the background of carbon footprint applications in urban planning and geography by case studies such as figuring out sustainable land-use measures in urban planning and geography. For micro level, footprint quiz or survey can be adapted to measure household and individual carbon footprint. For example, first case study collected carbon footprint data from the survey measuring home energy use and travel behavior of 2,064 households in eight cities in Gyeonggi-do, Korea. Second case study analyzed the effects of the net and gross population densities on carbon footprint of residents at an intra-urban scale in the capital city of Seoul, Korea. In this study, the individual carbon footprint of residents was calculated by converting the carbon intensities of home and travel fossil fuel use of respondents to the unit of metric ton of carbon dioxide (tCO₂) by multiplying the conversion factors equivalent to the carbon intensities of each energy source, such as electricity, natural gas, and gasoline. Carbon footprint is an important concept not only for reducing climate change but also for sustainable development. As seen in case studies carbon footprint may be measured and applied in various spatial units, including but not limited to countries and regions. These examples may provide new perspectives on carbon footprint application in planning and geography. In addition, additional concerns for consumption of food, goods, and services can be included in carbon footprint calculation in the area of urban planning and geography.Keywords: carbon footprint, case study, geography, urban planning
Procedia PDF Downloads 29224167 A Macroeconomic Analysis of Defense Industry: Comparisons, Trends and Improvements in Brazil and in the World
Authors: J. Fajardo, J. Guerra, E. Gonzales
Abstract:
This paper will outline a study of Brazil's industrial base of defense (IDB), through a bibliographic research method, combined with an analysis of macroeconomic data from several available public data platforms. This paper begins with a brief study about Brazilian national industry, including analyzes of productivity, income, outcome and jobs. Next, the research presents a study on the defense industry in Brazil, presenting the main national companies that operate in the aeronautical, army and naval branches. After knowing the main points of the Brazilian defense industry, data on the productivity of the defense industry of the main countries and competing companies of the Brazilian industry were analyzed, in order to summarize big cases in Brazil with a comparative analysis. Concerned the methodology, were used bibliographic research and the exploration of historical data series, in order to analyze information, to get trends and to make comparisons along the time. The research is finished with the main trends for the development of the Brazilian defense industry, comparing the current situation with the point of view of several countries.Keywords: economics of defence, industry, trends, market
Procedia PDF Downloads 16424166 Delineating Subsurface Linear Features and Faults Under Sedimentary Cover in the Bahira Basin Using Integrated Gravity and Magnetic Data
Authors: M. Lghoul, N. El Goumi, M. Guernouche
Abstract:
In order to predict the structural and tectonic framework of the Bahira basin and to have a 3D geological modeling of the basin, an integrated multidisciplinary work has been conducted using gravity, magnetic and geological data. The objective of the current study is delineating the subsurfacefeatures, faults, and geological limits, using airborne magnetic and gravity data analysis of the Bahira basin. To achieve our goal, we have applied different enhanced techniques on magnetic and gravity data: power spectral analysis techniques, reduction to pole (RTP), upward continuation, analytical signal, tilt derivative, total horizontal derivative, 3D Euler deconvolutionand source parameter imagining. The major lineaments/faults trend are: NE–SW, NW-SE, ENE–WSW, and WNW–ESE. The 3D Euler deconvolution analysis highlighted a number of fault trend, mainly in the ENE-WSW, WNW-ESE directions. The depth tothe top of the basement sources in the study area ranges between 200 m, in the southern and northern part of the Bahira basin, to 5000 m located in the Eastern part of the basin.Keywords: magnetic, gravity, structural trend, depth to basement
Procedia PDF Downloads 13724165 Copyright Clearance for Artificial Intelligence Training Data: Challenges and Solutions
Authors: Erva Akin
Abstract:
– The use of copyrighted material for machine learning purposes is a challenging issue in the field of artificial intelligence (AI). While machine learning algorithms require large amounts of data to train and improve their accuracy and creativity, the use of copyrighted material without permission from the authors may infringe on their intellectual property rights. In order to overcome copyright legal hurdle against the data sharing, access and re-use of data, the use of copyrighted material for machine learning purposes may be considered permissible under certain circumstances. For example, if the copyright holder has given permission to use the data through a licensing agreement, then the use for machine learning purposes may be lawful. It is also argued that copying for non-expressive purposes that do not involve conveying expressive elements to the public, such as automated data extraction, should not be seen as infringing. The focus of such ‘copy-reliant technologies’ is on understanding language rules, styles, and syntax and no creative ideas are being used. However, the non-expressive use defense is within the framework of the fair use doctrine, which allows the use of copyrighted material for research or educational purposes. The questions arise because the fair use doctrine is not available in EU law, instead, the InfoSoc Directive provides for a rigid system of exclusive rights with a list of exceptions and limitations. One could only argue that non-expressive uses of copyrighted material for machine learning purposes do not constitute a ‘reproduction’ in the first place. Nevertheless, the use of machine learning with copyrighted material is difficult because EU copyright law applies to the mere use of the works. Two solutions can be proposed to address the problem of copyright clearance for AI training data. The first is to introduce a broad exception for text and data mining, either mandatorily or for commercial and scientific purposes, or to permit the reproduction of works for non-expressive purposes. The second is that copyright laws should permit the reproduction of works for non-expressive purposes, which opens the door to discussions regarding the transposition of the fair use principle from the US into EU law. Both solutions aim to provide more space for AI developers to operate and encourage greater freedom, which could lead to more rapid innovation in the field. The Data Governance Act presents a significant opportunity to advance these debates. Finally, issues concerning the balance of general public interests and legitimate private interests in machine learning training data must be addressed. In my opinion, it is crucial that robot-creation output should fall into the public domain. Machines depend on human creativity, innovation, and expression. To encourage technological advancement and innovation, freedom of expression and business operation must be prioritised.Keywords: artificial intelligence, copyright, data governance, machine learning
Procedia PDF Downloads 8924164 Gamification Beyond Competition: the Case of DPG Lab Collaborative Learning Program for High-School Girls by GameLab KBTU and UNICEF in Kazakhstan
Authors: Nazym Zhumabayeva, Aleksandr Mezin, Alexandra Knysheva
Abstract:
Women's underrepresentation in STEM is critical, worsened by ineffective engagement in educational practices. UNICEF Kazakhstan and GameLab KBTU's collaborative initiatives aim to enhance female STEM participation by fostering an inclusive environment. Learning from LEVEL UP's 2023 program, which featured a hackathon, the 2024 strategy pivots towards non-competitive gamification. Although the data from last year's project showed higher than average student engagement, observations and in-depth interviews with participants showed that the format was stressful for the girls, making them focus on points rather than on other values. This study presents a gamified educational system, DPG Lab, aimed at incentivizing young women's participation in STEM through the development of digital public goods (DPGs). By prioritizing collaborative gamification elements, the project seeks to create an inclusive learning environment that increases engagement and interest in STEM among young women. The DPG Lab aims to find a solution to minimize competition and support collaboration. The project is designed to motivate female participants towards the development of digital solutions through an introduction to the concept of DPGs. It consists of a short online course, a simulation videogame, and a real-time online quest with an offline finale at the KBTU campus. The online course offers short video lectures on open-source development and DPG standards. The game facilitates the practical application of theoretical knowledge, enriching the learning experience. Learners can also participate in a quest that encourages participants to develop DPG ideas in teams by choosing missions throughout the quest path. At the offline quest finale, the participants will meet in person to exchange experiences and accomplishments without engaging in comparative assessments: the quest ensures that each team’s trajectory is distinct by design. This marks a shift from competitive hackathons to a collaborative format, recognizing the unique contributions and achievements of each participant. The pilot batch of students is scheduled to commence in April 2024, with the finale anticipated in June. It is projected that this group will comprise 50 female high-school students from various regions across Kazakhstan. Expected outcomes include increased engagement and interest in STEM fields among young female participants, positive emotional and psychological impact through an emphasis on collaborative learning environments, and improved understanding and skills in DPG development. GameLab KBTU intends to undertake a hypothesis evaluation, employing a methodology similar to that utilized in the preceding LEVEL UP project. This approach will encompass the compilation of quantitative metrics (conversion funnels, test results, and surveys) and qualitative data from in-depth interviews and observational studies. For comparative analysis, a select group of participants from the previous year's project will be recruited to engage in the DPG Lab. By developing and implementing a gamified framework that emphasizes inclusion, engagement, and collaboration, the study seeks to provide practical knowledge about effective gamification strategies for promoting gender diversity in STEM. The expected outcomes of this initiative can contribute to the broader discussion on gamification in education and gender equality in STEM by offering a replicable and scalable model for similar interventions around the world.Keywords: collaborative learning, competitive learning, digital public goods, educational gamification, emerging regions, STEM, underprivileged groups
Procedia PDF Downloads 6924163 Biosorption of Phenol onto Water Hyacinth Activated Carbon: Kinetics and Isotherm Study
Authors: Manoj Kumar Mahapatra, Arvind Kumar
Abstract:
Batch adsorption experiments were carried out for the removal of phenol from its aqueous solution using water hyancith activated carbon (WHAC) as an adsorbent. The sorption kinetics were analysed using pseudo-first order kinetics and pseudo-second order model, and it was observed that the sorption data tend to fit very well in pseudo-second order model for the entire sorption time. The experimental data were analyzed by the Langmuir and Freundlich isotherm models. Equilibrium data fitted well to the Freundlich model with a maximum biosorption capacity of 31.45 mg/g estimated using Langmuir model. The adsorption intensity 3.7975 represents a favorable adsorption condition.Keywords: adsorption, isotherm, kinetics, phenol
Procedia PDF Downloads 44924162 A West Coast Estuarine Case Study: A Predictive Approach to Monitor Estuarine Eutrophication
Authors: Vedant Janapaty
Abstract:
Estuaries are wetlands where fresh water from streams mixes with salt water from the sea. Also known as “kidneys of our planet”- they are extremely productive environments that filter pollutants, absorb floods from sea level rise, and shelter a unique ecosystem. However, eutrophication and loss of native species are ailing our wetlands. There is a lack of uniform data collection and sparse research on correlations between satellite data and in situ measurements. Remote sensing (RS) has shown great promise in environmental monitoring. This project attempts to use satellite data and correlate metrics with in situ observations collected at five estuaries. Images for satellite data were processed to calculate 7 bands (SIs) using Python. Average SI values were calculated per month for 23 years. Publicly available data from 6 sites at ELK was used to obtain 10 parameters (OPs). Average OP values were calculated per month for 23 years. Linear correlations between the 7 SIs and 10 OPs were made and found to be inadequate (correlation = 1 to 64%). Fourier transform analysis on 7 SIs was performed. Dominant frequencies and amplitudes were extracted for 7 SIs, and a machine learning(ML) model was trained, validated, and tested for 10 OPs. Better correlations were observed between SIs and OPs, with certain time delays (0, 3, 4, 6 month delay), and ML was again performed. The OPs saw improved R² values in the range of 0.2 to 0.93. This approach can be used to get periodic analyses of overall wetland health with satellite indices. It proves that remote sensing can be used to develop correlations with critical parameters that measure eutrophication in situ data and can be used by practitioners to easily monitor wetland health.Keywords: estuary, remote sensing, machine learning, Fourier transform
Procedia PDF Downloads 10924161 Agricultural Water Consumption Estimation in the Helmand Basin
Authors: Mahdi Akbari, Ali Torabi Haghighi
Abstract:
Hamun Lakes, located in the Helmand Basin, consisting of four water bodies, were the greatest (>8500 km2) freshwater bodies in Iran plateau but have almost entirely desiccated over the last 20 years. The desiccation of the lakes caused dust storm in the region which has huge economic and health consequences on the inhabitants. The flow of the Hirmand (or Helmand) River, the most important feeding river, has decreased from 4 to 1.9 km3 downstream due to anthropogenic activities. In this basin, water is mainly consumed for farming. Due to the lack of in-situ data in the basin, this research utilizes remote-sensing data to show how croplands and consequently consumed water in the agricultural sector have changed. Based on Landsat NDVI, we suggest using a threshold of around 0.35-0.4 to detect croplands in the basin. Croplands of this basin has doubled since 1990, especially in the downstream of the Kajaki Dam (the biggest dam of the basin). Using PML V2 Actual Evapotranspiration (AET) data and considering irrigation efficiency (≈0.3), we estimate that the consumed water (CW) for farming. We found that CW has increased from 2.5 to over 7.5 km3 from 2002 to 2017 in this basin. Also, the annual average Potential Evapotranspiration (PET) of the basin has had a negative trend in the recent years, although the AET over croplands has an increasing trend. In this research, using remote sensing data, we covered lack of data in the studied area and highlighted anthropogenic activities in the upstream which led to the lakes desiccation in the downstream.Keywords: Afghanistan-Iran transboundary Basin, Iran-Afghanistan water treaty, water use, lake desiccation
Procedia PDF Downloads 13524160 Sulfamethoxazole Removal and Ammonium Nitrogen Conversion by Microalgae-Bacteria Consortium in Ammonium-Rich Wastewater: Responses Analysis
Authors: Eheneden Iyobosa, Rongchang Wang, Adesina Odunayo Blessing, Gaoxiang Chen, Haijing Ren, Jianfu Zhao
Abstract:
In the treatment of ammonium-rich wastewater with 500 μg/L sulfamethoxazole (SMX) antibiotic by a Microalgae-Bacteria Consortium, diverse parameters were monitored to assess treatment efficacy. Over 14 days, residual SMX concentrations decreased markedly from 500 μg/L to 45.6 μg/L, and removal rates declined from 102.4 to 9.9 μg/L/day. Biomass exhibited consistent growth, reaching a peak of 542.6 mg/L on day 10. Chlorophyll-a, chlorophyll-b, and carotenoid levels varied over time, reflecting fluctuations in microalgal activity. Extracellular polymeric substances (EPS) production showed temporal variations, with protein content ranging from 69.4 to 162.3 mg/g Dry cell weight (DCW) and polysaccharides content from 50.6 to 82.8 mg/g DCW. Ammonium nitrogen concentration decreased steadily from 300 mg/L to 5 mg/L throughout the treatment period. The bacterial community composition was significantly altered in the presence of antibiotics, with notable increases in Bacteroidota and Proteobacteria. Community richness and diversity indices were higher in the antibiotics-treated group than in the control group, as evidenced by the Chao index (258 compared to 181), Shannon index (1.8085 compared to 1.1545), and Simpson index (0.5032 compared to 0.6478), indicating notable shifts in microbial community structure. These findings demonstrate the efficacy of the Microalgae-Bacteria Consortium in removing SMX from wastewater and suggest its potential to mitigate antibiotic pollution while maintaining microbial diversity.Keywords: ammonium-rich wastewater, microalgae-bacteria consortium, sulfamethoxazole removal, microbial community diversity, biomass growth
Procedia PDF Downloads 2924159 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks
Authors: Sulemana Ibrahim
Abstract:
Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks
Procedia PDF Downloads 6724158 Growth and Nutrient Utilization of Some Citrus Peels and Vitamin Premix as Additives in Clarias Gariepinus Diets
Authors: Eunice Oluwayemisi Adeparusi, Mary Adedolapo Ijadeyila
Abstract:
The study was carried out at the Federal University of Technology, Akure, Nigeria, West Africa. Seven set of diets were prepared comprising of two sets. The first set consisted of a combination of three diets from a combination of two different citrus peels from Orange (Citrus sinesis), Tangerine (Citrus tangerina / Citrus reticulata) and Tangelo (Citrus tangelo a hybrid of Citrus reticulata and Citrus maxima) at 50:50 while the other three consisted f50:50. Diet with 100% vitamin premix served as the control. Air-dried citrus peels were added in a 40% crude protein diet for the juveniles (4.49±0.05g) Clarias gariepinus. The experiment was carried out for a period of 56 days in triplicate trials. Fish were randomly distributed into twenty-one tanks at ten fish per tanks. The feed was extruded and fed to satiation twice daily. The result shows that fish fed Tangelo and Tangerine (TGL-TGR) had the best growth response in terms of final weight, specific growth rate, feed conversion ratio and feed utilization efficiency when compared with other diets. The FCR of fish in the diet ranges from 0.93-1.62. Fish fed the mixture of Orange peel and Vitamin-mineral premix (ORG-VIT) and those on Tangelo and Vitamin-mineral premix (TGL-VIT) had higher survival rate. There were significant differences (P<0.05) in the mean final weight, weight gain and specific growth rate. The result shows that citrus peels enhance the growth performance and feed utilization of the juvenile of African mud catfish, thereby reducing the cost of fish production.Keywords: African mud catfish, growth, citrus peels, vitamin-mineral premix, nutrient utilization, additives
Procedia PDF Downloads 8524157 A Statistical Approach to Classification of Agricultural Regions
Authors: Hasan Vural
Abstract:
Turkey is a favorable country to produce a great variety of agricultural products because of her different geographic and climatic conditions which have been used to divide the country into four main and seven sub regions. This classification into seven regions traditionally has been used in order to data collection and publication especially related with agricultural production. Afterwards, nine agricultural regions were considered. Recently, the governmental body which is responsible of data collection and dissemination (Turkish Institute of Statistics-TIS) has used 12 classes which include 11 sub regions and Istanbul province. This study aims to evaluate these classification efforts based on the acreage of ten main crops in a ten years time period (1996-2005). The panel data grouped in 11 subregions has been evaluated by cluster and multivariate statistical methods. It was concluded that from the agricultural production point of view, it will be rather meaningful to consider three main and eight sub-agricultural regions throughout the country.Keywords: agricultural region, factorial analysis, cluster analysis,
Procedia PDF Downloads 41924156 Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings
Authors: Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur Abdelkrim
Abstract:
Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.Keywords: building system, time series, diagnosis, outliers, delay, data gap
Procedia PDF Downloads 25124155 Evaluation System of Spatial Potential Under Bridges in High Density Urban Areas of Chongqing Municipality and Applied Research on Suitability
Authors: Xvelian Qin
Abstract:
Urban "organic renewal" based on the development of existing resources in high-density urban areas has become the mainstream of urban development in the new era. As an important stock resource of public space in high-density urban areas, promoting its value remodeling is an effective way to alleviate the shortage of public space resources. However, due to the lack of evaluation links in the process of underpass space renewal, a large number of underpass space resources have been left idle, facing the problems of low space conversion efficiency, lack of accuracy in development decision-making, and low adaptability of functional positioning to citizens' needs. Therefore, it is of great practical significance to construct the evaluation system of under-bridge space renewal potential and explore the renewal mode. In this paper, some of the under-bridge spaces in the main urban area of Chongqing are selected as the research object. Through the questionnaire interviews with the users of the built excellent space under the bridge, three types of six levels and twenty-two potential evaluation indexes of "objective demand factor, construction feasibility factor and construction suitability factor" are selected, including six levels of land resources, infrastructure, accessibility, safety, space quality and ecological environment. The analytical hierarchy process and expert scoring method are used to determine the index weight, construct the potential evaluation system of the space under the bridge in high-density urban areas of Chongqing, and explore the direction of renewal and utilization of its suitability.Keywords: space under bridge, potential evaluation, high density urban area, updated using
Procedia PDF Downloads 8224154 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification
Authors: Anita Kushwaha
Abstract:
We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining
Procedia PDF Downloads 27824153 Critical Evaluation and Analysis of Effects of Different Queuing Disciplines on Packets Delivery and Delay for Different Applications
Authors: Omojokun Gabriel Aju
Abstract:
Communication network is a process of exchanging data between two or more devices via some forms of transmission medium using communication protocols. The data could be in form of text, images, audio, video or numbers which can be grouped into FTP, Email, HTTP, VOIP or Video applications. The effectiveness of such data exchange will be proved if they are accurately delivered within specified time. While some senders will not really mind when the data is actually received by the receiving device, inasmuch as it is acknowledged to have been received by the receiver. The time a data takes to get to a receiver could be very important to another sender, as any delay could cause serious problem or even in some cases rendered the data useless. The validity or invalidity of a data after delay will therefore definitely depend on the type of data (information). It is therefore imperative for the network device (such as router) to be able to differentiate among the packets which are time sensitive and those that are not, when they are passing through the same network. So, here is where the queuing disciplines comes to play, to handle network resources when such network is designed to service widely varying types of traffics and manage the available resources according to the configured policies. Therefore, as part of the resources allocation mechanisms, a router within the network must implement some queuing discipline that governs how packets (data) are buffered while waiting to be transmitted. The implementation of the queuing discipline will regulate how the packets are buffered while waiting to be transmitted. In achieving this, various queuing disciplines are being used to control the transmission of these packets, by determining which of the packets get the highest priority, less priority and which packets are dropped. The queuing discipline will therefore control the packets latency by determining how long a packet can wait to be transmitted or dropped. The common queuing disciplines are first-in-first-out queuing, Priority queuing and Weighted-fair queuing (FIFO, PQ and WFQ). This paper critically evaluates and analyse through the use of Optimized Network Evaluation Tool (OPNET) Modeller, Version 14.5 the effects of three queuing disciplines (FIFO, PQ and WFQ) on the performance of 5 different applications (FTP, HTTP, E-Mail, Voice and Video) within specified parameters using packets sent, packets received and transmission delay as performance metrics. The paper finally suggests some ways in which networks can be designed to provide better transmission performance while using these queuing disciplines.Keywords: applications, first-in-first-out queuing (FIFO), optimised network evaluation tool (OPNET), packets, priority queuing (PQ), queuing discipline, weighted-fair queuing (WFQ)
Procedia PDF Downloads 36324152 Photo-Degradation Black 19 Dye with Synthesized Nano-Sized ZnS
Authors: M. Tabatabaee, R. Mohebat, M. Baranian
Abstract:
Textile industries produce large volumes of colored dye effluents which are toxic and non-biodegradable. Earlier studies have shown that a wide range of organic substrates can be completely photo mineralized in the presence of photocatalysts and oxidant agents. ZnO and TiO2 are important photocatalysts with high catalytic activity that have attracted much research attention. Zinc sulfide is one of the semiconductor nanomaterials that can be used for the production of optical sensitizers, photocatalysts, electroluminescent materials, optical sensors and for solar energy conversion. The synthesis of ZnS nanoparticles has been tried by various methods and sulfide sources. Elementary sulfur powder, H2S or Na2S are used as sulfide sources for synthesis of ZnS nano particles. Recently, solar energy is has been successfully used for photocatalytic degradation of dye pollutant. Studies have shown that the use of metal oxides or sulfides with ZnO or TiO2 can significantly enhance the photocatalytic activity of them. In this research, Nano-sized zinc sulfide was synthesized successfully by a simple method using thioasetamide as sulfide source in the presence of polyethylene glycol (PEG 2000). X-ray diffraction (XRD) spectroscopy scanning electron microscope (SEM) was used to characterize the structure and morphology synthesized powder. The effect of photocatalytic activity of prepared ZnS and ZnS/ZnO, on degradation of direct Black19 under UV and sunlight irradiation was investigated. The effects of various parameters such as amount of photocatalyst, pH, initial dye concentration and irradiation time on decolorization rate were systematically investigated. Results show that more than 80% of 500 mgL-1 of dye decolorized in 60-min reaction time under UV and solar irradiation in the presence of ZnS nanoparticles. Whereas, mixed ZnS/ZnO (50%) can decolorize more than 80% of dye in the same conditions.Keywords: zinc sulfide, nano articles, photodegradation, solar light
Procedia PDF Downloads 41024151 Data Confidentiality in Public Cloud: A Method for Inclusion of ID-PKC Schemes in OpenStack Cloud
Authors: N. Nalini, Bhanu Prakash Gopularam
Abstract:
The term data security refers to the degree of resistance or protection given to information from unintended or unauthorized access. The core principles of information security are the confidentiality, integrity and availability, also referred as CIA triad. Cloud computing services are classified as SaaS, IaaS and PaaS services. With cloud adoption the confidential enterprise data are moved from organization premises to untrusted public network and due to this the attack surface has increased manifold. Several cloud computing platforms like OpenStack, Eucalyptus, Amazon EC2 offer users to build and configure public, hybrid and private clouds. While the traditional encryption based on PKI infrastructure still works in cloud scenario, the management of public-private keys and trust certificates is difficult. The Identity based Public Key Cryptography (also referred as ID-PKC) overcomes this problem by using publicly identifiable information for generating the keys and works well with decentralized systems. The users can exchange information securely without having to manage any trust information. Another advantage is that access control (role based access control policy) information can be embedded into data unlike in PKI where it is handled by separate component or system. In OpenStack cloud platform the keystone service acts as identity service for authentication and authorization and has support for public key infrastructure for auto services. In this paper, we explain OpenStack security architecture and evaluate the PKI infrastructure piece for data confidentiality. We provide method to integrate ID-PKC schemes for securing data while in transit and stored and explain the key measures for safe guarding data against security attacks. The proposed approach uses JPBC crypto library for key-pair generation based on IEEE P1636.3 standard and secure communication to other cloud services.Keywords: data confidentiality, identity based cryptography, secure communication, open stack key stone, token scoping
Procedia PDF Downloads 38924150 Utilization of Torula Yeast (Zymomonas mobilis) as Main/Reciprocal for Degradation of Municipal Organic Waste as Feed for Goats
Authors: Nkutere Chikezie Kanu, Nnamdi M. Anigbogu, Johnson C. Ezike
Abstract:
The study was carried out to investigate the performance of Red Sokoto goats fed Municipal Oranic Wastes (MOW) subjected to two methods of in vivo degradation by Torula Yeast and Zymomonas mobilis. Two combination, Torula Yeast + Zymomonas mobilis (main degradation), and Zymomonas mobilis + Torula Yeast (Reciprocal degradation) were used to degrade MOW. Eighteen Red Sokoto goats of both sexes (9 males and 9 females) of ages between 6-8 were used for the study. The goats were randomly assigned into 3 treatments groups A, B and C respectively with 6 goats per treatment. The experiment was laid in a Completely Randomized Design and replicated 3 times. Treatment A groups were fed 30% Undegraded MOW base diet +concentrate mixture, Treatment B groups were fed 30% Main degraded MOW base diet +concentrate mixture, Treatment C groups were fed 30% Reciprocal degraded MOW base diet +concentrate mixture. The result of the daily weight gain was significantly (P<0.05) better than on the other Treatments. There was significant improvement (P<0.05) on the daily feed consumption in Treatment B than on the Treatments A and C. The feed conversion ratio revealed no significant (P>0.05) differences among the treatment groups but much better in the treatment B and C, the cost of feed consumed was much higher (P>0.05) in Treatment B followed by Treatment C, while Treatment A had the lowest. The cost/ kg weight gain that was recorded in Treatment A was better (P<0.05) than the Treatment B, followed by Treatment C, while the cost of production was high (P<0.05) in Treatment B than in other treatments. The gross profit was observed best (P<0.05) on the Treatment B, followed by Treatment C while Treatment A had the lowest. The net profit as noted in this study was much better (P<0.05) in Treatment B, and Treatment C, while the least was observed in Treatment A, where the return on investment was high in Treatments B and C, while Treatment A had the lowest.Keywords: reciprocal, torula yeast, Zymomonas mobilis, organic waste
Procedia PDF Downloads 29924149 Improved Distance Estimation in Dynamic Environments through Multi-Sensor Fusion with Extended Kalman Filter
Authors: Iffat Ara Ebu, Fahmida Islam, Mohammad Abdus Shahid Rafi, Mahfuzur Rahman, Umar Iqbal, John Ball
Abstract:
The application of multi-sensor fusion for enhanced distance estimation accuracy in dynamic environments is crucial for advanced driver assistance systems (ADAS) and autonomous vehicles. Limitations of single sensors such as cameras or radar in adverse conditions motivate the use of combined camera and radar data to improve reliability, adaptability, and object recognition. A multi-sensor fusion approach using an extended Kalman filter (EKF) is proposed to combine sensor measurements with a dynamic system model, achieving robust and accurate distance estimation. The research utilizes the Mississippi State University Autonomous Vehicular Simulator (MAVS) to create a controlled environment for data collection. Data analysis is performed using MATLAB. Qualitative (visualization of fused data vs ground truth) and quantitative metrics (RMSE, MAE) are employed for performance assessment. Initial results with simulated data demonstrate accurate distance estimation compared to individual sensors. The optimal sensor measurement noise variance and plant noise variance parameters within the EKF are identified, and the algorithm is validated with real-world data from a Chevrolet Blazer. In summary, this research demonstrates that multi-sensor fusion with an EKF significantly improves distance estimation accuracy in dynamic environments. This is supported by comprehensive evaluation metrics, with validation transitioning from simulated to real-world data, paving the way for safer and more reliable autonomous vehicle control.Keywords: sensor fusion, EKF, MATLAB, MAVS, autonomous vehicle, ADAS
Procedia PDF Downloads 5224148 The Study of Tourism Destination Management Factors for Sustainable Tourism: Case Study of Haikou, Hainan Province
Authors: Jiaying Gao, Thammananya Sakcharoen, Wilailuk Niyommaneerat
Abstract:
Haikou is the capital of Hainan, a major tourism province in China with rich ecotourism resources. There is a need to strengthen tourism destination management in Haikou toward sustainable development as a tourism city. The purpose of this study was to investigate the relationship between tourism destination management and sustainable tourism in Haikou. Exploratory factor analysis was used to extract six dimensions of this study. Three dimensions (10 factors) of tourism destination management were analyzed in terms of economic development, social and cultural development, and conservation of ecosystem. Sustainability awareness, tourism development experience, and tourism public infrastructure in three dimensions (12 factors) of sustainable tourism. There were 426 questionnaire respondents, including 225 tourists, 172 residents, 12 tourism agency persons, 10 government persons, 3 self-employed, and 4 others. The Structural equation modeling (SEM) model was finally conducted to test the hypotheses empirically and explore the impact relationship. The study found a significant relationship between tourism destination management and sustainable tourism: social and cultural development had the greatest significant positive impact on the tourism development experience (0.788***). Social and cultural development also showed a significant positive impact and great impetus on tourism public infrastructure (0.561***). A negative effect relationship (-0.096***) emerged between ecosystem conversion and tourism development experience. It showed a positive relationship between economic development and social and cultural development of tourism destination management in promoting sustainable tourism. There are still some gaps for improvement, such as the need for sustainable ecological management to promote local sustainable tourism trends and enhance tourism experience development, which may require a long-term process of mitigation.Keywords: Haikou (Hainan, China), influence relationship, sustainable tourism, tourism destination management
Procedia PDF Downloads 14824147 A User Identification Technique to Access Big Data Using Cloud Services
Authors: A. R. Manu, V. K. Agrawal, K. N. Balasubramanya Murthy
Abstract:
Authentication is required in stored database systems so that only authorized users can access the data and related cloud infrastructures. This paper proposes an authentication technique using multi-factor and multi-dimensional authentication system with multi-level security. The proposed technique is likely to be more robust as the probability of breaking the password is extremely low. This framework uses a multi-modal biometric approach and SMS to enforce additional security measures with the conventional Login/password system. The robustness of the technique is demonstrated mathematically using a statistical analysis. This work presents the authentication system along with the user authentication architecture diagram, activity diagrams, data flow diagrams, sequence diagrams, and algorithms.Keywords: design, implementation algorithms, performance, biometric approach
Procedia PDF Downloads 48124146 Photoelectrochemical Water Splitting from Earth-Abundant CuO Thin Film Photocathode: Enhancing Performance and Photo-Stability through Deposition of Overlayers
Authors: Wilman Septina, Rajiv R. Prabhakar, Thomas Moehl, David Tilley
Abstract:
Cupric oxide (CuO) is a promising absorber material for the fabrication of scalable, low cost solar energy conversion devices, due to the high abundance and low toxicity of copper. It is a p-type semiconductor with a band gap of around 1.5 eV, absorbing a significant portion of the solar spectrum. One of the main challenges in using CuO as solar absorber in an aqueous system is its tendency towards photocorrosion, generating Cu2O and metallic Cu. Although there have been several reports of CuO as a photocathode for hydrogen production, it is unclear how much of the observed current actually corresponds to H2 evolution, as the inevitability of photocorrosion is usually not addressed. In this research, we investigated the effect of the deposition of overlayers onto CuO thin films for the purpose of enhancing its photostability as well as performance for water splitting applications. CuO thin film was fabricated by galvanic electrodeposition of metallic copper onto gold-coated FTO substrates, followed by annealing in air at 600 °C. Photoelectrochemical measurement of the bare CuO film using 1 M phosphate buffer (pH 6.9) under simulated AM 1.5 sunlight showed a current density of ca. 1.5 mA cm-2 (at 0.4 VRHE), which photocorroded to Cu metal upon prolonged illumination. This photocorrosion could be suppressed by deposition of 50 nm-thick TiO2, deposited by atomic layer deposition. In addition, we found that insertion of an n-type CdS layer, deposited by chemical bath deposition, between the CuO and TiO2 layers was able to enhance significantly the photocurrent compared to without the CdS layer. A photocurrent of over 2 mA cm-2 (at 0 VRHE) was observed using the photocathode stack FTO/Au/CuO/CdS/TiO2/Pt. Structural, electrochemical, and photostability characterizations of the photocathode as well as results on various overlayers will be presented.Keywords: CuO, hydrogen, photoelectrochemical, photostability, water splitting
Procedia PDF Downloads 22724145 Input Data Balancing in a Neural Network PM-10 Forecasting System
Authors: Suk-Hyun Yu, Heeyong Kwon
Abstract:
Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.Keywords: artificial intelligence, air quality prediction, neural networks, pattern recognition, PM-10
Procedia PDF Downloads 23524144 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.Keywords: deep learning, indoor quality, metabolism, predictive model
Procedia PDF Downloads 26124143 Structure-Activity Relationship of Gold Catalysts on Alumina Supported Cu-Ce Oxides for CO and Volatile Organic Compound Oxidation
Authors: Tatyana T. Tabakova, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Krasimir I. Ivanov, Yordanka G. Karakirova, Petya Cv. Petrova, Georgi V. Avdeev
Abstract:
The catalytic oxidation of CO and volatile organic compounds (VOCs) is considered as one of the most efficient ways to reduce harmful emissions from various chemical industries. The effectiveness of gold-based catalysts for many reactions of environmental significance was proven during the past three decades. The aim of this work was to combine the favorable features of Au and Cu-Ce mixed oxides in the design of new catalytic materials of improved efficiency and economic viability for removal of air pollutants in waste gases from formaldehyde production. Supported oxides of copper and cerium with Cu: Ce molar ratio 2:1 and 1:5 were prepared by wet impregnation of g-alumina. Gold (2 wt.%) catalysts were synthesized by a deposition-precipitation method. Catalysts characterization was carried out by texture measurements, powder X-ray diffraction, temperature programmed reduction and electron paramagnetic resonance spectroscopy. The catalytic activity in the oxidation of CO, CH3OH and (CH3)2O was measured using continuous flow equipment with fixed bed reactor. Both Cu-Ce/alumina samples demonstrated similar catalytic behavior. The addition of gold caused significant enhancement of CO and methanol oxidation activity (100 % degree of CO and CH3OH conversion at about 60 and 140 oC, respectively). The composition of Cu-Ce mixed oxides affected the performance of gold-based samples considerably. Gold catalyst on Cu-Ce/γ-Al2O3 1:5 exhibited higher activity for CO and CH3OH oxidation in comparison with Au on Cu-Ce/γ-Al2O3 2:1. The better performance of Au/Cu-Ce 1:5 was related to the availability of highly dispersed gold particles and copper oxide clusters in close contact with ceria.Keywords: CO and VOCs oxidation, copper oxide, Ceria, gold catalysts
Procedia PDF Downloads 32524142 Analysis of Brownfield Soil Contamination Using Local Government Planning Data
Authors: Emma E. Hellawell, Susan J. Hughes
Abstract:
BBrownfield sites are currently being redeveloped for residential use. Information on soil contamination on these former industrial sites is collected as part of the planning process by the local government. This research project analyses this untapped resource of environmental data, using site investigation data submitted to a local Borough Council, in Surrey, UK. Over 150 site investigation reports were collected and interrogated to extract relevant information. This study involved three phases. Phase 1 was the development of a database for soil contamination information from local government reports. This database contained information on the source, history, and quality of the data together with the chemical information on the soil that was sampled. Phase 2 involved obtaining site investigation reports for development within the study area and extracting the required information for the database. Phase 3 was the data analysis and interpretation of key contaminants to evaluate typical levels of contaminants, their distribution within the study area, and relating these results to current guideline levels of risk for future site users. Preliminary results for a pilot study using a sample of the dataset have been obtained. This pilot study showed there is some inconsistency in the quality of the reports and measured data, and careful interpretation of the data is required. Analysis of the information has found high levels of lead in shallow soil samples, with mean and median levels exceeding the current guidance for residential use. The data also showed elevated (but below guidance) levels of potentially carcinogenic polyaromatic hydrocarbons. Of particular concern from the data was the high detection rate for asbestos fibers. These were found at low concentrations in 25% of the soil samples tested (however, the sample set was small). Contamination levels of the remaining chemicals tested were all below the guidance level for residential site use. These preliminary pilot study results will be expanded, and results for the whole local government area will be presented at the conference. The pilot study has demonstrated the potential for this extensive dataset to provide greater information on local contamination levels. This can help inform regulators and developers and lead to more targeted site investigations, improving risk assessments, and brownfield development.Keywords: Brownfield development, contaminated land, local government planning data, site investigation
Procedia PDF Downloads 142