Search results for: processing map
1562 The Evolution of the Human Brain from the Hind Brain to the Fore Brain: Dialectics from the African Perspective in Understanding Stunted Development in Science and Technology
Authors: Philemon Wokoma Iyagba, Obey Onenee Christie
Abstract:
From the hindbrain, which is responsible for motor activities, to the forebrain, responsible for processing information related to complex cognitive activities, the human brain has continued to evolve over the years. This evolution- has been progressive, leading to advancements in science and technology. However, the development of science and technology in Africa, where ancient civilization arguably began, has been retrogressive. Dialectics was done by dissecting different opinions on the reason behind the stunted development of science and technology in Africa. The researchers proposed that the inability to sustain the technological advancements made by early Africans is due to poor or lack of replicability of the African knowledge-based system, almost no or poor documentation of adopted procedures and the approval-seeking mentality that cheaply paved the way for westernization which also led to the adulteration of the African way of life and education without making room for incorporating her identity and proper alignment of her rich cultural heritage in education and her enormous achievements before and during the middle age. This article discussed conceptual issues, with its positions based on established facts, the discussion was based on relevant literature and recommendations were made accordingly.Keywords: forebrain, hindbrain, dialectics from African perspective, development in science and technology
Procedia PDF Downloads 771561 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods
Authors: Bandar Alahmadi, Lethia Jackson
Abstract:
Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.Keywords: adversarial examples, attack, computer vision, image processing
Procedia PDF Downloads 3391560 The Global-Local Dimension in Cognitive Control after Left Lateral Prefrontal Cortex Damage: Evidence from the Non-Verbal Domain
Authors: Eleni Peristeri, Georgia Fotiadou, Ianthi-Maria Tsimpli
Abstract:
The local-global dimension has been studied extensively in healthy controls and preference for globally processed stimuli has been validated in both the visual and auditory modalities. Critically, the local-global dimension has an inherent interference resolution component, a type of cognitive control, and left-prefrontal-cortex-damaged (LPFC) individuals have exhibited inability to override habitual response behaviors in item recognition tasks that involve representational interference. Eight patients with damage in the left PFC (age range: 32;5 to 69;0. Mean age: 54;6 yrs) and twenty age- and education-matched language-unimpaired adults (mean age: 56;7yrs) have participated in the study. Distinct performance patterns were found between the language-unimpaired and the LPFC-damaged group which have mainly stemmed from the latter’s difficulty with inhibiting global stimuli in incongruent trials. Overall, the local-global attentional dimension affects LPFC-damaged individuals with non-fluent aphasia in non-language domains implicating distinct types of inhibitory processes depending on the level of processing.Keywords: left lateral prefrontal cortex damage (LPFC), local-global non-language attention, representational interference, non-fluent aphasia
Procedia PDF Downloads 4691559 Denoising of Motor Unit Action Potential Based on Tunable Band-Pass Filter
Authors: Khalida S. Rijab, Mohammed E. Safi, Ayad A. Ibrahim
Abstract:
When electrical electrodes are mounted on the skin surface of the muscle, a signal is detected when a skeletal muscle undergoes contraction; the signal is known as surface electromyographic signal (EMG). This signal has a noise-like interference pattern resulting from the temporal and spatial summation of action potentials (AP) of all active motor units (MU) near electrode detection. By appropriate processing (Decomposition), the surface EMG signal may be used to give an estimate of motor unit action potential. In this work, a denoising technique is applied to the MUAP signals extracted from the spatial filter (IB2). A set of signals from a non-invasive two-dimensional grid of 16 electrodes from different types of subjects, muscles, and sex are recorded. These signals will acquire noise during recording and detection. A digital fourth order band- pass Butterworth filter is used for denoising, with a tuned band-pass frequency of suitable choice of cutoff frequencies is investigated, with the aim of obtaining a suitable band pass frequency. Results show an improvement of (1-3 dB) in the signal to noise ratio (SNR) have been achieved, relative to the raw spatial filter output signals for all cases that were under investigation. Furthermore, the research’s goal included also estimation and reconstruction of the mean shape of the MUAP.Keywords: EMG, Motor Unit, Digital Filter, Denoising
Procedia PDF Downloads 4011558 Inflammatory Alleviation on Microglia Cells by an Apoptotic Mimicry
Authors: Yi-Feng Kao, Huey-Jine Chai, Chin-I Chang, Yi-Chen Chen, June-Ru Chen
Abstract:
Microglia is a macrophage that resides in brain, and overactive microglia may result in brain neuron damage or inflammation. In this study, the phospholipids was extracted from squid skin and manufactured into a liposome (SQ liposome) to mimic apoptotic body. We then evaluated anti-inflammatory effects of SQ liposome on mouse microglial cell line (BV-2) by lipopolysaccharide (LPS) induction. First, the major phospholipid constituents in the squid skin extract were including 46.2% of phosphatidylcholine, 18.4% of phosphatidylethanolamine, 7.7% of phosphatidylserine, 3.5% of phosphatidylinositol, 4.9% of Lysophosphatidylcholine and 19.3% of other phospholipids by HPLC-UV analysis. The contents of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the squid skin extract were 11.8 and 28.7%, respectively. The microscopic images showed that microglia cells can engulf apoptotic cells or SQ-liposome. In cell based studies, there was no cytotoxicity to BV-2 as the concentration of SQ-liposome was less than 2.5 mg/mL. The LPS induced pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), were significant suppressed (P < 0.05) by pretreated 0.03~2.5mg/ml SQ liposome. Oppositely, the anti-inflammatory cytokines transforming growth factor-beta (TGF-β) and interleukin-10 (IL-10) secretion were enhanced (P < 0.05). The results suggested that SQ-liposome possess anti-inflammatory properties on BV-2 and may be a good strategy for against neuro-inflammatory disease.Keywords: apoptotic mimicry, neuroinflammation, microglia, squid processing by-products
Procedia PDF Downloads 4831557 Anthropometric Data Variation within Gari-Frying Population
Authors: T. M. Samuel, O. O. Aremu, I. O. Ismaila, L. I. Onu, B. O. Adetifa, S. E. Adegbite, O. O. Olokoshe
Abstract:
The imperative of anthropometry in designing to fit cannot be overemphasized. Of essence is the variability of measurements among population for which data is collected. In this paper anthropometric data were collected for the design of gari-frying facility such that work system would be designed to fit the gari-frying population in the Southwestern states of Nigeria comprising Lagos, Ogun, Oyo, Osun, Ondo, and Ekiti. Twenty-seven body dimensions were measured among 120 gari-frying processors. Statistical analysis was performed using SPSS package to determine the mean, standard deviation, minimum value, maximum value and percentiles (2nd, 5th, 25th, 50th, 75th, 95th, and 98th) of the different anthropometric parameters. One sample t-test was conducted to determine the variation within the population. The 50th percentiles of some of the anthropometric parameters were compared with those from other populations in literature. The correlation between the worker’s age and the body anthropometry was also investigated.The mean weight, height, shoulder height (sitting), eye height (standing) and eye height (sitting) are 63.37 kg, 1.57 m, 0.55 m, 1.45 m, and 0.67 m respectively.Result also shows a high correlation with other populations and a statistically significant difference in variability of data within the population in all the body dimensions measured. With a mean age of 42.36 years, results shows that age will be a wrong indicator for estimating the anthropometry for the population.Keywords: anthropometry, cassava processing, design to fit, gari-frying, workstation design
Procedia PDF Downloads 2531556 Marble Powder’s Effect on Permeability and Mechanical Properties of Concrete
Authors: Shams Ul Khaliq, Khan Shahzada, Bashir Alam, Fawad Bilal, Mushtaq Zeb, Faizan Akbar
Abstract:
Marble industry contributes its fair share in environmental deterioration, producing voluminous amounts of mud and other excess residues obtained from marble and granite processing, polluting soil, water and air. Reusing these products in other products will not just prevent our environment from polluting but also help with economy. In this research, an attempt has been made to study the expediency of waste Marble Powder (MP) in concrete production. Various laboratory tests were performed to investigate permeability, physical and mechanical properties, such as slump, compressive strength, split tensile test, etc. Concrete test samples were fabricated with varying MP content (replacing 5-30% cement), furnished from two different sources. 5% replacement of marble dust caused 6% and 12% decrease in compressive and tensile strength respectively. These parameters gradually decreased with increasing MP content up to 30%. Most optimum results were obtained with 10% replacement. Improvement in consistency and permeability were noticed. The permeability was improved with increasing MP proportion up to 10% without substantial decrease in compressive strength. Obtained results revealed that MP as an alternative to cement in concrete production is a viable option considering its economic and environment friendly implications.Keywords: marble powder, strength, permeability, consistency, environment
Procedia PDF Downloads 3331555 Mobile Devices and E-Learning Systems as a Cost-Effective Alternative for Digitizing Paper Quizzes and Questionnaires in Social Work
Authors: K. Myška, L. Pilařová
Abstract:
The article deals with possibilities of using cheap mobile devices with the combination of free or open source software tools as an alternative to professional hardware and software equipment. Especially in social work, it is important to find cheap yet functional solution that can compete with complex but expensive solutions for digitizing paper materials. Our research was focused on the analysis of cheap and affordable solutions for digitizing the most frequently used paper materials that are being commonly used by terrain workers in social work. We used comparative analysis as a research method. Social workers need to process data from paper forms quite often. It is still more affordable, time and cost-effective to use paper forms to get feedback in many cases. Collecting data from paper quizzes and questionnaires can be done with the help of professional scanners and software. These technologies are very powerful and have advanced options for digitizing and processing digitized data, but are also very expensive. According to results of our study, the combination of open source software and mobile phone or cheap scanner can be considered as a cost-effective alternative to professional equipment.Keywords: digitalization, e-learning, mobile devices, questionnaire
Procedia PDF Downloads 1511554 Association of Sensory Processing and Cognitive Deficits in Children with Autism Spectrum Disorders – Pioneer Study in Saudi Arabia
Authors: Rana Zeina
Abstract:
Objective: The association between Sensory problems and cognitive abilities has been studied in individuals with Autism Spectrum Disorders (ASDs). In this study, we used a neuropsychological test to evaluate memory and attention in ASDs children with sensory problems compared to the ASDs children without sensory problems. Methods: Four visual memory tests of Cambridge Neuropsychological Test Automated Battery (CANTAB) including Big/Little Circle (BLC), Simple Reaction Time (SRT), Intra/Extra Dimensional Set Shift (IED), Spatial Recognition Memory (SRM), were administered to 14 ASDs children with sensory problems compared to 13 ASDs without sensory problems aged 3 to 12 with IQ of above 70. Results: ASDs Individuals with sensory problems performed worse than the ASDs group without sensory problems on comprehension, learning, reversal and simple reaction time tasks, and no significant difference between the two groups was recorded in terms of the visual memory and visual comprehension tasks. Conclusion: The findings of this study suggest that ASDs children with sensory problems are facing deficits in learning, comprehension, reversal, and speed of response to stimuli.Keywords: visual memory, attention, autism spectrum disorders, CANTAB eclipse
Procedia PDF Downloads 4511553 Cardiokey: A Binary and Multi-Class Machine Learning Approach to Identify Individuals Using Electrocardiographic Signals on Wearable Devices
Authors: S. Chami, J. Chauvin, T. Demarest, Stan Ng, M. Straus, W. Jahner
Abstract:
Biometrics tools such as fingerprint and iris are widely used in industry to protect critical assets. However, their vulnerability and lack of robustness raise several worries about the protection of highly critical assets. Biometrics based on Electrocardiographic (ECG) signals is a robust identification tool. However, most of the state-of-the-art techniques have worked on clinical signals, which are of high quality and less noisy, extracted from wearable devices like a smartwatch. In this paper, we are presenting a complete machine learning pipeline that identifies people using ECG extracted from an off-person device. An off-person device is a wearable device that is not used in a medical context such as a smartwatch. In addition, one of the main challenges of ECG biometrics is the variability of the ECG of different persons and different situations. To solve this issue, we proposed two different approaches: per person classifier, and one-for-all classifier. The first approach suggests making binary classifier to distinguish one person from others. The second approach suggests a multi-classifier that distinguishes the selected set of individuals from non-selected individuals (others). The preliminary results, the binary classifier obtained a performance 90% in terms of accuracy within a balanced data. The second approach has reported a log loss of 0.05 as a multi-class score.Keywords: biometrics, electrocardiographic, machine learning, signals processing
Procedia PDF Downloads 1421552 Indoor Real-Time Positioning and Mapping Based on Manhattan Hypothesis Optimization
Authors: Linhang Zhu, Hongyu Zhu, Jiahe Liu
Abstract:
This paper investigated a method of indoor real-time positioning and mapping based on the Manhattan world assumption. In indoor environments, relying solely on feature matching techniques or other geometric algorithms for sensor pose estimation inevitably resulted in cumulative errors, posing a significant challenge to indoor positioning. To address this issue, we adopt the Manhattan world hypothesis to optimize the camera pose algorithm based on feature matching, which improves the accuracy of camera pose estimation. A special processing method was applied to image data frames that conformed to the Manhattan world assumption. When similar data frames appeared subsequently, this could be used to eliminate drift in sensor pose estimation, thereby reducing cumulative errors in estimation and optimizing mapping and positioning. Through experimental verification, it is found that our method achieves high-precision real-time positioning in indoor environments and successfully generates maps of indoor environments. This provides effective technical support for applications such as indoor navigation and robot control.Keywords: Manhattan world hypothesis, real-time positioning and mapping, feature matching, loopback detection
Procedia PDF Downloads 611551 A Hybrid Expert System for Generating Stock Trading Signals
Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour
Abstract:
In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.Keywords: fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange
Procedia PDF Downloads 3321550 Self-Attention Mechanism for Target Hiding Based on Satellite Images
Authors: Hao Yuan, Yongjian Shen, Xiangjun He, Yuheng Li, Zhouzhou Zhang, Pengyu Zhang, Minkang Cai
Abstract:
Remote sensing data can provide support for decision-making in disaster assessment or disaster relief. The traditional processing methods of sensitive targets in remote sensing mapping are mainly based on manual retrieval and image editing tools, which are inefficient. Methods based on deep learning for sensitive target hiding are faster and more flexible. But these methods have disadvantages in training time and cost of calculation. This paper proposed a target hiding model Self Attention (SA) Deepfill, which used self-attention modules to replace part of gated convolution layers in image inpainting. By this operation, the calculation amount of the model becomes smaller, and the performance is improved. And this paper adds free-form masks to the model’s training to enhance the model’s universal. The experiment on an open remote sensing dataset proved the efficiency of our method. Moreover, through experimental comparison, the proposed method can train for a longer time without over-fitting. Finally, compared with the existing methods, the proposed model has lower computational weight and better performance.Keywords: remote sensing mapping, image inpainting, self-attention mechanism, target hiding
Procedia PDF Downloads 1361549 Experimental Characterization of Composite Material with Non Contacting Methods
Authors: Nikolaos Papadakis, Constantinos Condaxakis, Konstantinos Savvakis
Abstract:
The aim of this paper is to determine the elastic properties (elastic modulus and Poisson ratio) of a composite material based on noncontacting imaging methods. More specifically, the significantly reduced cost of digital cameras has given the opportunity of the high reliability of low-cost strain measurement. The open source platform Ncorr is used in this paper which utilizes the method of digital image correlation (DIC). The use of digital image correlation in measuring strain uses random speckle preparation on the surface of the gauge area, image acquisition, and postprocessing the image correlation to obtain displacement and strain field on surface under study. This study discusses technical issues relating to the quality of results to be obtained are discussed. [0]8 fabric glass/epoxy composites specimens were prepared and tested at different orientations 0[o], 30[o], 45[o], 60[o], 90[o]. Each test was recorded with the camera at a constant frame rate and constant lighting conditions. The recorded images were processed through the use of the image processing software. The parameters of the test are reported. The strain map output which is obtained through strain measurement using Ncorr is validated by a) comparing the elastic properties with expected values from Classical laminate theory, b) through finite element analysis.Keywords: composites, Ncorr, strain map, videoextensometry
Procedia PDF Downloads 1441548 Extraction of Essential Oil and Pectin from Lime and Waste Technology Development
Authors: Wilaisri Limphapayom
Abstract:
Lime is one of the economically important produced in Thailand. The objective of this research is to increase utilization in food and cosmetic. Extraction of essential oil and pectin from lime (Citrus aurantifolia (Christm & Panz ) Swing) have been studied. Extraction of essential oil has been made by using hydro-distillation .The essential oil ranged from 1.72-2.20%. The chemical composition of essential oil composed of alpha-pinene , beta-pinene , D-limonene , comphene , a-phellandrene , g-terpinene , a-ocimene , O-cymene , 2-carene , Linalool , trans-ocimenol , Geraniol , Citral , Isogeraniol , Verbinol , and others when analyzed by using GC-MS method. Pectin extraction from lime waste , boiled water after essential oil extraction. Pectin extraction were found 40.11-65.81 g /100g of lime peel. The best extraction condition was found to be higher in yield by using ethanol extraction. The potential of this study had satisfactory results to improve lime processing system for value-added . The present study was also focused on Lime powder production as source of vitamin C or ascorbic acid and the potential of lime waste as a source of essential oil and pectin. Lime powder produced from Spray Dryer . Lime juice with 2 different level of maltodextrins DE 10 , 30 and 50% w/w was sprayed at 150 degrees celsius inlet air temperature and at 90-degree celsius outlet temperature. Lime powder with 50% maltodextrin gave the most desirable quality product. This product has vitamin C contents of 25 mg/100g (w/w).Keywords: extraction, pectin, essential oil, lime
Procedia PDF Downloads 2991547 Network Word Discovery Framework Based on Sentence Semantic Vector Similarity
Authors: Ganfeng Yu, Yuefeng Ma, Shanliang Yang
Abstract:
The word discovery is a key problem in text information retrieval technology. Methods in new word discovery tend to be closely related to words because they generally obtain new word results by analyzing words. With the popularity of social networks, individual netizens and online self-media have generated various network texts for the convenience of online life, including network words that are far from standard Chinese expression. How detect network words is one of the important goals in the field of text information retrieval today. In this paper, we integrate the word embedding model and clustering methods to propose a network word discovery framework based on sentence semantic similarity (S³-NWD) to detect network words effectively from the corpus. This framework constructs sentence semantic vectors through a distributed representation model, uses the similarity of sentence semantic vectors to determine the semantic relationship between sentences, and finally realizes network word discovery by the meaning of semantic replacement between sentences. The experiment verifies that the framework not only completes the rapid discovery of network words but also realizes the standard word meaning of the discovery of network words, which reflects the effectiveness of our work.Keywords: text information retrieval, natural language processing, new word discovery, information extraction
Procedia PDF Downloads 951546 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 3: Volume Reduction and Stabilization of Solid Waste
Authors: Masaumi Nakahara, Sou Watanabe, Hiromichi Ogi, Atsuhiro Shibata, Kazunori Nomura
Abstract:
In the Japan Atomic Energy Agency, three types of experimental research, advanced reactor fuel reprocessing, radioactive waste disposal, and nuclear fuel cycle technology, have been carried out at the Chemical Processing Facility. The facility has generated high level radioactive liquid and solid wastes in hot cells. The high level radioactive solid waste is divided into three main categories, a flammable waste, a non-flammable waste, and a solid reagent waste. A plastic product is categorized into the flammable waste and molten with a heating mantle. The non-flammable waste is cut with a band saw machine for reducing the volume. Among the solid reagent waste, a used adsorbent after the experiments is heated, and an extractant is decomposed for its stabilization. All high level radioactive solid wastes in the hot cells are packed in a high level radioactive solid waste can. The high level radioactive solid waste can is transported to the 2nd High Active Solid Waste Storage in the Tokai Reprocessing Plant in the Japan Atomic Energy Agency.Keywords: high level radioactive solid waste, advanced reactor fuel reprocessing, radioactive waste disposal, nuclear fuel cycle technology
Procedia PDF Downloads 1581545 Examining the Extent and Magnitude of Food Security amongst Rural Farming Households in Nigeria
Authors: Ajibade T., Omotesho O. A., Ayinde O. E, Ajibade E. T., Muhammad-Lawal A.
Abstract:
This study was carried out to examine the extent and magnitude of food security amongst farming rural households in Nigeria. Data used for this study was collected from a total of two hundred and forty rural farming households using a two-stage random sampling technique. The main tools of analysis for this study include descriptive statistics and a constructed food security index using the identification and aggregation procedure. The headcount ratio in this study reveals that 71% of individuals in the study area were food secure with an average per capita calorie and protein availability of 4,213.92kcal and 99.98g respectively. The aggregated household daily calorie availability and daily protein availability per capita were 3,634.57kcal and 84.08g respectively which happens to be above the food security line of 2,470kcal and 65g used in this study. The food insecure households fell short of the minimum daily per capita calorie and protein requirement by 2.1% and 24.9%. The study revealed that the area is food insecure due to unequal distribution of the available food amongst the sampled population. The study recommends that the households should empower themselves financially in order to enhance their ability to afford the food during both on and off seasons. Also, processing and storage of farm produce should be enhanced in order to improve on availability throughout the year.Keywords: farming household, food security, identification and aggregation, food security index
Procedia PDF Downloads 2911544 Emotional Artificial Intelligence and the Right to Privacy
Authors: Emine Akar
Abstract:
The majority of privacy-related regulation has traditionally focused on concepts that are perceived to be well-understood or easily describable, such as certain categories of data and personal information or images. In the past century, such regulation appeared reasonably suitable for its purposes. However, technologies such as AI, combined with ever-increasing capabilities to collect, process, and store “big data”, not only require calibration of these traditional understandings but may require re-thinking of entire categories of privacy law. In the presentation, it will be explained, against the background of various emerging technologies under the umbrella term “emotional artificial intelligence”, why modern privacy law will need to embrace human emotions as potentially private subject matter. This argument can be made on a jurisprudential level, given that human emotions can plausibly be accommodated within the various concepts that are traditionally regarded as the underlying foundation of privacy protection, such as, for example, dignity, autonomy, and liberal values. However, the practical reasons for regarding human emotions as potentially private subject matter are perhaps more important (and very likely more convincing from the perspective of regulators). In that respect, it should be regarded as alarming that, according to most projections, the usefulness of emotional data to governments and, particularly, private companies will not only lead to radically increased processing and analysing of such data but, concerningly, to an exponential growth in the collection of such data. In light of this, it is also necessity to discuss options for how regulators could address this emerging threat.Keywords: AI, privacy law, data protection, big data
Procedia PDF Downloads 881543 B Spline Finite Element Method for Drifted Space Fractional Tempered Diffusion Equation
Authors: Ayan Chakraborty, BV. Rathish Kumar
Abstract:
Off-late many models in viscoelasticity, signal processing or anomalous diffusion equations are formulated in fractional calculus. Tempered fractional calculus is the generalization of fractional calculus and in the last few years several important partial differential equations occurring in the different field of science have been reconsidered in this term like diffusion wave equations, Schr$\ddot{o}$dinger equation and so on. In the present paper, a time-dependent tempered fractional diffusion equation of order $\gamma \in (0,1)$ with forcing function is considered. Existence, uniqueness, stability, and regularity of the solution has been proved. Crank-Nicolson discretization is used in the time direction. B spline finite element approximation is implemented. Generally, B-splines basis are useful for representing the geometry of a finite element model, interfacing a finite element analysis program. By utilizing this technique a priori space-time estimate in finite element analysis has been derived and we proved that the convergent order is $\mathcal{O}(h²+T²)$ where $h$ is the space step size and $T$ is the time. A couple of numerical examples have been presented to confirm the accuracy of theoretical results. Finally, we conclude that the studied method is useful for solving tempered fractional diffusion equations.Keywords: B-spline finite element, error estimates, Gronwall's lemma, stability, tempered fractional
Procedia PDF Downloads 1921542 The Evolution of Amazon Alexa: From Voice Assistant to Smart Home Hub
Authors: Abrar Abuzaid, Maha Alaaeddine, Haya Alesayi
Abstract:
This project is centered around understanding the usage and impact of Alexa, Amazon's popular virtual assistant, in everyday life. Alexa, known for its integration into devices like Amazon Echo, offers functionalities such as voice interaction, media control, providing real-time information, and managing smart home devices. Our primary focus is to conduct a straightforward survey aimed at uncovering how people use Alexa in their daily routines. We plan to reach out to a wide range of individuals to get a diverse perspective on how Alexa is being utilized for various tasks, the frequency and context of its use, and the overall user experience. The survey will explore the most common uses of Alexa, its impact on daily life, features that users find most beneficial, and improvements they are looking for. This project is not just about collecting data but also about understanding the real-world applications of a technology like Alexa and how it fits into different lifestyles. By examining the responses, we aim to gain a practical understanding of Alexa's role in homes and possibly in workplaces. This project will provide insights into user satisfaction and areas where Alexa could be enhanced to meet the evolving needs of its users. It’s a step towards connecting technology with everyday life, making it more accessible and user-friendlyKeywords: Amazon Alexa, artificial intelligence, smart speaker, natural language processing
Procedia PDF Downloads 621541 Comparing UV-based and O₃-Based AOPs for Removal of Emerging Contaminants from Food Processing Digestate Sludge
Authors: N. Moradi, C. M. Lopez-Vazquez, H. Garcia Hernandez, F. Rubio Rincon, D. Brdanovic, Mark van Loosdrecht
Abstract:
Advanced oxidation processes have been widely used for disinfection, removal of residual organic material, and for the removal of emerging contaminants from drinking water and wastewater. Yet, the application of these technologies to sludge treatment processes has not gained enough attention, mostly, considering the complexity of the sludge matrix. In this research, ozone and UV/H₂O₂ treatment were applied for the removal of emerging contaminants from a digestate supernatant. The removal of the following compounds was assessed:(i) salicylic acid (SA) (a surrogate of non-stradiol anti-inflammatory drugs (NSAIDs)), and (ii) sulfamethoxazole (SMX), sulfamethazine (SMN), and tetracycline (TCN) (the most frequent human and animal antibiotics). The ozone treatment was carried out in a plexiglass bubble column reactor with a capacity of 2.7 L; the system was equipped with a stirrer and a gas diffuser. The UV and UV/H₂O₂ treatments were done using a LED set-up (PearlLab beam device) dosing H₂O₂. In the ozone treatment evaluations, 95 % of the three antibiotics were removed during the first 20 min of exposure time, while an SA removal of 91 % occurred after 8 hours of exposure time. In the UV treatment evaluations, when adding the optimum dose of hydrogen peroxide (H₂O₂:COD molar ratio of 0.634), 36% of SA, 82% of TCN, and more than 90 % of both SMX and SMN were removed after 8 hours of exposure time. This study concluded that O₃ was more effective than UV/H₂O₂ in removing emerging contaminants from the digestate supernatant.Keywords: digestate sludge, emerging contaminants, ozone, UV-AOP
Procedia PDF Downloads 1021540 Morphology Operation and Discrete Wavelet Transform for Blood Vessels Segmentation in Retina Fundus
Authors: Rita Magdalena, N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Sofia Saidah, Bima Sakti
Abstract:
Vessel segmentation of retinal fundus is important for biomedical sciences in diagnosing ailments related to the eye. Segmentation can simplify medical experts in diagnosing retinal fundus image state. Therefore, in this study, we designed a software using MATLAB which enables the segmentation of the retinal blood vessels on retinal fundus images. There are two main steps in the process of segmentation. The first step is image preprocessing that aims to improve the quality of the image to be optimum segmented. The second step is the image segmentation in order to perform the extraction process to retrieve the retina’s blood vessel from the eye fundus image. The image segmentation methods that will be analyzed in this study are Morphology Operation, Discrete Wavelet Transform and combination of both. The amount of data that used in this project is 40 for the retinal image and 40 for manually segmentation image. After doing some testing scenarios, the average accuracy for Morphology Operation method is 88.46 % while for Discrete Wavelet Transform is 89.28 %. By combining the two methods mentioned in later, the average accuracy was increased to 89.53 %. The result of this study is an image processing system that can segment the blood vessels in retinal fundus with high accuracy and low computation time.Keywords: discrete wavelet transform, fundus retina, morphology operation, segmentation, vessel
Procedia PDF Downloads 1951539 Modeling Bessel Beams and Their Discrete Superpositions from the Generalized Lorenz-Mie Theory to Calculate Optical Forces over Spherical Dielectric Particles
Authors: Leonardo A. Ambrosio, Carlos. H. Silva Santos, Ivan E. L. Rodrigues, Ayumi K. de Campos, Leandro A. Machado
Abstract:
In this work, we propose an algorithm developed under Python language for the modeling of ordinary scalar Bessel beams and their discrete superpositions and subsequent calculation of optical forces exerted over dielectric spherical particles. The mathematical formalism, based on the generalized Lorenz-Mie theory, is implemented in Python for its large number of free mathematical (as SciPy and NumPy), data visualization (Matplotlib and PyJamas) and multiprocessing libraries. We also propose an approach, provided by a synchronized Software as Service (SaaS) in cloud computing, to develop a user interface embedded on a mobile application, thus providing users with the necessary means to easily introduce desired unknowns and parameters and see the graphical outcomes of the simulations right at their mobile devices. Initially proposed as a free Android-based application, such an App enables data post-processing in cloud-based architectures and visualization of results, figures and numerical tables.Keywords: Bessel Beams and Frozen Waves, Generalized Lorenz-Mie Theory, Numerical Methods, optical forces
Procedia PDF Downloads 3801538 Effect of Thermal Pretreatment on Functional Properties of Chicken Protein Hydrolysate
Authors: Nutnicha Wongpadungkiat, Suwit Siriwatanayotin, Aluck Thipayarat, Punchira Vongsawasdi, Chotika Viriyarattanasak
Abstract:
Chicken products are major export product of Thailand. With a dramatically increasing consumption of chicken product in the world, there are abundant wastes from chicken meat processing industry. Recently, much research in the development of value-added products from chicken meat industry has focused on the production of protein hydrolysate, utilized as food ingredients for human diet and animal feed. The present study aimed to determine the effect of thermal pre-treatment on functional properties of chicken protein hydrolysate. Chicken breasts were heated at 40, 60, 80 and 100ºC prior to hydrolysis by Alcalase at 60ºC, pH 8 for 4 hr. The hydrolysate was freeze-dried, and subsequently used for assessment of its functional properties molecular weight by gel electrophoresis (SDS-PAGE). The obtained results show that increasing the pre-treatment temperature increased oil holding capacity and emulsion stability while decreasing antioxidant activity and water holding capacity. The SDS-PAGE analysis showed the evidence of protein aggregation in the hydrolysate treated at the higher pre-treatment temperature. These results suggest the connection between molecular weight of the hydrolysate and its functional properties.Keywords: chicken protein hydrolysate, enzymatic hydrolysis, thermal pretreatment, functional properties
Procedia PDF Downloads 2701537 General Time-Dependent Sequenced Route Queries in Road Networks
Authors: Mohammad Hossein Ahmadi, Vahid Haghighatdoost
Abstract:
Spatial databases have been an active area of research over years. In this paper, we study how to answer the General Time-Dependent Sequenced Route queries. Given the origin and destination of a user over a time-dependent road network graph, an ordered list of categories of interests and a departure time interval, our goal is to find the minimum travel time path along with the best departure time that minimizes the total travel time from the source location to the given destination passing through a sequence of points of interests belonging to each of the specified categories of interest. The challenge of this problem is the added complexity to the optimal sequenced route queries, where we assume that first the road network is time dependent, and secondly the user defines a departure time interval instead of one single departure time instance. For processing general time-dependent sequenced route queries, we propose two solutions as Discrete-Time and Continuous-Time Sequenced Route approaches, finding approximate and exact solutions, respectively. Our proposed approaches traverse the road network based on A*-search paradigm equipped with an efficient heuristic function, for shrinking the search space. Extensive experiments are conducted to verify the efficiency of our proposed approaches.Keywords: trip planning, time dependent, sequenced route query, road networks
Procedia PDF Downloads 3211536 Biotech Processes to Recover Valuable Fraction from Buffalo Whey Usable in Probiotic Growth, Cosmeceutical, Nutraceutical and Food Industries
Authors: Alberto Alfano, Sergio D’ambrosio, Darshankumar Parecha, Donatella Cimini, Chiara Schiraldi.
Abstract:
The main objective of this study regards the setup of an efficient small-scale platform for the conversion of local renewable waste materials, such as whey, into added-value products, thereby reducing environmental impact and costs deriving from the disposal of processing waste products. The buffalo milk whey derived from the cheese-making process, called second cheese whey, is the main by-product of the dairy industry. Whey is the main and most polluting by-product obtained from cheese manufacturing consisting of lactose, lactic acid, proteins, and salts, making whey an added-value product. In Italy, and in particular, in the Campania region, soft cheese production needs a large volume of liquid waste, especially during late spring and summer. This project is part of a circular economy perspective focused on the conversion of potentially polluting and difficult to purify waste into a resource to be exploited, and it embodies the concept of the three “R”: reduce, recycle, and reuse. Special focus was paid to the production of health-promoting biomolecules and biopolymers, which may be exploited in different segments of the food and pharmaceutical industries. These biomolecules may be recovered through appropriate processes and reused in an attempt to obtain added value products. So, ultrafiltration and nanofiltration processes were performed to fractionate bioactive components starting from buffalo milk whey. In this direction, the present study focused on the implementation of a downstream process that converts waste generated from food and food processing industries into added value products with potential applications. Owing to innovative downstream and biotechnological processes, rather than a waste product may be considered a resource to obtain high added value products, such as food supplements (probiotics), cosmeceuticals, biopolymers, and recyclable purified water. Besides targeting gastrointestinal disorders, probiotics such as Lactobacilli have been reported to improve immunomodulation and protection of the host against infections caused by viral and bacterial pathogens. Interestingly, also inactivated microbial (probiotic) cells and their metabolic products, indicated as parabiotic and postbiotics, respectively, have a crucial role and act as mediators in the modulation of the host’s immune function. To boost the production of biomass (both viable and/or heat inactivated cells) and/or the synthesis of growth-related postbiotics, such as EPS, efficient and sustainable fermentation processes are necessary. Based on a “zero-waste” approach, wastes generated from local industries can be recovered and recycled to develop sustainable biotechnological processes to obtain probiotics as well as post and parabiotic, to be tested as bioactive compounds against gastrointestinal disorders. The results have shown it was possible to recover an ultrafiltration retentate with suitable characteristics to be used in skin dehydration, to perform films (i.e., packaging for food industries), or as a wound repair agent and a nanofiltration retentate to recover lactic acid and carbon sources (e.g., lactose, glucose..) used for microbial cultivation. On the side, the last goal is to obtain purified water that can be reused throughout the process. In fact, water reclamation and reuse provide a unique and viable opportunity to augment traditional water supplies, a key issue nowadays.Keywords: biotech process, downstream process, probiotic growth, from waste to product, buffalo whey
Procedia PDF Downloads 691535 Information Disclosure And Financial Sentiment Index Using a Machine Learning Approach
Authors: Alev Atak
Abstract:
In this paper, we aim to create a financial sentiment index by investigating the company’s voluntary information disclosures. We retrieve structured content from BIST 100 companies’ financial reports for the period 1998-2018 and extract relevant financial information for sentiment analysis through Natural Language Processing. We measure strategy-related disclosures and their cross-sectional variation and classify report content into generic sections using synonym lists divided into four main categories according to their liquidity risk profile, risk positions, intra-annual information, and exposure to risk. We use Word Error Rate and Cosin Similarity for comparing and measuring text similarity and derivation in sets of texts. In addition to performing text extraction, we will provide a range of text analysis options, such as the readability metrics, word counts using pre-determined lists (e.g., forward-looking, uncertainty, tone, etc.), and comparison with reference corpus (word, parts of speech and semantic level). Therefore, we create an adequate analytical tool and a financial dictionary to depict the importance of granular financial disclosure for investors to identify correctly the risk-taking behavior and hence make the aggregated effects traceable.Keywords: financial sentiment, machine learning, information disclosure, risk
Procedia PDF Downloads 941534 Role of Speech Language Pathologists in Vocational Rehabilitation
Authors: Marlyn Mathew
Abstract:
Communication is the key factor in any vocational /job set-up. However many persons with disabilities suffer a deficit in this very area in terms of comprehension, expression and cognitive skills making it difficult for them to get employed appropriately or stay employed. Vocational Rehabilitation is a continuous and coordinated process which involves the provision of vocational related services designed to enable a person with disability to obtain and maintain employment. Therefore the role of the speech language pathologist is crucial in assessing the communication deficits and needs of the individual at the various phases of employment- right from the time of seeking a job and attending interview with suitable employers and also at regular intervals of the employment. This article discusses the various communication deficits and the obstacles faced by individuals with special needs including but not limited to cognitive- linguistic deficits, execution function deficits, speech and language processing difficulties and strategies that can be introduced in the workplace to overcome these obstacles including use of visual cues, checklists, flow charts. The paper also throws light on the importance of educating colleagues and work partners about the communication difficulties faced by the individual. This would help to reduce the communication barriers in the workplace, help colleagues develop an empathetic approach and also reduce misunderstandings that can arise as a result of the communication impairment.Keywords: vocational rehabilitation, disability, speech language pathologist, cognitive, linguistics
Procedia PDF Downloads 1351533 Expert-Driving-Criteria Based on Fuzzy Logic Approach for Intelligent Driving Diagnosis
Authors: Andrés C. Cuervo Pinilla, Christian G. Quintero M., Chinthaka Premachandra
Abstract:
This paper considers people’s driving skills diagnosis under real driving conditions. In that sense, this research presents an approach that uses GPS signals which have a direct correlation with driving maneuvers. Besides, it is presented a novel expert-driving-criteria approximation using fuzzy logic which seeks to analyze GPS signals in order to issue an intelligent driving diagnosis. Based on above, this works presents in the first section the intelligent driving diagnosis system approach in terms of its own characteristics properties, explaining in detail significant considerations about how an expert-driving-criteria approximation must be developed. In the next section, the implementation of our developed system based on the proposed fuzzy logic approach is explained. Here, a proposed set of rules which corresponds to a quantitative abstraction of some traffics laws and driving secure techniques seeking to approach an expert-driving- criteria approximation is presented. Experimental testing has been performed in real driving conditions. The testing results show that the intelligent driving diagnosis system qualifies driver’s performance quantitatively with a high degree of reliability.Keywords: driver support systems, intelligent transportation systems, fuzzy logic, real time data processing
Procedia PDF Downloads 517