Search results for: observational learning
5455 Predicting Blockchain Technology Installation Cost in Supply Chain System through Supervised Learning
Authors: Hossein Havaeji, Tony Wong, Thien-My Dao
Abstract:
1. Research Problems and Research Objectives: Blockchain Technology-enabled Supply Chain System (BT-enabled SCS) is the system using BT to drive SCS transparency, security, durability, and process integrity as SCS data is not always visible, available, or trusted. The costs of operating BT in the SCS are a common problem in several organizations. The costs must be estimated as they can impact existing cost control strategies. To account for system and deployment costs, it is necessary to overcome the following hurdle. The problem is that the costs of developing and running a BT in SCS are not yet clear in most cases. Many industries aiming to use BT have special attention to the importance of BT installation cost which has a direct impact on the total costs of SCS. Predicting BT installation cost in SCS may help managers decide whether BT is to be an economic advantage. The purpose of the research is to identify some main BT installation cost components in SCS needed for deeper cost analysis. We then identify and categorize the main groups of cost components in more detail to utilize them in the prediction process. The second objective is to determine the suitable Supervised Learning technique in order to predict the costs of developing and running BT in SCS in a particular case study. The last aim is to investigate how the running BT cost can be involved in the total cost of SCS. 2. Work Performed: Applied successfully in various fields, Supervised Learning is a method to set the data frame, treat the data, and train/practice the method sort. It is a learning model directed to make predictions of an outcome measurement based on a set of unforeseen input data. The following steps must be conducted to search for the objectives of our subject. The first step is to make a literature review to identify the different cost components of BT installation in SCS. Based on the literature review, we should choose some Supervised Learning methods which are suitable for BT installation cost prediction in SCS. According to the literature review, some Supervised Learning algorithms which provide us with a powerful tool to classify BT installation components and predict BT installation cost are the Support Vector Regression (SVR) algorithm, Back Propagation (BP) neural network, and Artificial Neural Network (ANN). Choosing a case study to feed data into the models comes into the third step. Finally, we will propose the best predictive performance to find the minimum BT installation costs in SCS. 3. Expected Results and Conclusion: This study tends to propose a cost prediction of BT installation in SCS with the help of Supervised Learning algorithms. At first attempt, we will select a case study in the field of BT-enabled SCS, and then use some Supervised Learning algorithms to predict BT installation cost in SCS. We continue to find the best predictive performance for developing and running BT in SCS. Finally, the paper will be presented at the conference.Keywords: blockchain technology, blockchain technology-enabled supply chain system, installation cost, supervised learning
Procedia PDF Downloads 1245454 Hear My Voice: The Educational Experiences of Disabled Students
Authors: Karl Baker-Green, Ian Woolsey
Abstract:
Historically, a variety of methods have been used to access the student voice within higher education, including module evaluations and informal classroom feedback. However, currently, the views articulated in student-staff-committee meetings bear the most weight and can therefore have the most significant impact on departmental policy. Arguably, these forums are exclusionary as several students, including those who experience severe anxiety, might feel unable to participate in this face-to-face (large) group activities. Similarly, students who declare a disability, but are not in possession of a learning contract, are more likely to withdraw from their studies than those whose additional needs have been formally recognised. It is also worth noting that whilst the number of disabled students in Higher Education has increased in recent years, the percentage of those who have been issued a learning contract has decreased. These issues foreground the need to explore the educational experiences of students with or without a learning contract in order to identify their respective aspirations and needs and therefore help shape education policy. This is in keeping with the ‘Nothing about us without us’, agenda, which recognises that disabled individuals are best placed to understand their own requirements and the most effective strategies to meet these.Keywords: education, student voice, student experience, student retention
Procedia PDF Downloads 955453 Cross-Tier Collaboration between Preservice and Inservice Language Teachers in Designing Online Video-Based Pragmatic Assessment
Authors: Mei-Hui Liu
Abstract:
This paper reports the progression of language teachers’ learning to assess students’ speech act performance via online videos in a cross-tier professional growth community. This yearlong research project collected multiple data sources from several stakeholders, including 12 preservice and 4 inservice English as a foreign language (EFL) teachers, 4 English professionals, and 82 high school students. Data sources included surveys, (focus group) interviews, online reflection journals, online video-based assessment items/scores, and artifacts related to teacher professional learning. The major findings depicted the effectiveness of this proposed learning module on language teacher development in pragmatic assessment as well as its impact on student learning experience. All these teachers appreciated this professional learning experience which enhanced their knowledge in assessing students’ pragmalinguistic and sociopragmatic performance in an English speech act (i.e., making refusals). They learned how to design online video-based assessment items by attending to specific linguistic structures, semantic formula, and sociocultural issues. They further became aware of how to sharpen pragmatic instructional skills in the near future after putting theories into online assessment and related classroom practices. Additionally, data analysis revealed students’ achievement in and satisfaction with the designed online assessment. Yet, during the professional learning process most participating teachers encountered challenges in reaching a consensus on selecting appropriate video clips from available sources to present the sociocultural values in English-speaking refusal contexts. Also included was to construct test items which could testify the influence of interlanguage transfer on students’ pragmatic performance in various conversational scenarios. With pedagogical implications and research suggestions, this study adds to the increasing amount of research into integrating preservice and inservice EFL teacher education in pragmatic assessment and relevant instruction. Acknowledgment: This research project is sponsored by the Ministry of Science and Technology in the Republic of China under the grant number of MOST 106-2410-H-029-038.Keywords: cross-tier professional development, inservice EFL teachers, pragmatic assessment, preservice EFL teachers, student learning experience
Procedia PDF Downloads 2625452 Cognitive and Metacognitive Space in the Task Design at Postgraduate Taught Level
Authors: Mei Lin, Lana Yj Liu, Thin Ngoc Pham
Abstract:
Postgraduate taught (PGT) students’ learning strategies align with what the learning task constitutes and the environment that the task creates. Cognitively, they can discover new perspectives, challenge general assumptions, establish clear connections, and synthesise information. Metacognitively, their engagement is conducive to the development of planning, monitoring, and evaluating strategies. Given that there has been a lack of longitudinal insights into international PGT students’ experiences of the cognitive and metacognitive space created in the tasks, this paper presentation aims to fill the gaps by longitudinally exploring (1) the fundamentals of task designs to create cognitive and metacognitive space and (2) the opportunities and challenges of multicultural group discussions as a pedagogical approach for the implementation of cognitive and metacognitive space in the learning tasks. Data were collected from the two rounds of semi-structured interviews with 11 international PGT students in two programmes at a UK university -at the end of semester one and at the end of semester two. The findings show that the task designs, to create cognitive and metacognitive space, need to include four interconnected factors: clarity, relevance, motivation, and practicality. In addition, international PGT students perceived that they practised and developed their cognitive and metacognitive abilities while getting immersed in multicultural group discussions. The findings, from the learners’ point of view, make some pedagogy-related suggestions to the task designs at the master’s level, particularly how to engage students in learning during their transition into higher education in a different cultural setting.Keywords: cognitive space, master students, metacognitive space, task design
Procedia PDF Downloads 615451 The Emotional Education in the Development of Intercultural Competences
Authors: Montserrrat Dopico Gonzalez, Ramon Lopez Facal
Abstract:
The development of a critical, open and plural citizenship constitutes one of the main challenges of the school institution in the present multicultural societies. Didactics in Social Sciences has conducted important contributions to the development of active methodologies to promote the development of the intercultural competencies of the student body. Research in intercultural education has demonstrated the efficiency of the cooperative learning techniques to improve the intercultural relations in the classroom. Our study proposes to check the effect that, concerning the development of intercultural competencies of the student body, the emotional education can have in the context of the use of active methodologies such as the learning by projects and the cooperative learning. To that purpose, a programme of intervention based on activities focussed on controversial issues related to cultural diversity has been implemented in several secondary schools. Through a methodology which combines intercultural competence scales with interviews and also with the analysis of the school body’s productions, the persistence of stereotypes against immigration and the efficacy of the introduction of emotional education elements in the development of intercultural competencies have both been observed.Keywords: active methodologies, didactics in social sciences, intercultural competences, intercultural education
Procedia PDF Downloads 1565450 COVID-19’s Impact on the Use of Media, Educational Performance, and Learning in Children and Adolescents with ADHD Who Engaged in Virtual Learning
Authors: Christina Largent, Tazley Hobbs
Abstract:
Objective: A literature review was performed to examine the existing research on COVID-19 lockdown as it relates to ADHD child/adolescent individuals, media use, and impact on educational performance/learning. It was surmised that with the COVID-19 shut-down and transition to remote learning, a less structured learning environment, increased screen time, in addition to potential difficulty accessing school resources would impair ADHD individuals’ performance and learning. A resulting increase in the number of youths diagnosed and treated for ADHD would be expected. As of yet, there has been little to no published data on the incidence of ADHD as it relates to COVID-19 outside of reports from several nonprofit agencies such as CHADD (Children and Adults with Attention-Deficit/Hyperactivity Disorder ), who reported an increased number of calls to their helpline, The New York based Child Mind Institute, who reported an increased number of appointments to discuss medications, and research released from Athenahealth showing an increase in the number of patients receiving new diagnosis of ADHD and new prescriptions for ADHD medications. Methods: A literature search for articles published between 2020 and 2021 from Pubmed, Google Scholar, PsychInfo, was performed. Search phrases and keywords included “covid, adhd, child, impact, remote learning, media, screen”. Results: Studies primarily utilized parental reports, with very few from the perspective of the ADHD individuals themselves. Most findings thus far show that with the COVID-19 quarantine and transition to online learning, ADHD individuals’ experienced decreased ability to keep focused or adhere to the daily routine, as well as increased inattention-related problems, such as careless mistakes or lack of completion in homework, which in turn translated into overall more difficulty with remote learning. To add further injury, one study showed (just on evaluation of two different sites within the US) that school based services for these individuals decreased with the shift to online-learning. Increased screen time, television, social media, and gaming were noted amongst ADHD individuals. One study further differentiated the degree of digital media, identifying individuals with “problematic “ or “non-problematic” use. ADHD children with problematic digital media use suffered from more severe core symptoms of ADHD, negative emotions, executive function deficits, damage to family environment, pressure from life events, and a lower motivation to learn. Conclusions and Future Considerations: Studies found not only was online learning difficult for ADHD individuals but it, in addition to greater use of digital media, was associated with worsening ADHD symptoms impairing schoolwork, in addition to secondary findings of worsening mood and behavior. Currently, data on the number of new ADHD cases, in addition to data on the prescription and usage of stimulants during COVID-19, has not been well documented or studied; this would be well-warranted out of concern for over diagnosing or over-prescribing our youth. It would also be well-worth studying how reversible or long-lasting these negative impacts may be.Keywords: COVID-19, remote learning, media use, ADHD, child, adolescent
Procedia PDF Downloads 1275449 Active Development of Tacit Knowledge: Knowledge Management, High Impact Practices and Experiential Learning
Authors: John Zanetich
Abstract:
Due to their positive associations with student learning and retention, certain undergraduate opportunities are designated ‘high-impact.’ High-Impact Practices (HIPs) such as, learning communities, community based projects, research, internships, study abroad and culminating senior experience, share several traits bin common: they demand considerable time and effort, learning occurs outside of the classroom, and they require meaningful interactions between faculty and students, they encourage collaboration with diverse others, and they provide frequent and substantive feedback. As a result of experiential learning in these practices, participation in these practices can be life changing. High impact learning helps individuals locate tacit knowledge, and build mental models that support the accumulation of knowledge. On-going learning from experience and knowledge conversion provides the individual with a way to implicitly organize knowledge and share knowledge over a lifetime. Knowledge conversion is a knowledge management component which focuses on the explication of the tacit knowledge that exists in the minds of students and that knowledge which is embedded in the process and relationships of the classroom educational experience. Knowledge conversion is required when working with tacit knowledge and the demand for a learner to align deeply held beliefs with the cognitive dissonance created by new information. Knowledge conversion and tacit knowledge result from the fact that an individual's way of knowing, that is, their core belief structure, is considered generalized and tacit instead of explicit and specific. As a phenomenon, tacit knowledge is not readily available to the learner for explicit description unless evoked by an external source. The development of knowledge–related capabilities such as Aggressive Development of Tacit Knowledge (ADTK) can be used in experiential educational programs to enhance knowledge, foster behavioral change, improve decision making, and overall performance. ADTK allows the student in HIPs to use their existing knowledge in a way that allows them to evaluate and make any necessary modifications to their core construct of reality in order to amalgamate new information. Based on the Lewin/Schein Change Theory, the learner will reach for tacit knowledge as a stabilizing mechanism when they are challenged by new information that puts them slightly off balance. As in word association drills, the important concept is the first thought. The reactionary outpouring to an experience is the programmed or tacit memory and knowledge of their core belief structure. ADTK is a way to help teachers design their own methods and activities to unfreeze, create new learning, and then refreeze the core constructs upon which future learning in a subject area is built. This paper will explore the use of ADTK as a technique for knowledge conversion in the classroom in general and in HIP programs specifically. It will focus on knowledge conversion in curriculum development and propose the use of one-time educational experiences, multi-session experiences and sequential program experiences focusing on tacit knowledge in educational programs.Keywords: tacit knowledge, knowledge management, college programs, experiential learning
Procedia PDF Downloads 2645448 Active Features Determination: A Unified Framework
Authors: Meenal Badki
Abstract:
We address the issue of active feature determination, where the objective is to determine the set of examples on which additional data (such as lab tests) needs to be gathered, given a large number of examples with some features (such as demographics) and some examples with all the features (such as the complete Electronic Health Record). We note that certain features may be more costly, unique, or laborious to gather. Our proposal is a general active learning approach that is independent of classifiers and similarity metrics. It allows us to identify examples that differ from the full data set and obtain all the features for the examples that match. Our comprehensive evaluation shows the efficacy of this approach, which is driven by four authentic clinical tasks.Keywords: feature determination, classification, active learning, sample-efficiency
Procedia PDF Downloads 795447 Predicting the Compressive Strength of Geopolymer Concrete Using Machine Learning Algorithms: Impact of Chemical Composition and Curing Conditions
Authors: Aya Belal, Ahmed Maher Eltair, Maggie Ahmed Mashaly
Abstract:
Geopolymer concrete is gaining recognition as a sustainable alternative to conventional Portland Cement concrete due to its environmentally friendly nature, which is a key goal for Smart City initiatives. It has demonstrated its potential as a reliable material for the design of structural elements. However, the production of Geopolymer concrete is hindered by batch-to-batch variations, which presents a significant challenge to the widespread adoption of Geopolymer concrete. To date, Machine learning has had a profound impact on various fields by enabling models to learn from large datasets and predict outputs accurately. This paper proposes an integration between the current drift to Artificial Intelligence and the composition of Geopolymer mixtures to predict their mechanical properties. This study employs Python software to develop machine learning model in specific Decision Trees. The research uses the percentage oxides and the chemical composition of the Alkali Solution along with the curing conditions as the input independent parameters, irrespective of the waste products used in the mixture yielding the compressive strength of the mix as the output parameter. The results showed 90 % agreement of the predicted values to the actual values having the ratio of the Sodium Silicate to the Sodium Hydroxide solution being the dominant parameter in the mixture.Keywords: decision trees, geopolymer concrete, machine learning, smart cities, sustainability
Procedia PDF Downloads 925446 Machine Learning Based Gender Identification of Authors of Entry Programs
Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee
Abstract:
Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning
Procedia PDF Downloads 3255445 On or Off-Line: Dilemmas in Using Online Teaching-Learning in In-Service Teacher Education
Authors: Orly Sela
Abstract:
The lecture discusses a Language Teaching program in a Teacher Education College in northern Israel. An on-line course was added to the program in order to keep on-campus attendance at a minimum, thus allowing the students to keep their full-time jobs in school. In addition, the use of educational technology to allow students to study anytime anywhere, in keeping with 21st-century innovative teaching-learning practices, was also an issue, as was the wish for this course to serve as a model which the students could then possibly use in their K-12 teaching. On the other hand, there were strong considerations against including an online course in the program. The students in the program were mostly Israeli-Arab married women with young children, living in a traditional society which places a strong emphasis on the place of the woman as a wife, mother, and home-maker. In addition, as teachers, they used much of their free time on school-related tasks. Having careers at the same time as studying was ground-breaking for these women, and using their time at home for studying rather than taking care of their families may have been simply too much to ask of them. At the end of the course, feedback was collected through an online questionnaire including both open and closed questions. The data collected shows that the students believed in online teaching-learning in principle, but had trouble implementing it in practice. This evidence raised the question of whether or not such a course should be included in a graduate program for mature, professional students, particular women with families living in a traditional society. This issue is not relevant to Israel alone, but also to academic institutions worldwide serving such populations. The lecture discusses this issue, sharing the researcher’s conclusions with the audience. Based on the evidence offered, it is the researcher’s conclusion that online education should, indeed, be offered to such audiences. However, the courses should be designed with the students’ special needs in mind, with emphasis placed on initial planning and course organization based on acknowledgment of the teaching context; modeling of online teaching/learning suited for in-service teacher education, and special attention paid to social-constructivist aspects of learning.Keywords: course design, in-service teacher-education, mature students, online teaching/learning
Procedia PDF Downloads 2345444 The Use of Social Media and Its Impact on the Learning Behavior of ESL University Students for Sustainable Education in Pakistan
Authors: Abdullah Mukhtar, Shehroz Mukhtar, Amina Mukhtar, Choudhry Shahid, Hafiz Raza Razzaq, Saif Ur Rahman
Abstract:
The aim of this study is to find out the negative and positive impacts of social media platforms on the attitude toward learning and the educational environment of the student community. Social Media platforms have become a source of collaboration with one another throughout the globe, making it a small world. This study performs a focalized investigation of the adverse and constructive factors that have a strong impact not only on psychological adjustments but also on the academic performance of peers. This study is quantitative research adopting a random sampling method in which the participants were the students at the university. The researcher distributed 1000 questionnaires among the university students from different departments and asked them to fill in the data on the Lickert Scale. The participants are from the age group of 18-24 years. The study applies user and gratification theory in order to examine the behavior of students practicing social media in their academic and personal lives. The findings of the study reveal that the use of social media platforms in the Pakistani context has less positive impact as compared to negative impacts on the behavior of students towards learning. The research suggests that usage of online social media platforms should be taught to students; awareness must the created among the users of social media by means of seminars, workshops and by media itself to overcome the negative impacts of social media, leading towards sustainable education in Pakistan.Keywords: social media, positive impacts, negative impacts, sustainable education, learning behaviour
Procedia PDF Downloads 595443 Navigating Government Finance Statistics: Effortless Retrieval and Comparative Analysis through Data Science and Machine Learning
Authors: Kwaku Damoah
Abstract:
This paper presents a methodology and software application (App) designed to empower users in accessing, retrieving, and comparatively exploring data within the hierarchical network framework of the Government Finance Statistics (GFS) system. It explores the ease of navigating the GFS system and identifies the gaps filled by the new methodology and App. The GFS, embodies a complex Hierarchical Network Classification (HNC) structure, encapsulating institutional units, revenues, expenses, assets, liabilities, and economic activities. Navigating this structure demands specialized knowledge, experience, and skill, posing a significant challenge for effective analytics and fiscal policy decision-making. Many professionals encounter difficulties deciphering these classifications, hindering confident utilization of the system. This accessibility barrier obstructs a vast number of professionals, students, policymakers, and the public from leveraging the abundant data and information within the GFS. Leveraging R programming language, Data Science Analytics and Machine Learning, an efficient methodology enabling users to access, navigate, and conduct exploratory comparisons was developed. The machine learning Fiscal Analytics App (FLOWZZ) democratizes access to advanced analytics through its user-friendly interface, breaking down expertise barriers.Keywords: data science, data wrangling, drilldown analytics, government finance statistics, hierarchical network classification, machine learning, web application.
Procedia PDF Downloads 715442 A Study on the Correlation Analysis between the Pre-Sale Competition Rate and the Apartment Unit Plan Factor through Machine Learning
Authors: Seongjun Kim, Jinwooung Kim, Sung-Ah Kim
Abstract:
The development of information and communication technology also affects human cognition and thinking, especially in the field of design, new techniques are being tried. In architecture, new design methodologies such as machine learning or data-driven design are being applied. In particular, these methodologies are used in analyzing the factors related to the value of real estate or analyzing the feasibility in the early planning stage of the apartment housing. However, since the value of apartment buildings is often determined by external factors such as location and traffic conditions, rather than the interior elements of buildings, data is rarely used in the design process. Therefore, although the technical conditions are provided, the internal elements of the apartment are difficult to apply the data-driven design in the design process of the apartment. As a result, the designers of apartment housing were forced to rely on designer experience or modular design alternatives rather than data-driven design at the design stage, resulting in a uniform arrangement of space in the apartment house. The purpose of this study is to propose a methodology to support the designers to design the apartment unit plan with high consumer preference by deriving the correlation and importance of the floor plan elements of the apartment preferred by the consumers through the machine learning and reflecting this information from the early design process. The data on the pre-sale competition rate and the elements of the floor plan are collected as data, and the correlation between pre-sale competition rate and independent variables is analyzed through machine learning. This analytical model can be used to review the apartment unit plan produced by the designer and to assist the designer. Therefore, it is possible to make a floor plan of apartment housing with high preference because it is possible to feedback apartment unit plan by using trained model when it is used in floor plan design of apartment housing.Keywords: apartment unit plan, data-driven design, design methodology, machine learning
Procedia PDF Downloads 2695441 Teaching Writing in the Virtual Classroom: Challenges and the Way Forward
Authors: Upeksha Jayasuriya
Abstract:
The sudden transition from onsite to online teaching/learning due to the COVID-19 pandemic called for a need to incorporate feasible as well as effective methods of online teaching in most developing countries like Sri Lanka. The English as a Second Language (ESL) classroom faces specific challenges in this adaptation, and teaching writing can be identified as the most challenging task compared to teaching the other three skills. This study was therefore carried out to explore the challenges of teaching writing online and to provide effective means of overcoming them while taking into consideration the attitudes of students and teachers with regard to learning/teaching English writing via online platforms. A survey questionnaire was distributed (electronically) among 60 students from the University of Colombo, the University of Kelaniya, and The Open University in order to find out the challenges faced by students, while in-depth interviews were conducted with 12 lecturers from the mentioned universities. The findings reveal that the inability to observe students’ writing and to receive real-time feedback discourage students from engaging in writing activities when taught online. It was also discovered that both students and teachers increasingly prefer Google Slides over other platforms such as Padlet, Linoit, and Jam Board as it boosts learner autonomy and student-teacher interaction, which in turn allows real-time formative feedback, observation of student work, and assessment. Accordingly, it can be recommended that teaching writing online can be better facilitated by using interactive platforms such as Google Slides, for it promotes active learning and student engagement in the ESL class.Keywords: ESL, teaching writing, online teaching, active learning, student engagement
Procedia PDF Downloads 935440 Driving What’s Next: The De La Salle Lipa Social Innovation in Quality Education Initiatives
Authors: Dante Jose R. Amisola, Glenford M. Prospero
Abstract:
'Driving What’s Next' is a strong campaign of the new administration of De La Salle Lipa in promoting social innovation in quality education. The new leadership directs social innovation in quality education in the institutional directions and initiatives to address real-world challenges with real-world solutions. This research under study aims to qualify the commitment of the institution to extend the Lasallian quality human and Christian education to all, as expressed in the Institution’s new mission-vision statement. The Classic Grounded Theory methodology is employed in the process of generating concepts in reference to the documents, a series of meetings, focus group discussions and other related activities that account for the conceptualization and formulation of the new mission-vision along with the new education innovation framework. Notably, Driving What’s Next is the emergent theory that encapsulates the commitment of giving quality human and Christian education to all. It directs the new leadership in driving social innovation in quality education initiatives. Correspondingly, Driving What’s Next is continually resolved through four interrelated strategies also termed as the institution's four strategic directions, namely: (1) driving social innovation in quality education, (2) embracing our shared humanity and championing social inclusion and justice initiatives, (3) creating sustainable futures and (4) engaging diverse stakeholders in our shared mission. Significantly, the four strategic directions capture and integrate the 17 UN sustainable development goals, making the innovative curriculum locally and globally relevant. To conclude, the main concern of the new administration and how it is continually resolved, provide meaningful and fun learning experiences and promote a new way of learning in the light of the 21st century skills among the members of the academic community including stakeholders and extended communities at large, which are defined as: learning together and by association (collaboration), learning through engagement (communication), learning by design (creativity) and learning with social impact (critical thinking).Keywords: DLSL four strategic directions , DLSL Lipa mission-vision, driving what's next, social innovation in quality education
Procedia PDF Downloads 2185439 The Correlation between Self-Regulated Learning Strategies and Reading Proficiency
Authors: Nguyen Thu Ha, Vu Viet Phuong, Do Thi Tieu Yen, Nguyen Thi Thanh Ha
Abstract:
This semi-experimental research investigated the correlation between 42 English as a foreign language (EFL) sophomores' self-regulated learning strategies (SRL) use and their reading comprehension in the Vietnamese context. The analysis from TOEIC reading tests with SPSS 25.0 indicated that there are substantial differences between the post-test reading scores between the experimental group and the control group; therefore, SRL impacts the reading comprehension of EFL participants. Contrary to the alternative hypothesis, teaching learners SRL approaches had a statistically significant influence on reading comprehension. The findings may aid educators in teaching reading comprehension as an essential skill and in using SRL to improve reading comprehension and achievement and enhance reading comprehension aids for language students and instructors. They should equip educators with a variety of instructional strategies which assist academics in preparing learners for lifetime language study and independence. Moreover, the results might encourage educators, administrators, and policymakers to capitalize on the effects of teaching SRL strategies by providing EFL teachers with preparation programs and experiences that help them improve their teaching methods and strategies, especially when teaching reading comprehension.Keywords: correlation, reading proficiency, self-regulated learning strategies, SRL, TOEIC reading comprehension
Procedia PDF Downloads 975438 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning
Authors: M. Devaki, K. B. Jayanthi
Abstract:
The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.Keywords: water body, Deep learning, satellite images, convolution neural network
Procedia PDF Downloads 925437 MIMIC: A Multi Input Micro-Influencers Classifier
Authors: Simone Leonardi, Luca Ardito
Abstract:
Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media
Procedia PDF Downloads 1855436 Antibiotic Prophylaxis Habits in Oral Implant Surgery in the Netherlands: A Cross-Sectional Survey
Authors: Fabio Rodriguez Sanchez, Josef Bruers, Iciar Arteagoitia, Carlos Rodriguez Andres
Abstract:
Background: Oral implants are a routine treatment to replace lost teeth. Although they have a high rate of success, implant failures do occur. Perioperative antibiotics have been suggested to prevent postoperative infections and dental implant failures, but they remain a controversial treatment among healthy patients. The objective of this study was to determine whether antibiotic prophylaxis is a common treatment in the Netherlands among general dentists, maxillofacial-surgeons, periodontists and implantologists in conjunction with oral implant surgery among healthy patients and to assess the nature of antibiotics prescriptions in order to evaluate whether any consensus has been reached and the current recommendations are being followed. Methodology: Observational cross-sectional study based on a web-survey reported according to the Strengthening the Reporting of Observational studies in Epidemiology (STROBE) guidelines. A validated questionnaire, developed by Deeb et al. (2015), was translated and slightly adjusted to circumstances in the Netherlands. It was used with the explicit permission of the authors. This questionnaire contained both close-ended and some open-ended questions in relation to the following topics: demographics, qualification, antibiotic type, prescription-duration and dosage. An email was sent February 2018 to a sample of 600 general dentists and all 302 oral implantologists, periodontists and maxillofacial surgeons who were recognized by the Dutch Association of Oral Implantology (NVOI) as oral health care providers placing oral implants. The email included a brief introduction about the study objectives and a link to the web questionnaire, which could be filled in anonymously. Overall, 902 questionnaires were sent. However, 29 questionnaires were not correctly received due to an incorrect email address. So a total number of 873 professionals were reached. Collected data were analyzed using SPSS (IBM Corp., released 2012, Armonk, NY). Results: The questionnaire was sent back by a total number of 218 participants (response rate=24.2%), 45 female (20.8%) and 171 male (79.2%). Two respondents were excluded from the study group because they were not currently working as oral health providers. Overall 151 (69.9%) placed oral implants on regular basis. Approximately 79 (52.7%) of these participants prescribed antibiotics only in determined situations, 66 (44.0%) prescribed antibiotics always and 5 dentists (3.3%) did not prescribe antibiotics at all when placing oral implants. Overall, 83 participants who prescribed antibiotics, did so both pre- and postoperatively (58.5%), 12 exclusively postoperative (8.5%), and 47 followed an exclusive preoperative regime (33.1%). A single dose of 2,000 mg amoxicillin orally 1-hour prior treatment was the most prescribed preoperative regimen. The most frequent prescribed postoperative regimen was 500 mg amoxicillin three times daily for 7 days after surgery. On average, oral health professionals prescribed 6,923 mg antibiotics in conjunction with oral implant surgery, varying from 500 to 14,600 mg. Conclusions: Antibiotic prophylaxis in conjunction with oral implant surgery is prescribed in the Netherlands on a rather large scale. Dutch professionals might prescribe antibiotics more cautiously than in other countries and there seems to be a lower range on the different antibiotic types and regimens being prescribed. Anyway, recommendations based on last-published evidence are frequently not being followed.Keywords: clinical decision making, infection control, antibiotic prophylaxis, dental implants
Procedia PDF Downloads 1425435 Designing Effective Serious Games for Learning and Conceptualization Their Structure
Authors: Zahara Abdulhussan Al-Awadai
Abstract:
Currently, serious games play a significant role in education, sparking an increasing interest in using games for purposes beyond mere entertainment. In this research, we investigate the main requirements and aspects of designing and developing effective serious games for learning and developing a conceptual model to describe the structure of serious games with a focus on both aspects of serious games. The main contributions of this approach are to facilitate the design and development of serious games in a flexible and easy-to-use way and also to support the cooperative work between the multidisciplinary developer team.Keywords: game development, game design, requirements, serious games, serious game model.
Procedia PDF Downloads 665434 Assessing Distance Education Practices: Teachers Experience and Perceptions
Authors: Mohammed Amraouy, Mostafa Bellafkih, Abdellah Bennane, Aziza Benomar
Abstract:
Distance education has become popular due to their ability to provide learning from almost anywhere and anytime. COVID-19 forced educational institutions to urgently introduce distance education to ensure pedagogical continuity, so all stakeholders were invited to adapt to this new paradigm. In order to identify strengths and weaknesses, the research focuses on the need to create an effective mechanism for evaluating distance education. The aims of this research were to explore and evaluate the use of digital media in general and official platforms in particular in distance education practices. To this end, we have developed and validated a questionnaire before administering it to a sample of 431 teachers in Morocco. Teachers reported lower knowledge and skills in the didactic use of ICT in the distance education process. In addition, although age and educative experience of the teachers continue to modulate the level of instrumental skills. Therefore, resources (digital resources and infrastructure) and the teachers’ ICT training present serious limitations, which require a training more focused on the distance educational paradigm and educational environments that allow teachers to create educational activities able to promote and facilitate the distance learning process.Keywords: distance education, e-learning, teachers’ perceptions, assessment
Procedia PDF Downloads 1405433 Exploring Enabling Effects of Organizational Climate on Academicians’ Emotional Intelligence and Learning Outcomes: A Case from Chinese Higher Education
Authors: Zahid Shafait, Jiayu Huang
Abstract:
Purpose: This study is based on a trait-based theory of emotional intelligence. This study intends to explore the enabling effect of organizational climate, i.e., affiliation, innovation, and fairness, on the emotional intelligence of teachers in Chinese higher education institutes. This study, additionally, intends to investigate the direct impact of teachers’ emotional intelligence on their learning outcomes, i.e., cognitive, social, self-growth outcomes and satisfaction with the university experience. Design/methodology/approach: This study utilized quantitative research techniques to scrutinize the data. Moreover, partial least squares structural equation modeling, i.e., PLS-SEM, was used to assess the hypothetical relationships to conclude their statistical significance. Findings: Results confirmed the supposed associations, i.e., the organizational climate has an enabling effect on emotional intelligence. Likewise, emotional intelligence was concluded to have a direct and positive association with learning outcomes in higher education. Practical implications: This study has investigated abandoned research that is enabling the effects of organizational climate on teachers’ emotional intelligence in Chinese higher education. Organizational climate enables emotionally intelligent teachers to learn efficiently and, at the same time, augments their satisfaction and productivity within an institution. Originality/value: This study investigated the enabling effects of organizational climate on teachers’ emotional intelligence in Chinese higher education that is original in investigated country and sector.Keywords: organizational climate, emotional intelligence, learning outcomes, higher education
Procedia PDF Downloads 765432 Using Mixed Methods in Studying Classroom Social Network Dynamics
Authors: Nashrawan Naser Taha, Andrew M. Cox
Abstract:
In a multi-cultural learning context, where ties are weak and dynamic, combining qualitative with quantitative research methods may be more effective. Such a combination may also allow us to answer different types of question, such as about people’s perception of the network. In this study the use of observation, interviews and photos were explored as ways of enhancing data from social network questionnaires. Integrating all of these methods was found to enhance the quality of data collected and its accuracy, also providing a richer story of the network dynamics and the factors that shaped these changes over time.Keywords: mixed methods, social network analysis, multi-cultural learning, social network dynamics
Procedia PDF Downloads 5155431 The Educational Role of Non-Governmental Organizations among Young Refugees: An Ethnographic Study
Authors: Ceyda Sensin
Abstract:
Chios Island in Greece hosts many refugees from the Middle East since the Turkey-EU Refugee Deal. Thus, it has become commonplace for non-governmental organizations (NGO) to provide help for refugees in various ways. The purpose of this research is to identify ways in which improvements can be made in the educational services offered to young adult refugees (age group 14-22) by the NGO’s. To meet this aim, an unstructured observational technique was used in this qualitative study. The data was collected as a participant observer in February 2018. According to the observations made in this study, it came out that international NGOs may utilize volunteering team members on an urgent basis since they are a free resource from all around the world. In this study, it was observed that the volunteering team members without any teaching qualifications or teaching experience have struggled with reaching refugee students with or without potential mental health problems from exposure to stress, turmoil and trauma. Therefore, this study highly recommends the use of more relevantly trained professionals, alongside the volunteer staff. Alternatively, the volunteer staffs need to have teacher training and periodical refresher training.Keywords: ethnographic study, non-governmental organizations, refugees, qualitative research method
Procedia PDF Downloads 3035430 Recommendation Systems for Cereal Cultivation using Advanced Casual Inference Modeling
Authors: Md Yeasin, Ranjit Kumar Paul
Abstract:
In recent years, recommendation systems have become indispensable tools for agricultural system. The accurate and timely recommendations can significantly impact crop yield and overall productivity. Causal inference modeling aims to establish cause-and-effect relationships by identifying the impact of variables or factors on outcomes, enabling more accurate and reliable recommendations. New advancements in causal inference models have been found in the literature. With the advent of the modern era, deep learning and machine learning models have emerged as efficient tools for modeling. This study proposed an innovative approach to enhance recommendation systems-based machine learning based casual inference model. By considering the causal effect and opportunity cost of covariates, the proposed system can provide more reliable and actionable recommendations for cereal farmers. To validate the effectiveness of the proposed approach, experiments are conducted using cereal cultivation data of eastern India. Comparative evaluations are performed against existing correlation-based recommendation systems, demonstrating the superiority of the advanced causal inference modeling approach in terms of recommendation accuracy and impact on crop yield. Overall, it empowers farmers with personalized recommendations tailored to their specific circumstances, leading to optimized decision-making and increased crop productivity.Keywords: agriculture, casual inference, machine learning, recommendation system
Procedia PDF Downloads 835429 Applying Serious Game Design Frameworks to Existing Games for Integration of Custom Learning Objectives
Authors: Jonathan D. Moore, Mark G. Reith, David S. Long
Abstract:
Serious games (SGs) have been shown to be an effective teaching tool in many contexts. Because of the success of SGs, several design frameworks have been created to expedite the process of making original serious games to teach specific learning objectives (LOs). Even with these frameworks, the time required to create a custom SG from conception to implementation can range from months to years. Furthermore, it is even more difficult to design a game framework that allows an instructor to create customized game variants supporting multiple LOs within the same field. This paper proposes a refactoring methodology to apply the theoretical principles from well-established design frameworks to a pre-existing serious game. The expected result is a generalized game that can be quickly customized to teach LOs not originally targeted by the game. This methodology begins by describing the general components in a game, then uses a combination of two SG design frameworks to extract the teaching elements present in the game. The identified teaching elements are then used as the theoretical basis to determine the range of LOs that can be taught by the game. This paper evaluates the proposed methodology by presenting a case study of refactoring the serious game Battlespace Next (BSN) to teach joint military capabilities. The range of LOs that can be taught by the generalized BSN are identified, and examples of creating custom LOs are given. Survey results from users of the generalized game are also provided. Lastly, the expected impact of this work is discussed and a road map for future work and evaluation is presented.Keywords: serious games, learning objectives, game design, learning theory, game framework
Procedia PDF Downloads 1175428 Educational Infrastructure a Barrier for Teaching and Learning Architecture
Authors: Alejandra Torres-Landa López
Abstract:
Introduction: Can architecture students be creative in spaces conformed by an educational infrastructure build with paradigms of the past?, this question and others related are answered in this paper as it presents the PhD research: An anthropic conflict in Mexican Higher Education Institutes, problems and challenges of the educational infrastructure in teaching and learning History of Architecture. This research was finished in 2013 and is one of the first studies conducted nationwide in Mexico that analysis the educational infrastructure impact in learning architecture; its objective was to identify which elements of the educational infrastructure of Mexican Higher Education Institutes where architects are formed, hinder or contribute to the teaching and learning of History of Architecture; how and why it happens. The methodology: A mixed methodology was used combining quantitative and qualitative analysis. Different resources and strategies for data collection were used, such as questionnaires for students and teachers, interviews to architecture research experts, direct observations in Architecture classes, among others; the data collected was analyses using SPSS and MAXQDA. The veracity of the quantitative data was supported by the Cronbach’s Alpha Coefficient, obtaining a 0.86, figure that gives the data enough support. All the above enabled to certify the anthropic conflict in which Mexican Universities are. Major findings of the study: Although some of findings were probably not unknown, they haven’t been systematized and analyzed with the depth to which it’s done in this research. So, it can be said, that the educational infrastructure of most of the Higher Education Institutes studied, is a barrier to the educational process, some of the reasons are: the little morphological variation of space, the inadequate control of lighting, noise, temperature, equipment and furniture, the poor or none accessibility for disable people; as well as the absence, obsolescence and / or insufficiency of information technologies are some of the issues that generate an anthropic conflict understanding it as the trouble that teachers and students have to relate between them, in order to achieve significant learning). It is clear that most of the educational infrastructure of Mexican Higher Education Institutes is anchored to paradigms of the past; it seems that they respond to the previous era of industrialization. The results confirm that the educational infrastructure of Mexican Higher Education Institutes where architects are formed, is perceived as a "closed container" of people and data; infrastructure that becomes a barrier to teaching and learning process. Conclusion: The research results show it's time to change the paradigm in which we conceive the educational infrastructure, it’s time to stop seen it just only as classrooms, workshops, laboratories and libraries, as it must be seen from a constructive, urban, architectural and human point of view, taking into account their different dimensions: physical, technological, documental, social, among others; so the educational infrastructure can become a set of elements that organize and create spaces where ideas and thoughts can be shared; to be a social catalyst where people can interact between each other and with the space itself.Keywords: educational infrastructure, impact of space in learning architecture outcomes, learning environments, teaching architecture, learning architecture
Procedia PDF Downloads 4145427 Students’ Perception and Patterns of Listening Behaviour in an Online Forum Discussion
Authors: K. L. Wong, I. N. Umar
Abstract:
Online forum is part of a Learning Management System (LMS) environment in which students share opinions. This study attempts to investigate the perceptions of students towards online forum and their patterns of listening behaviour during the forum interaction. The students’ perceptions were measured using a questionnaire, in which seven dimensions were used including online experience, benefits of forum participation, cost of participation, perceived ease of use, usefulness, attitude and intention. Meanwhile, their patterns of listening behaviours were obtained using the log file extracted from the LMS. A total of 25 postgraduate students undertaking a course were involved in this study, and their activities in the forum session were recorded by the LMS and used as a log file. The results from the questionnaire analysis indicated that the students perceived that the forum is easy to use, useful, and bring benefits to them. Also, they showed positive attitude towards online forum, and they have the intention to use it in future. Based on the log data, the participants were also divided into six clusters of listening behaviour, in which they are different in terms of temporality, breadth, depth and speaking level. The findings were compared to previous clusters grouping and future recommendations are also discussed.Keywords: e-learning, learning management system, listening behavior, online forum
Procedia PDF Downloads 4365426 The Effectiveness of a Courseware in 7th Grade Chemistry Lesson
Authors: Oguz Ak
Abstract:
In this study a courseware for the learning unit of `Properties of matters` in chemistry course is developed. The courseware is applied to 15 7th grade (about age 14) students in real settings. As a result of the study it is found that the students` grade in the learning unit significantly increased when they study the courseware themselves. In addition, the score improvements of the students who found the courseware is usable is not significantly higher than the score improvements of the students who did not found it usable.Keywords: computer based instruction, effect of courseware and usability of courseware, 7th grade
Procedia PDF Downloads 461