Search results for: geospatial technology competency model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23387

Search results for: geospatial technology competency model

1697 Predicting Expectations of Non-Monogamy in Long-Term Romantic Relationships

Authors: Michelle R. Sullivan

Abstract:

Positive romantic relationships and marriages offer a buffer against a host of physical and emotional difficulties. Conversely, poor relationship quality and marital discord can have deleterious consequences for individuals and families. Research has described non-monogamy, infidelity, and consensual non-monogamy, as both consequential and causal of relationship difficulty, or as a unique way a couple strives to make a relationship work. Much research on consensual non-monogamy has built on feminist theory and critique. To the author’s best knowledge, to date, no studies have examined the predictive relationship between individual and relationship characteristics and expectations of non-monogamy. The current longitudinal study: 1) estimated the prevalence of expectations of partner non-monogamy and 2) evaluated whether gender, sexual identity, age, education, how a couple met, and relationship quality were predictive expectations of partner non-monogamy. This study utilized the publically available longitudinal dataset, How Couples Meet and Stay Together. Adults aged 18- to 98-years old (n=4002) were surveyed by phone over 5 waves from 2009-2014. Demographics and how a couple met were gathered through self-report in Wave 1, and relationship quality and expectations of partner non-monogamy were gathered through self-report in Waves 4 and 5 (n=1047). The prevalence of expectations of partner non-monogamy (encompassing both infidelity and consensual non-monogamy) was 4.8%. Logistic regression models indicated that sexual identity, gender, education, and relationship quality were significantly predictive of expectations of partner non-monogamy. Specifically, male gender, lower education, identifying as lesbian, gay, or bisexual, and a lower relationship quality scores were predictive of expectations of partner non-monogamy. Male gender was not predictive of expectations of partner non-monogamy in the follow up logistic regression model. Age and whether a couple met online were not associated with expectations of partner non-monogamy. Clinical implications include awareness of the increased likelihood of lesbian, gay, and bisexual individuals to have an expectation of non-monogamy and the sequelae of relationship dissatisfaction that may be related. Future research directions could differentiate between non-monogamy subtypes and the person and relationship variables that lead to the likelihood of consensual non-monogamy and infidelity as separate constructs, as well as explore the relationship between predicting partner behavior and actual partner behavioral outcomes.

Keywords: open relationship, polyamory, infidelity, relationship satisfaction

Procedia PDF Downloads 163
1696 The Future Control Rooms for Sustainable Power Systems: Current Landscape and Operational Challenges

Authors: Signe Svensson, Remy Rey, Anna-Lisa Osvalder, Henrik Artman, Lars Nordström

Abstract:

The electric power system is undergoing significant changes. Thereby, the operation and control are becoming partly modified, more multifaceted and automated, and thereby supplementary operator skills might be required. This paper discusses developing operational challenges in future power system control rooms, posed by the evolving landscape of sustainable power systems, driven in turn by the shift towards electrification and renewable energy sources. A literature review followed by interviews and a comparison to other related domains with similar characteristics, a descriptive analysis was performed from a human factors perspective. Analysis is meant to identify trends, relationships, and challenges. A power control domain taxonomy includes a temporal domain (planning and real-time operation) and three operational domains within the power system (generation, switching and balancing). Within each operational domain, there are different control actions, either in the planning stage or in the real-time operation, that affect the overall operation of the power system. In addition to the temporal dimension, the control domains are divided in space between a multitude of different actors distributed across many different locations. A control room is a central location where different types of information are monitored and controlled, alarms are responded to, and deviations are handled by the control room operators. The operators’ competencies, teamwork skills, team shift patterns as well as control system designs are all important factors in ensuring efficient and safe electricity grid management. As the power system evolves with sustainable energy technologies, challenges are found. Questions are raised regarding whether the operators’ tacit knowledge, experience and operation skills of today are sufficient to make constructive decisions to solve modified and new control tasks, especially during disturbed operations or abnormalities. Which new skills need to be developed in planning and real-time operation to provide efficient generation and delivery of energy through the system? How should the user interfaces be developed to assist operators in processing the increasing amount of information? Are some skills at risk of being lost when the systems change? How should the physical environment and collaborations between different stakeholders within and outside the control room develop to support operator control? To conclude, the system change will provide many benefits related to electrification and renewable energy sources, but it is important to address the operators’ challenges with increasing complexity. The control tasks will be modified, and additional operator skills are needed to perform efficient and safe operations. Also, the whole human-technology-organization system needs to be considered, including the physical environment, the technical aids and the information systems, the operators’ physical and mental well-being, as well as the social and organizational systems.

Keywords: operator, process control, energy system, sustainability, future control room, skill

Procedia PDF Downloads 100
1695 Analyzing the Effects of a Psychological Intervention on Black Students’ Sense of Belonging in Physics and Math: Exploring Differential Impacts for Historically Black Colleges and Universities and Predominantly White Institutions

Authors: Terrell Strayhorn

Abstract:

The lack of diversity in science, technology, engineering, and mathematics (STEM) fields is a persistent and concerning issue. One contributing factor to the underrepresentation of minority groups in STEM fields is a lack of sense of belonging, which can lead to lower levels of academic engagement, motivation, and achievement. In particular, Black students have been shown to experience lower levels of sense of belonging in STEM compared to their white peers. This study aimed to explore the effects of a psychological intervention on Black students' sense of belonging in physics and math courses at historically Black colleges and universities (HBCUs) and predominantly white institutions (PWIs). The study used a randomized controlled trial design and included 305 Black undergraduate students enrolled in physics or math courses at HBCUs and PWIs in the United States. Participants were randomly assigned to either an intervention group or a control group. The intervention consisted of a brief psychological, video-based intervention designed to enhance sense of belonging, which was delivered in a single session. The control group received no intervention. The primary outcome measure was sense of belonging in physics and math courses, as assessed by a validated self-report measure. Other outcomes included academic engagement, motivation, and achievement as measured by physics and math (course) grades. Preliminary results show that the intervention has a significant positive effect on Black students' sense of belonging in physics and math courses, with a moderate effect size. The intervention also had a significant positive effect on academic engagement and motivation, but not on academic achievement. Importantly, the effects of the intervention were larger for Black students enrolled at PWIs compared to those enrolled at HBCUs. Findings, at present, suggest that a brief psychological web-based intervention can enhance Black students' sense of belonging in physics and math courses, and that the effects may be particularly strong for Black students enrolled at PWIs, although they are not negligible for Black students at HBCUs. This is an important finding given the persistent underrepresentation of Black students in STEM fields, the growing number of Black students at PWIs, and the potential for enhancing sense of belonging to improve academic outcomes and increase diversity in these fields. The study has several limitations, including a relatively small sample size and a lack of long-term follow-up. Future research could explore the generalizability of these findings to other minority groups and other STEM fields, as well as the potential for longer-term interventions to sustain and enhance the effects observed in this study. Overall, this study highlights the potential for psychological interventions to enhance sense of belonging and improve academic outcomes for Black students in STEM courses, and underscores the importance of addressing sense of belonging as a key factor in promoting diversity and equity in STEM fields.

Keywords: sense of belonging, achievement, racial equity, postsecondary education, intervention

Procedia PDF Downloads 71
1694 Association of a Genetic Polymorphism in Cytochrome P450, Family 1 with Risk of Developing Esophagus Squamous Cell Carcinoma

Authors: Soodabeh Shahid Sales, Azam Rastgar Moghadam, Mehrane Mehramiz, Malihe Entezari, Kazem Anvari, Mohammad Sadegh Khorrami, Saeideh Ahmadi Simab, Ali Moradi, Seyed Mahdi Hassanian, Majid Ghayour-Mobarhan, Gordon A. Ferns, Amir Avan

Abstract:

Background Esophageal cancer has been reported as the eighth most common cancer universal and the seventh cause of cancer-related death in men .recent studies have revealed that cytochrome P450, family 1, subfamily B, polypeptide 1, which plays a role in metabolizing xenobiotics, is associated with different cancers. Therefore in the present study, we investigated the impact of CYP1B1-rs1056836 on esophagus squamous cell carcinoma (ESCC) patients. Method: 317 subjects, with and without ESCC were recruited. DNA was extracted and genotyped via Real-time PCR-Based Taq Man. Kaplan Meier curves were utilized to assess overall and progression-free survival. To evaluate the relationship between patients clinicopathological data, genotypic frequencies, disease prognosis, and patients survival, Pearson chi-square and t-test were used. Logistic regression was utilized to assess the association between the risk of ESCC and genotypes. Results: the genotypic frequency for GG, GC, and CC are respectively 58.6% , 29.8%, 11.5% in the healthy group and 51.8%, 36.14% and 12% in ESCC group. With respect to the recessive genetic inheritance model, an association between the GG genotype and stage of ESCC were found. Also, statistically significant results were not found for this variation and risk of ESCC. Patients with GG genotype had a decreased risk of nodal metastasis in comparison with patients with CC/CG genotype, although this link was not statistically significant. Conclusion: Our findings illustrated the correlation of CYP1B1-rs1056836 as a potential biomarker for ESCC patients, supporting further studies in larger populations in different ethnic groups. Moreover, further investigations are warranted to evaluate the association of emerging marker with dietary intake and lifestyle.

Keywords: Cytochrome P450, esophagus squamous cell carcinoma, dietary intake, lifestyle

Procedia PDF Downloads 203
1693 Biodegradation of Endoxifen in Wastewater: Isolation and Identification of Bacteria Degraders, Kinetics, and By-Products

Authors: Marina Arino Martin, John McEvoy, Eakalak Khan

Abstract:

Endoxifen is an active metabolite responsible for the effectiveness of tamoxifen, a chemotherapeutic drug widely used for endocrine responsive breast cancer and chemo-preventive long-term treatment. Tamoxifen and endoxifen are not completely metabolized in human body and are actively excreted. As a result, they are released to the water environment via wastewater treatment plants (WWTPs). The presence of tamoxifen in the environment produces negative effects on aquatic lives due to its antiestrogenic activity. Because endoxifen is 30-100 times more potent than tamoxifen itself and also presents antiestrogenic activity, its presence in the water environment could result in even more toxic effects on aquatic lives compared to tamoxifen. Data on actual concentrations of endoxifen in the environment is limited due to recent discovery of endoxifen pharmaceutical activity. However, endoxifen has been detected in hospital and municipal wastewater effluents. The detection of endoxifen in wastewater effluents questions the treatment efficiency of WWTPs. Studies reporting information about endoxifen removal in WWTPs are also scarce. There was a study that used chlorination to eliminate endoxifen in wastewater. However, an inefficient degradation of endoxifen by chlorination and the production of hazardous disinfection by-products were observed. Therefore, there is a need to remove endoxifen from wastewater prior to chlorination in order to reduce the potential release of endoxifen into the environment and its possible effects. The aim of this research is to isolate and identify bacteria strain(s) capable of degrading endoxifen into less hazardous compound(s). For this purpose, bacteria strains from WWTPs were exposed to endoxifen as a sole carbon and nitrogen source for 40 days. Bacteria presenting positive growth were isolated and tested for endoxifen biodegradation. Endoxifen concentration and by-product formation were monitored. The Monod kinetic model was used to determine endoxifen biodegradation rate. Preliminary results of the study suggest that isolated bacteria from WWTPs are able to growth in presence of endoxifen as a sole carbon and nitrogen source. Ongoing work includes identification of these bacteria strains and by-product(s) of endoxifen biodegradation.

Keywords: biodegradation, bacterial degraders, endoxifen, wastewater

Procedia PDF Downloads 217
1692 Groundwater Potential Delineation Using Geodetector Based Convolutional Neural Network in the Gunabay Watershed of Ethiopia

Authors: Asnakew Mulualem Tegegne, Tarun Kumar Lohani, Abunu Atlabachew Eshete

Abstract:

Groundwater potential delineation is essential for efficient water resource utilization and long-term development. The scarcity of potable and irrigation water has become a critical issue due to natural and anthropogenic activities in meeting the demands of human survival and productivity. With these constraints, groundwater resources are now being used extensively in Ethiopia. Therefore, an innovative convolutional neural network (CNN) is successfully applied in the Gunabay watershed to delineate groundwater potential based on the selected major influencing factors. Groundwater recharge, lithology, drainage density, lineament density, transmissivity, and geomorphology were selected as major influencing factors during the groundwater potential of the study area. For dataset training, 70% of samples were selected and 30% were used for serving out of the total 128 samples. The spatial distribution of groundwater potential has been classified into five groups: very low (10.72%), low (25.67%), moderate (31.62%), high (19.93%), and very high (12.06%). The area obtains high rainfall but has a very low amount of recharge due to a lack of proper soil and water conservation structures. The major outcome of the study showed that moderate and low potential is dominant. Geodetoctor results revealed that the magnitude influences on groundwater potential have been ranked as transmissivity (0.48), recharge (0.26), lineament density (0.26), lithology (0.13), drainage density (0.12), and geomorphology (0.06). The model results showed that using a convolutional neural network (CNN), groundwater potentiality can be delineated with higher predictive capability and accuracy. CNN-based AUC validation platform showed that 81.58% and 86.84% were accrued from the accuracy of training and testing values, respectively. Based on the findings, the local government can receive technical assistance for groundwater exploration and sustainable water resource development in the Gunabay watershed. Finally, the use of a detector-based deep learning algorithm can provide a new platform for industrial sectors, groundwater experts, scholars, and decision-makers.

Keywords: CNN, geodetector, groundwater influencing factors, Groundwater potential, Gunabay watershed

Procedia PDF Downloads 26
1691 The Basin Management Methodology for Integrated Water Resources Management and Development

Authors: Julio Jesus Salazar, Max Jesus De Lama

Abstract:

The challenges of water management are aggravated by global change, which implies high complexity and associated uncertainty; water management is difficult because water networks cross domains (natural, societal, and political), scales (space, time, jurisdictional, institutional, knowledge, etc.) and levels (area: patches to global; knowledge: a specific case to generalized principles). In this context, we need to apply natural and non-natural measures to manage water and soil. The Basin Management Methodology considers multifunctional measures of natural water retention and erosion control and soil formation to protect water resources and address the challenges related to the recovery or conservation of the ecosystem, as well as natural characteristics of water bodies, to improve the quantitative status of water bodies and reduce vulnerability to floods and droughts. This method of water management focuses on the positive impacts of the chemical and ecological status of water bodies, restoration of the functioning of the ecosystem and its natural services; thus, contributing to both adaptation and mitigation of climate change. This methodology was applied in 7 interventions in the sub-basin of the Shullcas River in Huancayo-Junín-Peru, obtaining great benefits in the framework of the participation of alliances of actors and integrated planning scenarios. To implement the methodology in the sub-basin of the Shullcas River, a process called Climate Smart Territories (CST) was used; with which the variables were characterized in a highly complex space. The diagnosis was then worked using risk management and adaptation to climate change. Finally, it was concluded with the selection of alternatives and projects of this type. Therefore, the CST approach and process face the challenges of climate change through integrated, systematic, interdisciplinary and collective responses at different scales that fit the needs of ecosystems and their services that are vital to human well-being. This methodology is now replicated at the level of the Mantaro river basin, improving with other initiatives that lead to the model of a resilient basin.

Keywords: climate-smart territories, climate change, ecosystem services, natural measures, Climate Smart Territories (CST) approach

Procedia PDF Downloads 155
1690 Statistical Investigation Projects: A Way for Pre-Service Mathematics Teachers to Actively Solve a Campus Problem

Authors: Muhammet Şahal, Oğuz Köklü

Abstract:

As statistical thinking and problem-solving processes have become increasingly important, teachers need to be more rigorously prepared with statistical knowledge to teach their students effectively. This study examined preservice mathematics teachers' development of statistical investigation projects using data and exploratory data analysis tools, following a design-based research perspective and statistical investigation cycle. A total of 26 pre-service senior mathematics teachers from a public university in Turkiye participated in the study. They formed groups of 3-4 members voluntarily and worked on their statistical investigation projects for six weeks. The data sources were audio recordings of pre-service teachers' group discussions while working on their projects in class, whole-class video recordings, and each group’s weekly and final reports. As part of the study, we reviewed weekly reports, provided timely feedback specific to each group, and revised the following week's class work based on the groups’ needs and development in their project. We used content analysis to analyze groups’ audio and classroom video recordings. The participants encountered several difficulties, which included formulating a meaningful statistical question in the early phase of the investigation, securing the most suitable data collection strategy, and deciding on the data analysis method appropriate for their statistical questions. The data collection and organization processes were challenging for some groups and revealed the importance of comprehensive planning. Overall, preservice senior mathematics teachers were able to work on a statistical project that contained the formulation of a statistical question, planning, data collection, analysis, and reaching a conclusion holistically, even though they faced challenges because of their lack of experience. The study suggests that preservice senior mathematics teachers have the potential to apply statistical knowledge and techniques in a real-world context, and they could proceed with the project with the support of the researchers. We provided implications for the statistical education of teachers and future research.

Keywords: design-based study, pre-service mathematics teachers, statistical investigation projects, statistical model

Procedia PDF Downloads 91
1689 Latent Heat Storage Using Phase Change Materials

Authors: Debashree Ghosh, Preethi Sridhar, Shloka Atul Dhavle

Abstract:

The judicious and economic consumption of energy for sustainable growth and development is nowadays a thing of primary importance; Phase Change Materials (PCM) provide an ingenious option of storing energy in the form of Latent Heat. Energy storing mechanism incorporating phase change material increases the efficiency of the process by minimizing the difference between supply and demand; PCM heat exchangers are used to storing the heat or non-convectional energy within the PCM as the heat of fusion. The experimental study evaluates the effect of thermo-physical properties, variation in inlet temperature, and flow rate on charging period of a coiled heat exchanger. Secondly, a numerical study is performed on a PCM double pipe heat exchanger packed with two different PCMs, namely, RT50 and Fatty Acid, in the annular region. In this work, the simulation of charging of paraffin wax (RT50) using water as high-temperature fluid (HTF) is performed. Commercial software Ansys-Fluent 15 is used for simulation, and hence charging of PCM is studied. In the Enthalpy-porosity model, a single momentum equation is applicable to describe the motion of both solid and liquid phases. The details of the progress of phase change with time are presented through the contours of melt-fraction, temperature. The velocity contour is shown to describe the motion of the liquid phase. The experimental study revealed that paraffin wax melts with almost the same temperature variation at the two Intermediate positions. Fatty acid, on the other hand, melts faster owing to greater thermal conductivity and low melting temperature. It was also observed that an increase in flow rate leads to a reduction in the charging period. The numerical study also supports some of the observations found in the experimental study like the significant dependence of driving force on the process of melting. The numerical study also clarifies the melting pattern of the PCM, which cannot be observed in the experimental study.

Keywords: latent heat storage, charging period, discharging period, coiled heat exchanger

Procedia PDF Downloads 125
1688 The Selectivities of Pharmaceutical Spending Containment: Social Profit, Incentivization Games and State Power

Authors: Ben Main Piotr Ozieranski

Abstract:

State government spending on pharmaceuticals stands at 1 trillion USD globally, promoting criticism of the pharmaceutical industry's monetization of drug efficacy, product cost overvaluation, and health injustice. This paper elucidates the mechanisms behind a state-institutional response to this problem through the sociological lens of the strategic relational approach to state power. To do so, 30 expert interviews, legal and policy documents are drawn on to explain how state elites in New Zealand have successfully contested a 30-year “pharmaceutical spending containment policy”. Proceeding from Jessop's notion of strategic “selectivity”, encompassing analyses of the enabling features of state actors' ability to harness state structures, a theoretical explanation is advanced. First, a strategic context is described that consists of dynamics around pharmaceutical dealmaking between the state bureaucracy, pharmaceutical pricing strategies (and their effects), and the industry. Centrally, the pricing strategy of "bundling" -deals for packages of drugs that combine older and newer patented products- reflect how state managers have instigated an “incentivization game” that is played by state and industry actors, including HTA professionals, over pharmaceutical products (both current and in development). Second, a protective context is described that is comprised of successive legislative-judicial responses to the strategic context and characterized by the regulation and the societalisation of commercial law. Third, within the policy, the achievement of increased pharmaceutical coverage (pharmaceutical “mix”) alongside contained spending is conceptualized as a state defence of a "social profit". As such, in contrast to scholarly expectations that political and economic cultures of neo-liberalism drive pharmaceutical policy-making processes, New Zealand's state elites' approach is shown to be antipathetic to neo-liberals within an overall capitalist economy. The paper contributes an analysis of state pricing strategies and how they are embedded in state regulatory structures. Additionally, through an analysis of the interconnections of state power and pharmaceutical value Abrahams's neo-liberal corporate bias model for pharmaceutical policy analysis is problematised.

Keywords: pharmaceutical governance, pharmaceutical bureaucracy, pricing strategies, state power, value theory

Procedia PDF Downloads 75
1687 Challenges of Outreach Team Leaders in Managing Ward Based Primary Health Care Outreach Teams in National Health Insurance Pilot Districts in Kwazulu-Natal

Authors: E. M. Mhlongo, E. Lutge

Abstract:

In 2010, South Africa’s National Department of Health (NDoH) launched national primary health care (PHC) initiative to strengthen health promotion, disease prevention, and early disease detection. The strategy, called Re-engineering Primary Health Care (rPHC), aims to support a preventive and health-promoting community-based PHC model by using community-based outreach teams (known in South Africa as Ward-based Primary Health Care Outreach teams or WBPHCOTs). These teams provide health education, promote healthy behaviors, assess community health needs, manage minor health problems, and support linkages to health services and health facilities. Ward based primary health care outreach teams are supervised by a professional nurse who is the outreach team leader. In South Africa, the WBPHCOTs have been established, registered, and are reporting their activities in the District Health Information System (DHIS). This study explored and described the challenges faced by outreach team leaders in supporting and supervising the WBPHCOTs. Qualitative data were obtained through interviews conducted with the outreach team leaders at a sub-district level. Thematic analysis of data was done. Findings revealed some challenges faced by team leaders in day to day execution of their duties. Issues such as staff shortages, inadequate resources to carry out health promotion activities, and lack of co-operation from team members may undermine the capacity of team leaders to support and supervise the WBPHCOTs. Many community members are under the impression that the outreach team is responsible for bringing the clinic to the community while the outreach teams do not carry any medication/treatment with them when doing home visits. The study further highlights issues around the challenges of WBPHCOTs at a household level. In conclusion, the WBPHCOTs are an important component of National Health Insurance (NHI), and in order for NHI to be optimally implemented, the issues raised in this research should be addressed with some urgency.

Keywords: community health worker, national health insurance, primary health care, ward-based primary health care outreach teams

Procedia PDF Downloads 142
1686 Computer Based Identification of Possible Molecular Targets for Induction of Drug Resistance Reversion in Multidrug Resistant Mycobacterium Tuberculosis

Authors: Oleg Reva, Ilya Korotetskiy, Marina Lankina, Murat Kulmanov, Aleksandr Ilin

Abstract:

Molecular docking approaches are widely used for design of new antibiotics and modeling of antibacterial activities of numerous ligands which bind specifically to active centers of indispensable enzymes and/or key signaling proteins of pathogens. Widespread drug resistance among pathogenic microorganisms calls for development of new antibiotics specifically targeting important metabolic and information pathways. A generally recognized problem is that almost all molecular targets have been identified already and it is getting more and more difficult to design innovative antibacterial compounds to combat the drug resistance. A promising way to overcome the drug resistance problem is an induction of reversion of drug resistance by supplementary medicines to improve the efficacy of the conventional antibiotics. In contrast to well established computer-based drug design, modeling of drug resistance reversion still is in its infancy. In this work, we proposed an approach to identification of compensatory genetic variants reducing the fitness cost associated with the acquisition of drug resistance by pathogenic bacteria. The approach was based on an analysis of the population genetic of Mycobacterium tuberculosis and on results of experimental modeling of the drug resistance reversion induced by a new anti-tuberculosis drug FS-1. The latter drug is an iodine-containing nanomolecular complex that passed clinical trials and was admitted as a new medicine against MDR-TB in Kazakhstan. Isolates of M. tuberculosis obtained on different stages of the clinical trials and also from laboratory animals infected with MDR-TB strain were characterized by antibiotic resistance, and their genomes were sequenced by the paired-end Illumina HiSeq 2000 technology. A steady increase in sensitivity to conventional anti-tuberculosis antibiotics in series of isolated treated with FS-1 was registered despite the fact that the canonical drug resistance mutations identified in the genomes of these isolates remained intact. It was hypothesized that the drug resistance phenotype in M. tuberculosis requires an adjustment of activities of many genes to compensate the fitness cost of the drug resistance mutations. FS-1 cased an aggravation of the fitness cost and removal of the drug-resistant variants of M. tuberculosis from the population. This process caused a significant increase in genetic heterogeneity of the Mtb population that was not observed in the positive and negative controls (infected laboratory animals left untreated and treated solely with the antibiotics). A large-scale search for linkage disequilibrium associations between the drug resistance mutations and genetic variants in other genomic loci allowed identification of target proteins, which could be influenced by supplementary drugs to increase the fitness cost of the drug resistance and deprive the drug-resistant bacterial variants of their competitiveness in the population. The approach will be used to improve the efficacy of FS-1 and also for computer-based design of new drugs to combat drug-resistant infections.

Keywords: complete genome sequencing, computational modeling, drug resistance reversion, Mycobacterium tuberculosis

Procedia PDF Downloads 267
1685 Towards Learning Query Expansion

Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier

Abstract:

The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.

Keywords: supervised leaning, classification, query expansion, association rules

Procedia PDF Downloads 330
1684 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data

Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.

Keywords: real-time spatial big data, quality of service, vertical partitioning, horizontal partitioning, matching algorithm, hamming distance, stream query

Procedia PDF Downloads 159
1683 Factors Associated with Recurrence and Long-Term Survival in Younger and Postmenopausal Women with Breast Cancer

Authors: Sopit Tubtimhin, Chaliya Wamaloon, Anchalee Supattagorn

Abstract:

Background and Significance: Breast cancer is the most frequently diagnosed and leading cause of cancer death among women. This study aims to determine factors potentially predicting recurrence and long-term survival after the first recurrence in surgically treated patients between postmenopausal and younger women. Methods and Analysis: A retrospective cohort study was performed on 498 Thai women with invasive breast cancer, who had undergone mastectomy and been followed-up at Ubon Ratchathani Cancer Hospital, Thailand. We collected based on a systematic chart audit from medical records and pathology reports between January 1, 2002, and December 31, 2011. The last follow-up time point for surviving patients was December 31, 2016. A Cox regression model was used to calculate hazard ratios of recurrence and death. Findings: The median age was 49 (SD ± 9.66) at the time of diagnosis, 47% was post-menopausal women ( ≥ 51years and not experienced any menstrual flow for a minimum of 12 months), and 53 % was younger women ( ˂ 51 years and have menstrual period). Median time from the diagnosis to the last follow-up or death was 10.81 [95% CI = 9.53-12.07] years in younger cases and 8.20 [95% CI = 6.57-9.82] years in postmenopausal cases. The recurrence-free survival (RFS) for younger estimates at 1, 5 and 10 years of 95.0 %, 64.0% and 58.93% respectively, appeared slightly better than the 92.7%, 58.1% and 53.1% for postmenopausal women [HRadj = 1.25, 95% CI = 0.95-1.64]. Regarding overall survival (OS) for younger at 1, 5 and 10 years were 97.7%, 72.7 % and 52.7% respectively, for postmenopausal patients, OS at 1, 5 and 10 years were 95.7%, 70.0% and 44.5 respectively, there were no significant differences in survival [HRadj = 1.23, 95% CI = 0.94 -1.64]. Multivariate analysis identified five risk factors for negatively impacting on survival were triple negative [HR= 2.76, 95% CI = 1.47-5.19], Her2-enriched [HR = 2.59, 95% CI = 1.37-4.91], luminal B [HR = 2.29, 95 % CI=1.35-3.89], not free margin [HR = 1.98, 95%CI=1.00-3.96] and patients who received only adjuvant chemotherapy [HR= 3.75, 95% CI = 2.00-7.04]. Statistically significant risks of overall cancer recurrence were Her2-enriched [HR = 5.20, 95% CI = 2.75-9.80], triple negative [HR = 3.87, 95% CI = 1.98-7.59], luminal B [HR= 2.59, 95% CI = 1.48-4.54,] and patients who received only adjuvant chemotherapy [HR= 2.59, 95% CI = 1.48-5.66]. Discussion and Implications: Outcomes from this studies have shown that postmenopausal women have been associated with increased risk of recurrence and mortality. As the results, it provides useful information for planning the screening and treatment of early-stage breast cancer in the future.

Keywords: breast cancer, menopause status, recurrence-free survival, overall survival

Procedia PDF Downloads 166
1682 Sexual Health Experiences of Older Men: Health Care Professionals' Perspectives

Authors: Andriana E. Tran, Anna Chur-Hansen

Abstract:

Sexual health is an important aspect of overall wellbeing. This study aimed to explore the sexual health experiences of men aged 50 years and over from the perspective of health care professional participants who were specializing in sexual health care and who consulted with older men. A total of ten interviews were conducted. Eleven themes were identified regarding men’s experiences with sexual health care as reported by participants. 1) Biologically focused: older male clients focus largely on the biological aspect of their sexual health without consideration of other factors which might affect their functioning. 2) Psychological concerns: there is an interaction between mental and sexual health but older male clients do not necessarily see this. 3) Medicalization of sexual functioning: advances in medicine that aid with erectile difficulties which consequently mean that older men tend to favor a medical solution to their sexual concerns. 4) Masculine identity: sexual health concerns are linked to older male clients’ sense of masculinity. 5) Penile functionality: most concerns that older male clients have center on their penile functionality. 6) Relationships: many male clients seek sexual help as they believe it improves relationships. Conversely, having supportive partners may mean older male clients focus less on the physicality of sex. 7) Grief and loss: men experience grief and loss – the loss of their sexual functioning, grief from loss of a long-term partner, and loss of intimacy and privacy when moving from independent living to residential care. 8) Social stigma: older male clients experience stigma around aging sexuality and sex in general. 9) Help-seeking behavior: older male clients will usually seek mechanistic solution for biological sexual concerns, such as medication used for penile dysfunction. 10) Dismissed by health care professionals: many older male clients seek specialist sexual health care without the knowledge of their doctors as they feel dismissed due to lack of expertise, lack of time, and the doctor’s personal attitudes and characteristics. Finally, 11) Lack of resources: there is a distinct lack of resources and training to understand sexuality for healthy older men. These findings may inform future research, professional training, public health campaigns and policies for sexual health in older men.

Keywords: ageing, biopsychosocial model, men's health, sexual health

Procedia PDF Downloads 174
1681 Detection of Curvilinear Structure via Recursive Anisotropic Diffusion

Authors: Sardorbek Numonov, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Dongeun Choi, Byung-Woo Hong

Abstract:

The detection of curvilinear structures often plays an important role in the analysis of images. In particular, it is considered as a crucial step for the diagnosis of chronic respiratory diseases to localize the fissures in chest CT imagery where the lung is divided into five lobes by the fissures that are characterized by linear features in appearance. However, the characteristic linear features for the fissures are often shown to be subtle due to the high intensity variability, pathological deformation or image noise involved in the imaging procedure, which leads to the uncertainty in the quantification of anatomical or functional properties of the lung. Thus, it is desired to enhance the linear features present in the chest CT images so that the distinctiveness in the delineation of the lobe is improved. We propose a recursive diffusion process that prefers coherent features based on the analysis of structure tensor in an anisotropic manner. The local image features associated with certain scales and directions can be characterized by the eigenanalysis of the structure tensor that is often regularized via isotropic diffusion filters. However, the isotropic diffusion filters involved in the computation of the structure tensor generally blur geometrically significant structure of the features leading to the degradation of the characteristic power in the feature space. Thus, it is required to take into consideration of local structure of the feature in scale and direction when computing the structure tensor. We apply an anisotropic diffusion in consideration of scale and direction of the features in the computation of the structure tensor that subsequently provides the geometrical structure of the features by its eigenanalysis that determines the shape of the anisotropic diffusion kernel. The recursive application of the anisotropic diffusion with the kernel the shape of which is derived from the structure tensor leading to the anisotropic scale-space where the geometrical features are preserved via the eigenanalysis of the structure tensor computed from the diffused image. The recursive interaction between the anisotropic diffusion based on the geometry-driven kernels and the computation of the structure tensor that determines the shape of the diffusion kernels yields a scale-space where geometrical properties of the image structure are effectively characterized. We apply our recursive anisotropic diffusion algorithm to the detection of curvilinear structure in the chest CT imagery where the fissures present curvilinear features and define the boundary of lobes. It is shown that our algorithm yields precise detection of the fissures while overcoming the subtlety in defining the characteristic linear features. The quantitative evaluation demonstrates the robustness and effectiveness of the proposed algorithm for the detection of fissures in the chest CT in terms of the false positive and the true positive measures. The receiver operating characteristic curves indicate the potential of our algorithm as a segmentation tool in the clinical environment. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: anisotropic diffusion, chest CT imagery, chronic respiratory disease, curvilinear structure, fissure detection, structure tensor

Procedia PDF Downloads 235
1680 Krill-Herd Step-Up Approach Based Energy Efficiency Enhancement Opportunities in the Offshore Mixed Refrigerant Natural Gas Liquefaction Process

Authors: Kinza Qadeer, Muhammad Abdul Qyyum, Moonyong Lee

Abstract:

Natural gas has become an attractive energy source in comparison with other fossil fuels because of its lower CO₂ and other air pollutant emissions. Therefore, compared to the demand for coal and oil, that for natural gas is increasing rapidly world-wide. The transportation of natural gas over long distances as a liquid (LNG) preferable for several reasons, including economic, technical, political, and safety factors. However, LNG production is an energy-intensive process due to the tremendous amount of power requirements for compression of refrigerants, which provide sufficient cold energy to liquefy natural gas. Therefore, one of the major issues in the LNG industry is to improve the energy efficiency of existing LNG processes through a cost-effective approach that is 'optimization'. In this context, a bio-inspired Krill-herd (KH) step-up approach was examined to enhance the energy efficiency of a single mixed refrigerant (SMR) natural gas liquefaction (LNG) process, which is considered as a most promising candidate for offshore LNG production (FPSO). The optimal design of a natural gas liquefaction processes involves multivariable non-linear thermodynamic interactions, which lead to exergy destruction and contribute to process irreversibility. As key decision variables, the optimal values of mixed refrigerant flow rates and process operating pressures were determined based on the herding behavior of krill individuals corresponding to the minimum energy consumption for LNG production. To perform the rigorous process analysis, the SMR process was simulated in Aspen Hysys® software and the resulting model was connected with the Krill-herd approach coded in MATLAB. The optimal operating conditions found by the proposed approach significantly reduced the overall energy consumption of the SMR process by ≤ 22.5% and also improved the coefficient of performance in comparison with the base case. The proposed approach was also compared with other well-proven optimization algorithms, such as genetic and particle swarm optimization algorithms, and was found to exhibit a superior performance over these existing approaches.

Keywords: energy efficiency, Krill-herd, LNG, optimization, single mixed refrigerant

Procedia PDF Downloads 160
1679 Effects of Cold Treatments on Methylation Profiles and Reproduction Mode of Diploid and Tetraploid Plants of Ranunculus kuepferi (Ranunculaceae)

Authors: E. Syngelaki, C. C. F. Schinkel, S. Klatt, E. Hörandl

Abstract:

Environmental influence can alter the conditions for plant development and can trigger changes in epigenetic variation. Thus, the exposure to abiotic environmental stress can lead to different DNA methylation profiles and may have evolutionary consequences for adaptation. Epigenetic control mechanisms may further influence mode of reproduction. The alpine species R. kuepferi has diploid and tetraploid cytotypes, that are mostly sexual and facultative apomicts, respectively. Hence, it is a suitable model system for studying the correlations of mode of reproduction, ploidy, and environmental stress. Diploid and tetraploid individuals were placed in two climate chambers and treated with low (+7°C day/+2°C night, -1°C cold shocks for three nights per week) and warm (control) temperatures (+15°C day/+10°C night). Subsequently, methylation sensitive-Amplified Fragment-Length Polymorphism (AFPL) markers were used to screen genome-wide methylation alterations triggered by stress treatments. The dataset was analyzed for four groups regarding treatment (cold/warm) and ploidy level (diploid/tetraploid), and also separately for full methylated, hemi-methylated and unmethylated sites. Patterns of epigenetic variation suggested that diploids differed significantly in their profiles from tetraploids independent from treatment, while treatments did not differ significantly within cytotypes. Furthermore, diploids are more differentiated than the tetraploids in overall methylation profiles of both treatments. This observation is in accordance with the increased frequency of apomictic seed formation in diploids and maintenance of facultative apomixis in tetraploids during the experiment. Global analysis of molecular variance showed higher epigenetic variation within groups than among them, while locus-by-locus analysis of molecular variance showed a high number (54.7%) of significantly differentiated un-methylated loci. To summarise, epigenetic variation seems to depend on ploidy level, and in diploids may be correlated to changes in mode of reproduction. However, further studies are needed to elucidate the mechanism and possible functional significance of these correlations.

Keywords: apomixis, cold stress, DNA methylation, Ranunculus kuepferi

Procedia PDF Downloads 164
1678 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 172
1677 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 163
1676 An Investigative Study into Good Governance in the Non-Profit Sector in South Africa: A Systems Approach Perspective

Authors: Frederick M. Dumisani Xaba, Nokuthula G. Khanyile

Abstract:

There is a growing demand for greater accountability, transparency and ethical conduct based on sound governance principles in the developing world. Funders, donors and sponsors are increasingly demanding more transparency, better value for money and adherence to good governance standards. The drive towards improved governance measures is largely influenced by the need to ‘plug the leaks’, deal with malfeasance, engender greater levels of accountability and good governance and to ultimately attract further funding or investment. This is the case with the Non-Profit Organizations (NPOs) in South Africa in general, and in the province of KwaZulu-Natal in particular. The paper draws from the good governance theory, stakeholder theory and systems thinking to critically examine the requirements for good governance for the NPO sector from a theoretical and legislative point and to systematically looks at the contours of governance currently among the NPOs. The paper did this through the rigorous examination of the vignettes of cases of governance among selected NPOs based in KwaZulu-Natal. The study used qualitative and quantitative research methodologies through document analysis, literature review, semi-structured interviews, focus groups and statistical analysis from the various primary and secondary sources. It found some good cases of good governance but also found frightening levels of poor governance. There was an exponential growth of NPOs registered during the period under review, equally so there was an increase in cases of non-compliance to good governance practices. NPOs operate in an increasingly complex environment. There is contestation for influence and access to resources. Stakeholder management is poorly conceptualized and executed. Recognizing that the NPO sector operates in an environment characterized by complexity, constant changes, unpredictability, contestation, diversity and divergent views of different stakeholders, there is a need to apply legislative and systems thinking approaches to strengthen governance to withstand this turbulence through a capacity development model that recognizes these contextual and environmental challenges.

Keywords: good governance, non-profit organizations, stakeholder theory, systems theory

Procedia PDF Downloads 124
1675 Sustainability and Smart Cities Planning in Contrast with City Humanity. Human Scale and City Soul (Neighbourhood Scale)

Authors: Ghadir Hummeid

Abstract:

Undoubtedly, our world is leading all the purposes and efforts to achieve sustainable development in life in all respects. Sustainability has been regarded as a solution to many challenges of our world today, materiality and immateriality. With the new consequences and challenges our world today, such as global climate change, the use of non-renewable resources, environmental pollution, the decreasing of urban health, the urban areas’ aging, the highly increasing migrations into urban areas linked to many consequences such as highly infrastructure density, social segregation. All of that required new forms of governance, new urban policies, and more efficient efforts and urban applications. Based on the fact that cities are the core of life and it is a fundamental life axis, their development can increase or decrease the life quality of their inhabitants. Architects and planners see themselves today in the need to create new approaches and new sustainable policies to develop urban areas to correspond with the physical and non-physical transformations that cities are nowadays experiencing. To enhance people's lives and provide for their needs in this present without compromising the needs and lives of future generations. The application of sustainability has become an inescapable part of the development and projections of cities' planning. Yet its definition has been indefinable due to the plurality and difference of its applications. As the conceptualizations of technology are arising and have dominated all life aspects today, from smart citizens and smart life rhythms to smart production and smart structures to smart frameworks, it has influenced the sustainability applications as well in the planning and urbanization of cities. The term "smart city" emerged from this influence as one of the possible key solutions to sustainability. The term “smart city” has various perspectives of applications and definitions in the literature and in urban applications. However, after the observation of smart city applications in current cities, this paper defined the smart city as an urban environment that is controlled by technologies yet lacks the physical architectural representation of this smartness as the current smart applications are mostly obscured from the public as they are applied now on a diminutive scale and highly integrated into the built environment. Regardless of the importance of these technologies in improving the quality of people's lives and in facing cities' challenges, it is important not to neglect their architectural and urban presentations will affect the shaping and development of city neighborhoods. By investigating the concept of smart cities and exploring its potential applications on a neighbourhood scale, this paper aims to shed light on understanding the challenges faced by cities and exploring innovative solutions such as smart city applications in urban mobility and how they affect the different aspects of communities. The paper aims to shape better articulations of smart neighborhoods’ morphologies on the social, architectural, functional, and material levels. To understand how to create more sustainable and liveable future approaches to developing urban environments inside cities. The findings of this paper will contribute to ongoing discussions and efforts in achieving sustainable urban development.

Keywords: sustainability, urban development, smart city, resilience, sense of belonging

Procedia PDF Downloads 84
1674 Exploring the Impact of Mobility-Related Treatments (Drug and Non-Pharmacological) on Independence and Wellbeing in Parkinson’s Disease - A Qualitative Synthesis

Authors: Cameron Wilson, Megan Hanrahan, Katie Brittain, Riona McArdle, Alison Keogh, Lynn Rochester

Abstract:

Background: The loss of mobility and functional dependence is a significant marker in the progression of neurodegenerative diseases such as Parkinson’s Disease (PD). Pharmacological, surgical, and therapeutic treatments are available that can help in the management and amelioration of PD symptoms; however, these only prolong more severe symptoms. Accordingly, ensuring people with PD can maintain independence and a healthy wellbeing are essential in establishing an effective treatment option for those afflicted. Existing literature reviews have examined experiences in engaging with PD treatment options and the impact of PD on independence and wellbeing. Although, the literature fails to explore the influence of treatment options on independence and wellbeing and therefore misses what people value in their treatment. This review is the first that synthesises the impact of mobility-related treatments on independence and wellbeing in people with PD and their carers, offering recommendations to clinical practice and provides a conceptual framework (in development) for future research and practice. Objectives: To explore the impact of mobility-related treatment (both pharmacological and non-pharmacological) on the independence and wellbeing of people with PD and their carers. To propose a conceptual framework to patients, carers and clinicians which captures the qualities people with PD value as part of their treatment. Methods: We performed a critical interpretive synthesis of qualitative evidence, searching six databases for reports that explored the impact of mobility-related treatments (both drug and non-pharmacological) on independence and wellbeing in Parkinson’s Disease. The types of treatments included medication (Levodopa and Amantadine), dance classes, Deep-Brain Stimulation, aquatic therapies, physical rehabilitation, balance training and foetal transplantation. Data was extracted, and quality was assessed using an adapted version of the NICE Quality Appraisal Tool Appendix H before being synthesised according to the critical interpretive synthesis framework and meta-ethnography process. Results: From 2301 records, 28 were eligible. Experiences and impact of treatment pathway on independence and wellbeing was similar across all types of treatments and are described by five inter-related themes: (i) desire to maintain independence, (ii) treatment as a social experience during and after, (iii) medication to strengthen emotional health, (iv) recognising physical capacity and (v) emphasising the personal journey of Parkinson’s treatments. Conclusion: There is a complex and inter-related experience and effect of PD treatments common across all types of treatment. The proposed conceptual framework (in development) provides patients, carers, and clinicians recommendations to personalise the delivery of PD treatment, thereby potentially improving adherence and effectiveness. This work is vital to disseminate as PD treatment transitions from subjective and clinically captured assessments to a more personalised process supplemented using wearable technology.

Keywords: parkinson's disease, medication, treatment, dance, review, healthcare, delivery, levodopa, social, emotional, psychological, personalised healthcare

Procedia PDF Downloads 94
1673 Study of the Transport of ²²⁶Ra Colloidal in Mining Context Using a Multi-Disciplinary Approach

Authors: Marine Reymond, Michael Descostes, Marie Muguet, Clemence Besancon, Martine Leermakers, Catherine Beaucaire, Sophie Billon, Patricia Patrier

Abstract:

²²⁶Ra is one of the radionuclides resulting from the disintegration of ²³⁸U. Due to its half-life (1600 y) and its high specific activity (3.7 x 1010 Bq/g), ²²⁶Ra is found at the ultra-trace level in the natural environment (usually below 1 Bq/L, i.e. 10-13 mol/L). Because of its decay in ²²²Rn, a radioactive gas with a shorter half-life (3.8 days) which is difficult to control and dangerous for humans when inhaled, ²²⁶Ra is subject to a dedicated monitoring in surface waters especially in the context of uranium mining. In natural waters, radionuclides occur in dissolved, colloidal or particular forms. Due to the size of colloids, generally ranging between 1 nm and 1 µm and their high specific surface areas, the colloidal fraction could be involved in the transport of trace elements, including radionuclides in the environment. The colloidal fraction is not always easy to determine and few existing studies focus on ²²⁶Ra. In the present study, a complete multidisciplinary approach is proposed to assess the colloidal transport of ²²⁶Ra. It includes water sampling by conventional filtration (0.2µm) and the innovative Diffusive Gradient in Thin Films technique to measure the dissolved fraction (<10nm), from which the colloidal fraction could be estimated. Suspended matter in these waters were also sampled and characterized mineralogically by X-Ray Diffraction, infrared spectroscopy and scanning electron microscopy. All of these data, which were acquired on a rehabilitated former uranium mine, allowed to build a geochemical model using the geochemical calculation code PhreeqC to describe, as accurately as possible, the colloidal transport of ²²⁶Ra. Colloidal transport of ²²⁶Ra was found, for some of the sampling points, to account for up to 95% of the total ²²⁶Ra measured in water. Mineralogical characterization and associated geochemical modelling highlight the role of barite, a barium sulfate mineral well known to trap ²²⁶Ra into its structure. Barite was shown to be responsible for the colloidal ²²⁶Ra fraction despite the presence of kaolinite and ferrihydrite, which are also known to retain ²²⁶Ra by sorption.

Keywords: colloids, mining context, radium, transport

Procedia PDF Downloads 161
1672 Three Issues for Integrating Artificial Intelligence into Legal Reasoning

Authors: Fausto Morais

Abstract:

Artificial intelligence has been widely used in law. Programs are able to classify suits, to identify decision-making patterns, to predict outcomes, and to formalize legal arguments as well. In Brazil, the artificial intelligence victor has been classifying cases to supreme court’s standards. When those programs act doing those tasks, they simulate some kind of legal decision and legal arguments, raising doubts about how artificial intelligence can be integrated into legal reasoning. Taking this into account, the following three issues are identified; the problem of hypernormatization, the argument of legal anthropocentrism, and the artificial legal principles. Hypernormatization can be seen in the Brazilian legal context in the Supreme Court’s usage of the Victor program. This program generated efficiency and consistency. On the other hand, there is a feasible risk of over standardizing factual and normative legal features. Then legal clerks and programmers should work together to develop an adequate way to model legal language into computational code. If this is possible, intelligent programs may enact legal decisions in easy cases automatically cases, and, in this picture, the legal anthropocentrism argument takes place. Such an argument argues that just humans beings should enact legal decisions. This is so because human beings have a conscience, free will, and self unity. In spite of that, it is possible to argue against the anthropocentrism argument and to show how intelligent programs may work overcoming human beings' problems like misleading cognition, emotions, and lack of memory. In this way, intelligent machines could be able to pass legal decisions automatically by classification, as Victor in Brazil does, because they are binding by legal patterns and should not deviate from them. Notwithstanding, artificial intelligent programs can be helpful beyond easy cases. In hard cases, they are able to identify legal standards and legal arguments by using machine learning. For that, a dataset of legal decisions regarding a particular matter must be available, which is a reality in Brazilian Judiciary. Doing such procedure, artificial intelligent programs can support a human decision in hard cases, providing legal standards and arguments based on empirical evidence. Those legal features claim an argumentative weight in legal reasoning and should serve as references for judges when they must decide to maintain or overcome a legal standard.

Keywords: artificial intelligence, artificial legal principles, hypernormatization, legal anthropocentrism argument, legal reasoning

Procedia PDF Downloads 150
1671 Topographic Characteristics Derived from UAV Images to Detect Ephemeral Gully Channels

Authors: Recep Gundogan, Turgay Dindaroglu, Hikmet Gunal, Mustafa Ulukavak, Ron Bingner

Abstract:

A majority of total soil losses in agricultural areas could be attributed to ephemeral gullies caused by heavy rains in conventionally tilled fields; however, ephemeral gully erosion is often ignored in conventional soil erosion assessments. Ephemeral gullies are often easily filled from normal soil tillage operations, which makes capturing the existing ephemeral gullies in croplands difficult. This study was carried out to determine topographic features, including slope and aspect composite topographic index (CTI) and initiation points of gully channels, using images obtained from unmanned aerial vehicle (UAV) images. The study area was located in Topcu stream watershed in the eastern Mediterranean Region, where intense rainfall events occur over very short time periods. The slope varied between 0.7 and 99.5%, and the average slope was 24.7%. The UAV (multi-propeller hexacopter) was used as the carrier platform, and images were obtained with the RGB camera mounted on the UAV. The digital terrain models (DTM) of Topçu stream micro catchment produced using UAV images and manual field Global Positioning System (GPS) measurements were compared to assess the accuracy of UAV based measurements. Eighty-one gully channels were detected in the study area. The mean slope and CTI values in the micro-catchment obtained from DTMs generated using UAV images were 19.2% and 3.64, respectively, and both slope and CTI values were lower than those obtained using GPS measurements. The total length and volume of the gully channels were 868.2 m and 5.52 m³, respectively. Topographic characteristics and information on ephemeral gully channels (location of initial point, volume, and length) were estimated with high accuracy using the UAV images. The results reveal that UAV-based measuring techniques can be used in lieu of existing GPS and total station techniques by using images obtained with high-resolution UAVs.

Keywords: aspect, compound topographic index, digital terrain model, initial gully point, slope, unmanned aerial vehicle

Procedia PDF Downloads 116
1670 Matrix-Based Linear Analysis of Switched Reluctance Generator with Optimum Pole Angles Determination

Authors: Walid A. M. Ghoneim, Hamdy A. Ashour, Asmaa E. Abdo

Abstract:

In this paper, linear analysis of a Switched Reluctance Generator (SRG) model is applied on the most common configurations (4/2, 6/4 and 8/6) for both conventional short-pitched and fully-pitched designs, in order to determine the optimum stator/rotor pole angles at which the maximum output voltage is generated per unit excitation current. This study is focused on SRG analysis and design as a proposed solution for renewable energy applications, such as wind energy conversion systems. The world’s potential to develop the renewable energy technologies through dedicated scientific researches was the motive behind this study due to its positive impact on economy and environment. In addition, the problem of rare earth metals (Permanent magnet) caused by mining limitations, banned export by top producers and environment restrictions leads to the unavailability of materials used for rotating machines manufacturing. This challenge gave authors the opportunity to study, analyze and determine the optimum design of the SRG that has the benefit to be free from permanent magnets, rotor windings, with flexible control system and compatible with any application that requires variable-speed operation. In addition, SRG has been proved to be very efficient and reliable in both low-speed or high-speed applications. Linear analysis was performed using MATLAB simulations based on the (Modified generalized matrix approach) of Switched Reluctance Machine (SRM). About 90 different pole angles combinations and excitation patterns were simulated through this study, and the optimum output results for each case were recorded and presented in detail. This procedure has been proved to be applicable for any SRG configuration, dimension and excitation pattern. The delivered results of this study provide evidence for using the 4-phase 8/6 fully pitched SRG as the main optimum configuration for the same machine dimensions at the same angular speed.

Keywords: generalized matrix approach, linear analysis, renewable applications, switched reluctance generator

Procedia PDF Downloads 201
1669 Development of Alternative Fuels Technologies for Transportation

Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Adam Szurlej

Abstract:

Currently, in automotive transport to power vehicles, almost exclusively hydrocarbon based fuels are used. Due to increase of hydrocarbon fuels consumption, quality parameters are tightend for clean environment. At the same time efforts are undertaken for development of alternative fuels. The reasons why looking for alternative fuels for petroleum and diesel are: to increase vehicle efficiency and to reduce the environmental impact, reduction of greenhouse gases emissions and savings in consumption of limited oil resources. Significant progress was performed on development of alternative fuels such as methanol, ethanol, natural gas (CNG / LNG), LPG, dimethyl ether (DME) and biodiesel. In addition, biggest vehicle manufacturers work on fuel cell vehicles and its introduction to the market. Alcohols such as methanol and ethanol create the perfect fuel for spark-ignition engines. Their advantages are high-value antiknock which determines their application as additive (10%) to unleaded petrol and relative purity of produced exhaust gasses. Ethanol is produced in distillation process of plant products, which value as a food can be irrational. Ethanol production can be costly also for the entire economy of the country, because it requires a large complex distillation plants, large amounts of biomass and finally a significant amount of fuel to sustain the process. At the same time, the fermentation process of plants releases into the atmosphere large quantities of carbon dioxide. Natural gas cannot be directly converted into liquid fuels, although such arrangements have been proposed in the literature. Going through stage of intermediates is inevitable yet. Most popular one is conversion to methanol, which can be processed further to dimethyl ether (DME) or olefin (ethylene and propylene) for the petrochemical sector. Methanol uses natural gas as a raw material, however, requires expensive and advanced production processes. In relation to pollution emissions, the optimal vehicle fuel is LPG which is used in many countries as an engine fuel. Production of LPG is inextricably linked with production and processing of oil and gas, and which represents a small percentage. Its potential as an alternative for traditional fuels is therefore proportionately reduced. Excellent engine fuel may be biogas, however, follows to the same limitations as ethanol - the same production process is used and raw materials. Most essential fuel in the campaign of environment protection against pollution is natural gas. Natural gas as fuel may be either compressed (CNG) or liquefied (LNG). Natural gas can also be used for hydrogen production in steam reforming. Hydrogen can be used as a basic starting material for the chemical industry, an important raw material in the refinery processes, as well as a fuel vehicle transportation. Natural gas can be used as CNG which represents an excellent compromise between the availability of the technology that is proven and relatively cheap to use in many areas of the automotive industry. Natural gas can also be seen as an important bridge to other alternative sources of energy derived from fuel and harmless to the environment. For these reasons CNG as a fuel stimulates considerable interest in the worldwide.

Keywords: alternative fuels, CNG (Compressed Natural Gas), LNG (Liquefied Natural Gas), NGVs (Natural Gas Vehicles)

Procedia PDF Downloads 185
1668 Factors Impacting Geostatistical Modeling Accuracy and Modeling Strategy of Fluvial Facies Models

Authors: Benbiao Song, Yan Gao, Zhuo Liu

Abstract:

Geostatistical modeling is the key technic for reservoir characterization, the quality of geological models will influence the prediction of reservoir performance greatly, but few studies have been done to quantify the factors impacting geostatistical reservoir modeling accuracy. In this study, 16 fluvial prototype models have been established to represent different geological complexity, 6 cases range from 16 to 361 wells were defined to reproduce all those 16 prototype models by different methodologies including SIS, object-based and MPFS algorithms accompany with different constraint parameters. Modeling accuracy ratio was defined to quantify the influence of each factor, and ten realizations were averaged to represent each accuracy ratio under the same modeling condition and parameters association. Totally 5760 simulations were done to quantify the relative contribution of each factor to the simulation accuracy, and the results can be used as strategy guide for facies modeling in the similar condition. It is founded that data density, geological trend and geological complexity have great impact on modeling accuracy. Modeling accuracy may up to 90% when channel sand width reaches up to 1.5 times of well space under whatever condition by SIS and MPFS methods. When well density is low, the contribution of geological trend may increase the modeling accuracy from 40% to 70%, while the use of proper variogram may have very limited contribution for SIS method. It can be implied that when well data are dense enough to cover simple geobodies, few efforts were needed to construct an acceptable model, when geobodies are complex with insufficient data group, it is better to construct a set of robust geological trend than rely on a reliable variogram function. For object-based method, the modeling accuracy does not increase obviously as SIS method by the increase of data density, but kept rational appearance when data density is low. MPFS methods have the similar trend with SIS method, but the use of proper geological trend accompany with rational variogram may have better modeling accuracy than MPFS method. It implies that the geological modeling strategy for a real reservoir case needs to be optimized by evaluation of dataset, geological complexity, geological constraint information and the modeling objective.

Keywords: fluvial facies, geostatistics, geological trend, modeling strategy, modeling accuracy, variogram

Procedia PDF Downloads 268