Search results for: maximum deflection (D0)
2232 Analysis on Heat Transfer in Solar Parabolic Trough Collectors
Authors: Zaid H. Yaseen, Jamel A. Orfi, Zeyad A. Alsuhaibani
Abstract:
Solar power has a huge potential to be employed in the fields of electricity production, water desalination, and multi-generation. There are various types of solar collectors, and parabolic trough collectors (PTCs) are common among these types. In PTCs, a mirror is used to direct the incident radiation on an absorber tube to utilize the heat in power generation. In this work, a PTC covered with a glass tube is presented and analyzed. Results showed that temperatures of 510℃ for steam can be reached for certain parameters. The work also showed the viability of using Benzene as the working fluid in the absorber tube. Also, some analysis regarding changing the absorber’s tube diameter and the efficiency of the solar collector was demonstrated in this work. The effect of changing the heat transfer correlations for the convection phenomena of the working fluid was illustrated. In fact, two heat transfer correlations, the Dittus-Boelter and Gnielinski correlations, were used, and the outcomes showed a resemblance in the results for the maximum attainable temperature in the working fluid.Keywords: absorber tube, glass tube, incident radiation, parabolic trough collector
Procedia PDF Downloads 162231 The Current Situation and Perspectives of Electricity Demand and Estimation of Carbon Dioxide Emissions and Efficiency
Abstract:
This article presents a current and future energy situation in Libya. The electric power efficiency and operating hours in power plants are evaluated from 2005 to 2010. Carbon dioxide emissions in most of power plants are estimated. In 2005, the efficiency of steam power plants achieved a range of 20% to 28%. While, the gas turbine power plants efficiency ranged between 9% and 25%, this can be considered as low efficiency. However, the efficiency improvement has clearly observed in some power plants from 2008 to 2010, especially in the power plant of North Benghazi and west Tripoli. In fact, these power plants have modified to combine cycle. The efficiency of North Benghazi power plant has increased from 25% to 46.6%, while in Tripoli it is increased from 22% to 34%. On the other hand, the efficiency improvement is not observed in the gas turbine power plants. When compared to the quantity of fuel used, the carbon dioxide emissions resulting from electricity generation plants were very high. Finally, an estimation of the energy demand has been done to the maximum load and the annual load factor (i.e., the ratio between the output power and installed power).Keywords: power plant, efficiency improvement, carbon dioxide emissions, energy situation in Libya
Procedia PDF Downloads 4782230 Extent of I.C.T Application in Record Management and Factors Hindering the Utilization of E-Learning in the Government Owned Universities in Enugu State, Nigeria
Authors: Roseline Unoma Chidobi
Abstract:
The purpose of this study is to identify the extent of Information Communication Technology (ICT) application in record management and some factors militating against the utilization of e-learning in the universities in Enugu state. The study was a survey research the quantitative data were collected through a 30 – item questionnaire title extent of ICT Application in Record management and militating Factors in the utilization of e-learning (EIARMMFUE). This was administered on a population of 603 respondents made up of university academic staff and senior administrative staff. The data were analyzed using mean, standard deviation and t-test statistics on a modified 4 point rating scale. Findings of the study revealed among others that ICT are not adequately applied in the management of records in the Universities in Nigeria. Factors like wrong notion or superstitious believe hinder the effective utilization of e – learning approach. The study recommended that the use of ICT in record management should be enhanced in order to achieve effective school management. All the factors militating against the effective utilization of e-learning approach should be addressed for the maximum realization of teaching and learning.Keywords: e-learning, information communication, teaching, technology, tertiary institution
Procedia PDF Downloads 5262229 Evaluation of Gasoline Engine Piston with Various Coating Materials Using Finite Element Method
Authors: Nouby Ghazaly, Gamal Fouad, Ali Abd-El-Tawwab, K. A. Abd El-Gwwad
Abstract:
The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast-iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, yttria-stabilized zirconia, magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces is examined. Comparison between simulated results for aluminum, steel, and cast-iron materials is reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for magnesia-stabilized zirconia, yttria-stabilized zirconia, mullite and alumina coated materials.Keywords: structure analysis, aluminum piston, MgZrO₃, YTZ, mullite and alumina
Procedia PDF Downloads 1532228 Flow Separation Control on an Aerofoil Using Grooves
Authors: Neel K. Shah
Abstract:
Wind tunnel tests have been performed at The University of Manchester to investigate the impact of surface grooves of a trapezoidal planform on flow separation on a symmetrical aerofoil. A spanwise array of the grooves has been applied around the maximum thickness location of the upper surface of an NACA-0015 aerofoil. The aerofoil has been tested in a two-dimensional set-up in a low-speed wind tunnel at an angle of attack (AoA) of 3° and a chord-based Reynolds number (Re) of ~2.7 x 105. A laminar separation bubble developed on the aerofoil at low AoA. It has been found that the grooves shorten the streamwise extent of the separation bubble by shedding a pair of counter-rotating vortices. However, the increase in leading-edge suction due to the shorter bubble is not significant since the creation of the grooves results in a decrease of surface curvature and an increase in blockage (increase in surface pressure). Additionally, the increased flow mixing by the grooves thickens the boundary layer near the trailing edge of the aerofoil also contributes to this limitation. As a result of these competing effects, the improvement in the pressure-lift and pressure-drag coefficients are small, i.e., by ~1.30% and ~0.30%, respectively, at 3° AoA. Crosswire anemometry shows that the grooves increase turbulence intensity and Reynolds stresses in the wake, thus indicating an increase in viscous drag.Keywords: aerofoil flow control, flow separation, grooves, vortices
Procedia PDF Downloads 3162227 Seismic Performance of Two-Storey RC Frame Designed EC8 under In-Plane Cyclic Loading
Authors: N. H. Hamid, A. Azmi, M. I. Adiyanto
Abstract:
This main purpose of this paper is to evaluate the seismic performance of double bay two-storey reinforced concrete frame under in-plane lateral cyclic loading which designed using Eurocode 8 (EC8) by taking into account of seismic loading. The prototype model of reinforced concrete frame was constructed in one-half scale tested under in-plane lateral cyclic loading starts with ±0.2% drift, ±0.25% up to ±3.0% drift with the increment of ±0.25%. The performance of the RC frame is evaluated in terms of the hysteresis loop (load vs. displacement), stiffness, ductility, lateral strength, stress-strain relationship and equivalent viscous damping. Visual observation of the crack pattern after testing were observed where the beam- column joint suffer the most severe damage as it is the critical part in moment resisting frame. Spalling of concrete starts occurred at ±2.0% drift and become worse at ±2.5% drift. The experimental result shows that the maximum lateral strength of specimen is 99.98 kN and ductility of the specimen is µ=4.07 which lies between 3≤µ≤6 in order to withstand moderate to severe earthquakes.Keywords: ductility, equivalent viscous damping, hysteresis loops, lateral strength, stiffness
Procedia PDF Downloads 3582226 Audit of Urgent and Non-Urgent Patient Visits to the Emergency: A Case-Control Study
Authors: Peri Harish Kumar, Rafique Umer Harvitkar
Abstract:
Background: The emergency department mandates maximum efficacy in the utilization of the available resources. Non-urgent patient visits pose a serious concern to the treatment, patient triage, and resources available. Aims and Objectives: We conducted a retrospective case-control study of the emergency department patient list from October 2019 to November 2022. A total of 839 patients formed part of the study. Somatic complaints, vital signs, diagnostic test results, admission to the hospital, etc., were some of the criteria used for the categorization of patients. Results: The proportion of non-urgent visits varied from 7.2% to 43%, with a median of 21%. Somatic complaints were the least associated with further hospital admissions (n=28%), while diagnostic test results were the most significant indicator of further hospital admissions (n=74%). Effective triage helped minimize emergency department admissions by 36%. Conclusion: Our study shows that effective triaging, patient counselling, and round-the-clock consumable monitoring helped in the effective management of patients admitted and also significantly helped provide treatment to the patients most in need.Keywords: urgent visits, non-urgent visits, traiging, emergency department admissions
Procedia PDF Downloads 1142225 Semiconducting Nanostructures Based Organic Pollutant Degradation Using Natural Sunlight for Water Remediation
Authors: Ankur Gupta, Jayant Raj Saurav, Shantanu Bhattacharya
Abstract:
In this work we report an effective water filtration system based on the photo catalytic performance of semiconducting dense nano-brushes under natural sunlight. During thin-film photocatalysis usually performed by a deposited layer of photocatalyst, a stagnant boundary layer is created near the catalyst which adversely affects the rate of adsorption because of diffusional restrictions. One strategy that may be used is to disrupt this laminar boundary layer by creating a super dense nanostructure near the surface of the catalyst. Further it is adequate to fabricate a structured filter element for a through pass of the water with as grown nanostructures coming out of the surface of such an element. So, the dye remediation is performed through solar means. This remediation was initially limited to lower efficiency because of diffusional restrictions but has now turned around as a fast process owing to the development of the filter materials with standing out dense nanostructures. The effect of increased surface area due to microholes on fraction adsorbed is also investigated and found that there is an optimum value of hole diameter for maximum adsorption.Keywords: nano materials, photocatalysis, waste water treatment, water remediation
Procedia PDF Downloads 3392224 Modelling a Distribution Network with a Hybrid Solar-Hydro Power Plant in Rural Cameroon
Authors: Contimi Kenfack Mouafo, Sebastian Klick
Abstract:
In the rural and remote areas of Cameroon, access to electricity is very limited since most of the population is not connected to the main utility grid. Throughout the country, efforts are underway to not only expand the utility grid to these regions but also to provide reliable off-grid access to electricity. The Cameroonian company Solahydrowatt is currently working on the design and planning of one of the first hybrid solar-hydropower plants of Cameroon in Fotetsa, in the western region of the country, to provide the population with reliable access to electricity. This paper models and proposes a design for the low-voltage network with a hybrid solar-hydropower plant in Fotetsa. The modelling takes into consideration the voltage compliance of the distribution network, the maximum load of operating equipment, and most importantly, the ability for the network to operate as an off-grid system. The resulting modelled distribution network does not only comply with the Cameroonian voltage deviation standard, but it is also capable of being operated as a stand-alone network independent of the main utility grid.Keywords: Cameroon, rural electrification, hybrid solar-hydro, off-grid electricity supply, network simulation
Procedia PDF Downloads 1262223 Robust Fractional Order Controllers for Minimum and Non-Minimum Phase Systems – Studies on Design and Development
Authors: Anand Kishore Kola, G. Uday Bhaskar Babu, Kotturi Ajay Kumar
Abstract:
The modern dynamic systems used in industries are complex in nature and hence the fractional order controllers have been contemplated as a fresh approach to control system design that takes the complexity into account. Traditional integer order controllers use integer derivatives and integrals to control systems, whereas fractional order controllers use fractional derivatives and integrals to regulate memory and non-local behavior. This study provides a method based on the maximumsensitivity (Ms) methodology to discover all resilient fractional filter Internal Model Control - proportional integral derivative (IMC-PID) controllers that stabilize the closed-loop system and deliver the highest performance for a time delay system with a Smith predictor configuration. Additionally, it helps to enhance the range of PID controllers that are used to stabilize the system. This study also evaluates the effectiveness of the suggested controller approach for minimum phase system in comparison to those currently in use which are based on Integral of Absolute Error (IAE) and Total Variation (TV).Keywords: modern dynamic systems, fractional order controllers, maximum-sensitivity, IMC-PID controllers, Smith predictor, IAE and TV
Procedia PDF Downloads 672222 Ultrasound Assisted Cooling Crystallization of Lactose Monohydrate
Authors: Sanjaykumar R. Patel, Parth R. Kayastha
Abstract:
α-lactose monohydrate is widely used in the pharmaceutical industries as an inactive substance that acts as a vehicle or a medium for a drug or other active substance. It is a byproduct of dairy industries, and the recovery of lactose from whey not only boosts the improvement of the economics of whey utilization but also causes a reduction in pollution as lactose recovery can reduce the BOD of whey by more than 80%. In the present study, levels of process parameters were kept as initial lactose concentration (30-50% w/w), sonication amplitude (20-40%), sonication time (2-6 hours), and crystallization temperature (10-20 oC) for the recovery of lactose in ultrasound assisted cooling crystallization. In comparison with cooling crystallization, the use of ultrasound enhanced the lactose recovery by 39.17% (w/w). The parameters were optimized for the lactose recovery using Taguchi Method. The optimum conditions found were initial lactose concentration at level 3 (50% w/w), amplitude of sonication at level 2 (40%), the sonication time at level 3 (6 hours), and crystallization temperature at level 1 (10 °C). The maximum recovery was found to be 85.85% at the optimum conditions. Sonication time and the initial lactose concentration were found to be significant parameters for the lactose recovery.Keywords: crystallization, lactose, Taguchi method, ultrasound
Procedia PDF Downloads 2142221 Thermal Behavior of Green Roof: Case Study at Seoul National University Retentive Green Roof
Authors: Theresia Gita Hapsari
Abstract:
There has been major concern about urban heating as urban clusters emerge and population migration from rural to urban areas continues. Green roof has been one of the main practice for urban heat island mitigation for the past decades, thus, this study was conducted to predict the cooling potential of retentive green roof in mitigating urban heat island. Retentive green roof was developed by Han in 2010. It has 320 mm height of retention wall surrounding the vegetation and 65mm depth of retention board underneath the soil, while most conventional green roof doesn’t have any retention wall and only maximum of 25 mm depth of drainage board. Seoul National University retentive green roof significantly reduced sensible heat movement towards the air by 0.5 kWh/m2, and highly enhanced the evaporation process as much as 0.5 – 5.4 kg/m2 which equals to 0.3 – 3.6 kWh/m2 of latent heat flux. These results indicate that with design enhancement, serving as a viable alternate for conventional green roof, retentive green roof contributes to overcome the limitation of conventional green roof which is the main solution for mitigating urban heat island.Keywords: green roof, low impact development, retention board, thermal behavior, urban heat island
Procedia PDF Downloads 2792220 Structural, Magnetic, Electrical and Dielectric Properties of Pr0.8Na0.2MnO3 Manganite
Authors: H. Ben Khlifa, W. Cheikhrouhou, R. M'nassri
Abstract:
The Orthorhombic Pr0.8Na0.2MnO3 ceramic was prepared in Polycrystalline form by a Pechini sol–gel method and its structural, magnetic, electrical, and dielectric properties were investigated experimentally. A structural study confirms that the sample is a single phase. Magnetic measurements show that the sample is a charge ordered Manganite. The sample undergoes two successive magnetic phase transitions with the variation of temperature: a charge ordering transition occurred at TCO = 212 K followed by a Paramagnetic (PM) to ferromagnetic (FM) transition around TC = 115 K. From an electrical point of view, a saturation region was marked in the conductivity as a function of Temperature s(T) curves at a specific temperature. The dc-conductivity (sdc) reaches a maximum value at 240 K. The obtained results are in good agreement with the temperature dependence of the average normalized change (ANC). We found that the conduction mechanism was governed by small polaron hopping (SPH) in the high-temperature region and by variable range hopping (VRH) in the low-temperature region. Complex impedance analysis indicates the presence of a non-Debye relaxation phenomenon in the system. Also, the compound was modeled by an electrical equivalent circuit. Then, the contribution of the grain boundary in the transport properties was confirmed.Keywords: manganites, preparation methods, magnetization, magnetocaloric effect, electrical and dielectric
Procedia PDF Downloads 1742219 Effect of Lime and Leaf Ash on Engineering Properties of Red Mud
Authors: Pawandeep Kaur, Prashant Garg
Abstract:
Red mud is a byproduct of aluminum extraction from Bauxite industry. It is dumped in a pond which not only uses thousands of acres of land but having very high pH, it pollutes the ground water and the soil also. Leaves are yet another big waste especially during autumn when they contribute immensely to the blockage of drains and can easily catch fire, among other risks hence also needs to be utilized effectively. The use of leaf ash and red mud in highway construction as a filling material may be an efficient way to dispose of leaf ash and red mud. In this study, leaf ash and lime were used as admixtures to improve the geotechnical engineering properties of red mud. The red mud was taken from National Aluminum Company Limited, Odisha, and leaf ash was locally collected. The aim of present study is to investigate the effect of lime and leaf ash on compaction characteristics and strength characteristics of red mud. California Bearing Ratio and Unconfined Compression Strength tests were performed on red mud by varying different percentages of lime and leaf ash. Leaf ash was added in proportion 2%,4%,6%,8% and 10% whereas lime was added in proportions of 5% to 15%. Optimized value of lime was decided with respect to maximum CBR (California Bearing Ratio) of red mud mixed with different proportions of lime. An increase of 300% in California Bearing ratio of red mud and an increase of 125% in Unconfined Compression Strength values were observed. It may, therefore, be concluded that red mud may be effectively utilized in the highway industry as a filler material.Keywords: stabilization, lime, red mud, leaf ash
Procedia PDF Downloads 2442218 Statistical Inferences for GQARCH-It\^{o} - Jumps Model Based on The Realized Range Volatility
Authors: Fu Jinyu, Lin Jinguan
Abstract:
This paper introduces a novel approach that unifies two types of models: one is the continuous-time jump-diffusion used to model high-frequency data, and the other is discrete-time GQARCH employed to model low-frequency financial data by embedding the discrete GQARCH structure with jumps in the instantaneous volatility process. This model is named “GQARCH-It\^{o} -Jumps mode.” We adopt the realized range-based threshold estimation for high-frequency financial data rather than the realized return-based volatility estimators, which entail the loss of intra-day information of the price movement. Meanwhile, a quasi-likelihood function for the low-frequency GQARCH structure with jumps is developed for the parametric estimate. The asymptotic theories are mainly established for the proposed estimators in the case of finite activity jumps. Moreover, simulation studies are implemented to check the finite sample performance of the proposed methodology. Specifically, it is demonstrated that how our proposed approaches can be practically used on some financial data.Keywords: It\^{o} process, GQARCH, leverage effects, threshold, realized range-based volatility estimator, quasi-maximum likelihood estimate
Procedia PDF Downloads 1602217 The Importance of Adopting Sustainable Practices in Power Projects
Authors: Sikander Ali Abbassi, Wazir Muhmmad Laghari, Bashir Ahmed Laghari
Abstract:
Attaining sustainable development is one of the greatest challenges facing Pakistan today. A challenge that can only be met by developing and deploying confidence among the people. Transparency in project activities at all stages and other measures will also enhance its social and economic growth. Adopting sustainable practices and sensible policies, we mean that project activity should be economically viable, socially acceptable and environment friendly. In order to achieve this objective, there must be a continued commitment to encourage and ensure the public participation in development of power projects. Since Pakistan is an energy deficient country, it has to initiate power projects on a large scale in the near future. Therefore, it is the need of the hour to tackle these projects in a sustainable way, so that it can be benefited to the maximum possible level and have the least adverse effects on people and the environment. In order to get desirable results, careful planning, efficient implementation, standardized operational practices and community participation are the key parameters which ensure the positive impacts on economy, prosperity and the well being of our people. This paper pinpoints the potential environmental hazards due to project activity and emphasizes to adopt sustainable approaches in power projects.Keywords: environmental hazards, sustainable practices, environment friendly, power projects
Procedia PDF Downloads 3902216 Blend of Polyamide 6 with Polybutylene Terephthalate Compatibilized with Epoxidized Natural Rubber (ENR-25) and N Butyl Acrylate Glycidyl Methacrylate Ethylene (EBa-GMA)
Authors: Ramita Vongrat, Pornsri Sapsrithong, Manit Nithitanakul
Abstract:
In this work, blends of polyamide 6 (PA6) and polybutylene terephthalate (PBT) were successfully prepared. The effect of epoxidized natural rubber (ENR-25) and n butyl acrylate glycidyl methacrylate ethylene (EBa-GMA) as a compatibilizer on properties of PA6/PBT blends was also investigated by varying amount of ENR-50 and EBa-GMA, i.e., 0, 0.1, 0.5, 5 and 10 phr. All blends were prepared and shaped by using twin-screw extruder at 230 °C and injection molding machine, respectively. All test specimens were characterized by phase morphology, impact strength, tensile, flexural properties, and hardness. The results exhibited that phase morphology of PA6/PBT blend without compatibilizer was incompatible. This could be attributed to poor interfacial adhesion between the two polymers. SEM micrographs showed that the addition of ENR-25 and EBa-GMA improved the compatibility of PA6/PBT blends. With the addition of ENR-50 as a compatibilizer, the uniformity and the maximum reduction of dispersed phase size were observed. Additionally, the results indicate that, as the amount of ENR-25 increased, and EBa-GMA increased, the mechanical properties, including stress at the peak, tensile modulus, and izod impact strength, were also improved.Keywords: EBa-GMA, epoxidized natural rubber-25, polyamide 6, polybutylene terephthalate
Procedia PDF Downloads 1702215 Numerical Investigation of Flow Characteristics inside the External Gear Pump Using Urea Liquid Medium
Authors: Kumaresh Selvakumar, Man Young Kim
Abstract:
In selective catalytic reduction (SCR) unit, the injection system is provided with unique dosing pump to govern the urea injection phenomenon. The urea based operating liquid from the AdBlue tank links up directly with the dosing pump unit to furnish appropriate high pressure for examining the flow characteristics inside the liquid pump. This work aims in demonstrating the importance of external gear pump to provide pertinent high pressure and respective mass flow rate for each rotation. Numerical simulations are conducted using immersed solid method technique for better understanding of unsteady flow characteristics within the pump. Parametric analyses have been carried out for the gear speed and mass flow rate to find the behavior of pressure fluctuations. In the simulation results, the outlet pressure achieves maximum magnitude with the increase in rotational speed and the fluctuations grow higher.Keywords: AdBlue tank, external gear pump, immersed solid method, selective catalytic reduction
Procedia PDF Downloads 2802214 Population and Age Structure of the Goby Stigmatogobius pleurostigma in the Mekong Delta, Vietnam
Authors: Quang M. Dinh
Abstract:
Stigmatogobius pleurostigma is a commercial fish being caught increasingly in the Mekong Delta. Although it plays an important role for food supply, little is known about this species including morphology, distribution and growth pattern. Meanwhile, its population and age structure is unknown. The present study was conducted in the Mekong Delta to provide new data on population parameters of this goby species. The von Bertalanffy growth parameters were L∞= 8.6 cm, K = 0.83 yr⁻¹, and t0 = -0.07 yr⁻¹ basing on length frequency data analysis of 601 individuals. The fish total length at first capture was 3.8 cm; and fishing, natural and total mortalities of the fish population were 2.31 yr⁻¹, 1.17 yr⁻¹, and 3.48 yr⁻¹ respectively. The maximum fish yield (Eₘₐₓ), economic yield (E₀.₁) and yield of 50% reduction of exploitation (E₅₀) rates were 0.704, 0.555 and 0.335 based on the relative yield-per-recruit and biomass-per-recruit analyses. The fish longevity was 3.61 yr, and growth performance was 1.79. Three fish age groups were recorded in this study (0+, 1+ and 2+). The species is a potential aquaculture candidate because of its high growth parameter. This goby stock was overexploited in the Mekong Delta as its exploitation rate (E=0.34) was higher than E₅₀ (0.335). The mesh size of gillnets should be increased and avoid catching fish in June, recruitment time, for future sustainable fishery management.Keywords: Stigmatogobius pleurostigma, age, population structure, Vietnam
Procedia PDF Downloads 2032213 Lactation Curve at Holstein Cows in Romania and Influencing Factors
Authors: Enea Danut Nicolae, Osman (Defta) Aurelia, Vidu Livia, Marginean Gheorghe, Defta Nicoleta, Moise Andrada
Abstract:
Today, as a result of population growth, there is an increase in demand for animal products; milk and dairy products are an important part of this category. Maintaining production at maximum levels for as long as possible is one of the main objectives of dairy farmers. Over the course of lactation, a cow's milk production is not uniform. During the initial stage of lactation, the cow's milk production follows an upward slope, a plateau, and then a downward slope, which is a reflection of the lactation curve. The evolution of the lactation curve is influenced by numerous factors, which are genetic, exploitation, physiological, environmental and technological. The aim of this study was to observe the lactation curve of Holstein cows in Romania and determine the extent to which they conform to the expected pattern. In addition, there has been an analysis of the factors which have an influence on this curve and the extent of this influence. In order to be able to carry out the present study, data were collected from three farms located in three different geographical areas. To highlight the findings, the data collected was then statistically processed and graphically interpreted. All the farms have only Holstein cows, which are kept in free stalls.Keywords: lactation curve, Holstein, milk production, influencing factors
Procedia PDF Downloads 632212 Symbol Synchronization and Resource Reuse Schemes for Layered Video Multicast Service in Long Term Evolution Networks
Authors: Chung-Nan Lee, Sheng-Wei Chu, You-Chiun Wang
Abstract:
LTE (Long Term Evolution) employs the eMBMS (evolved Multimedia Broadcast/Multicast Service) protocol to deliver video streams to a multicast group of users. However, it requires all multicast members to receive a video stream in the same transmission rate, which would degrade the overall service quality when some users encounter bad channel conditions. To overcome this problem, this paper provides two efficient resource allocation schemes in such LTE network: The symbol synchronization (S2) scheme assumes that the macro and pico eNodeBs use the same frequency channel to deliver the video stream to all users. It then adopts a multicast transmission index to guarantee the fairness among users. On the other hand, the resource reuse (R2) scheme allows eNodeBs to transmit data on different frequency channels. Then, by introducing the concept of frequency reuse, it can further improve the overall service quality. Extensive simulation results show that the S2 and R2 schemes can respectively improve around 50% of fairness and 14% of video quality as compared with the common maximum throughput method.Keywords: LTE networks, multicast, resource allocation, layered video
Procedia PDF Downloads 3902211 Phytochemical Screening, and Antimicrobial Evaluation of Bioactive Compounds from Red Millipede (Trigoniulus corallinus)
Authors: Y. B. Idris, M. Sirajo, L. G. Hassan, T. Izuagie, T. Muktar, I. Lawal, A. U. Abubakar
Abstract:
This study investigates the extraction, phytochemical composition, and antimicrobial activity of bioactive compounds from red millipedes using three different solvents: n-Hexane, Chloroform, and Methanol. The largest yield was obtained from the methanol extract, which had percentage yields of 0.8%, 2.2%, and 5.6%, respectively. Terpenoids and sterols were found in all extracts according to preliminary zoochemical screening, but only the methanol extract included saponins and phenols. With a maximum zone of inhibition of 9 mm at 1000 µg/ml, antimicrobial susceptibility tests revealed that the methanol extract had the strongest antibacterial activity, especially against Escherichia coli and Staphylococcus aureus. Significant activity was also shown by the n-hexane extract, although the chloroform extract had only mild antibacterial activity. Tests for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) verified that the methanol extract was more effective than the other extracts, particularly against S. aureus and S. typhi. None of the extracts, nonetheless, showed any discernible antifungal action. The potential of red millipede extracts, especially those based on methanol, as a source of antimicrobial chemicals for use in the future is highlighted by this work.Keywords: millipedes, defensive extraction, antibacterial, antifungal, antimicrobial, minimum inhibitory concentration (MIC), minimum bacterial concentration (MBC)
Procedia PDF Downloads 212210 Thidiazuron's Role in Murraya paniculata and Fortunella hindsii's in vitro Flowering
Authors: Hasan Basri Jumin, Mardaleni
Abstract:
Fortunella hindsii and Muraya paniculata are family members of Rutaceae and have potentially improved genetic diversity. Isolated protoplasts were cultured with media supplemented with 2.0 % glucose and 0.0, 0.001, 0.01, 0.1 or 1.0. 10.0 mg/1 thidiazuron (TDZ) and, thickened with 0.9% gelrite, and maintained under 16 h photoperiod at 52.9 μmol/m²/s light intensity. The media supplemented with 0.00 mg/l TDZ yielded the maximum plating efficiency, while 0.001 mg/l TDZ produced the highest percentage of shoot formation, approximately 80%. After being cultured on the same TDZ concentration for 12 days, the protoplasts that survived developed cell walls. Ninety days following the culture of protoplasts, Fortunella hindsii and Murraya paniculata underwent somatic embryogenesis to grow into plantlets. Thidiazuron has demonstrated efficacy in forming flower buds that grow normally. Fortunella hindsii and Murraya paniculata shoots that emerged from branch internodes flowered in vitro on half-strength MT basal media containing 0.001 to 0.01 mg/l TDZ and 2-3% sucrose after two months of culture, and they eventually went on to flower. Seventy five percent of the plants displayed flowering on medium supplemented with 0.001 mg/l TDZ. Among the segments of Fortunella hindsii and Murraya paniculata generated from branch internodes, a possible precocious and floral gradient was found.Keywords: Fortunella-hindsii, in-vitro flowering, Murraya-paniculata, protoplast, thidiazuron
Procedia PDF Downloads 502209 A 3kW Grid Connected Residential Energy Storage System with PV and Li-Ion Battery
Authors: Moiz Masood Syed, Seong-Jun Hong, Geun-Hie Rim, Kyung-Ae Cho, Hyoung-Suk Kim
Abstract:
In the near future, energy storage will play a vital role to enhance the present changing technology. Energy storage with power generation becomes necessary when renewable energy sources are connected to the grid which consequently adjoins to the total energy in the system since utilities require more power when peak demand occurs. This paper describes the operational function of a 3 kW grid-connected residential Energy Storage System (ESS) which is connected with Photovoltaic (PV) at its input side. The system can perform bidirectional functions of charging from the grid and discharging to the grid when power demand becomes high and low respectively. It consists of PV module, Power Conditioning System (PCS) containing a bidirectional DC/DC Converter and bidirectional DC/AC inverter and a Lithium-ion battery pack. ESS Configuration, specifications, and control are described. The bidirectional DC/DC converter tracks the maximum power point (MPPT) and maintains the stability of PV array in case of power deficiency to fulfill the load requirements. The bidirectional DC/AC inverter has good voltage regulation properties like low total harmonic distortion (THD), low electromagnetic interference (EMI), faster response and anti-islanding characteristics. Experimental results satisfy the effectiveness of the proposed system.Keywords: energy storage system, photovoltaic, DC/DC converter, DC/AC inverter
Procedia PDF Downloads 6422208 Turbulent Forced Convection of Cu-Water Nanofluid: CFD Models Comparison
Authors: I. Behroyan, P. Ganesan, S. He, S. Sivasankaran
Abstract:
This study compares the predictions of five types of Computational Fluid Dynamics (CFD) models, including two single-phase models (i.e. Newtonian and non-Newtonian) and three two-phase models (Eulerian-Eulerian, mixture and Eulerian-Lagrangian), to investigate turbulent forced convection of Cu-water nanofluid in a tube with a constant heat flux on the tube wall. The Reynolds (Re) number of the flow is between 10,000 and 25,000, while the volume fraction of Cu particles used is in the range of 0 to 2%. The commercial CFD package of ANSYS-Fluent is used. The results from the CFD models are compared with results from experimental investigations from literature. According to the results of this study, non-Newtonian single-phase model, in general, does not show a good agreement with Xuan and Li correlation in prediction of Nu number. Eulerian-Eulerian model gives inaccurate results expect for φ=0.5%. Mixture model gives a maximum error of 15%. Newtonian single-phase model and Eulerian-Lagrangian model, in overall, are the recommended models. This work can be used as a reference for selecting an appreciate model for future investigation. The study also gives a proper insight about the important factors such as Brownian motion, fluid behavior parameters and effective nanoparticle conductivity which should be considered or changed by the each model.Keywords: heat transfer, nanofluid, single-phase models, two-phase models
Procedia PDF Downloads 4852207 Effect of Tilt Angle of Herringbone Microstructures on Enhancement of Heat and Mass Transfer
Authors: Nathan Estrada, Fangjun Shu, Yanxing Wang
Abstract:
The heat and mass transfer characteristics of a simple shear flow over a surface covered with staggered herringbone structures are numerically investigated using the lattice Boltzmann method. The focus is on the effect of ridge angle of the structures on the enhancement of heat and mass transfer. In the simulation, the temperature and mass concentration are modeled as a passive scalar released from the moving top wall and absorbed at the structured bottom wall. Reynolds number is fixed at 100. Two Prandtl or Schmidt numbers, 1 and 10, are considered. The results show that the advective scalar transport plays a more important role at larger Schmidt numbers. The fluid travels downward with higher scalar concentration into the grooves at the backward grove tips and travel upward with lower scalar concentration at the forward grove tips. Different tile angles result in different flow advection in wall-normal direction and thus different heat and mass transport efficiencies. The maximum enhancement is achieved at an angle between 15o and 30o. The mechanism of heat and mass transfer is analyzed in detail.Keywords: fluid mechanics, heat and mass transfer, microfluidics, staggered herringbone mixer
Procedia PDF Downloads 1132206 A Partially Accelerated Life Test Planning with Competing Risks and Linear Degradation Path under Tampered Failure Rate Model
Authors: Fariba Azizi, Firoozeh Haghighi, Viliam Makis
Abstract:
In this paper, we propose a method to model the relationship between failure time and degradation for a simple step stress test where underlying degradation path is linear and different causes of failure are possible. It is assumed that the intensity function depends only on the degradation value. No assumptions are made about the distribution of the failure times. A simple step-stress test is used to shorten failure time of products and a tampered failure rate (TFR) model is proposed to describe the effect of the changing stress on the intensities. We assume that some of the products that fail during the test have a cause of failure that is only known to belong to a certain subset of all possible failures. This case is known as masking. In the presence of masking, the maximum likelihood estimates (MLEs) of the model parameters are obtained through an expectation-maximization (EM) algorithm by treating the causes of failure as missing values. The effect of incomplete information on the estimation of parameters is studied through a Monte-Carlo simulation. Finally, a real example is analyzed to illustrate the application of the proposed methods.Keywords: cause of failure, linear degradation path, reliability function, expectation-maximization algorithm, intensity, masked data
Procedia PDF Downloads 3362205 Investigation of Extreme Gradient Boosting Model Prediction of Soil Strain-Shear Modulus
Authors: Ehsan Mehryaar, Reza Bushehri
Abstract:
One of the principal parameters defining the clay soil dynamic response is the strain-shear modulus relation. Predicting the strain and, subsequently, shear modulus reduction of the soil is essential for performance analysis of structures exposed to earthquake and dynamic loadings. Many soil properties affect soil’s dynamic behavior. In order to capture those effects, in this study, a database containing 1193 data points consists of maximum shear modulus, strain, moisture content, initial void ratio, plastic limit, liquid limit, initial confining pressure resulting from dynamic laboratory testing of 21 clays is collected for predicting the shear modulus vs. strain curve of soil. A model based on an extreme gradient boosting technique is proposed. A tree-structured parzan estimator hyper-parameter tuning algorithm is utilized simultaneously to find the best hyper-parameters for the model. The performance of the model is compared to the existing empirical equations using the coefficient of correlation and root mean square error.Keywords: XGBoost, hyper-parameter tuning, soil shear modulus, dynamic response
Procedia PDF Downloads 2042204 Carotenoids a Biologically Important Bioactive Compound
Authors: Aarti Singh, Anees Ahmad
Abstract:
Carotenoids comprise a group of isoprenoid pigments. Carotenes, xanthophylls and their derivatives have been found to play an important role in all living beings through foods, neutraceuticals and pharmaceuticals. α-carotene, β-carotene and β-cryptoxanthin play a vital role in humans to provide vitamin A source for the growth, development and proper functioning of immune system and vision. They are very crucial for plants and humans as they protect from photooxidative damage and are excellent antioxidants quenching singlet molecular oxygen and peroxyl radicals. Diet including more intake of carotenoids results in reduced threat of various chronic diseases such as cancer (lung, breast, prostrate, colorectal and ovarian cancers) and coronary heart diseases. The blue light filtering efficiency of the carotenoids in liposomes have been reported to be maximum in lutein followed by zeaxanthin, β-carotene and lycopene. Lycopene plays a vital role for the protection from CVD. Lycopene in serum is directly related to reduced risk of osteoporosis in postmenopausal women. Carotenoids have major role in the treatment of skin disorders. There is need to identify and isolate novel carotenoids from diverse natural sources for human health benefits.Keywords: antioxidants, carotenoids, neutraceuticals, osteoporosis, pharmaceuticals
Procedia PDF Downloads 3772203 Gas Lift Optimization to Improve Well Performance
Authors: Mohamed A. G. H. Abdalsadig, Amir Nourian, G. G. Nasr, Meisam Babaie
Abstract:
Gas lift optimization is becoming more important now a day in petroleum industry. A proper lift optimization can reduce the operating cost, increase the net present value (NPV) and maximize the recovery from the asset. A widely accepted definition of gas lift optimization is to obtain the maximum output under specified operating conditions. In addition, gas lift, a costly and indispensable means to recover oil from high depth reservoir entails solving the gas lift optimization problems. Gas lift optimization is a continuous process; there are two levels of production optimization. The total field optimization involves optimizing the surface facilities and the injection rate that can be achieved by standard tools softwares. Well level optimization can be achieved by optimizing the well parameters such as point of injection, injection rate, and injection pressure. All these aspects have been investigated and presented in this study by using experimental data and PROSPER simulation program. The results show that the well head pressure has a large influence on the gas lift performance and also proved that smart gas lift valve can be used to improve gas lift performance by controlling gas injection from down hole. Obtaining the optimum gas injection rate is important because excessive gas injection reduces production rate and consequently increases the operation cost.Keywords: optimization, production rate, reservoir pressure effect, gas injection rate effect, gas injection pressure
Procedia PDF Downloads 415