Search results for: IGZO (Indium-Gallium-Zinc Oxide) photosynaptic device
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3248

Search results for: IGZO (Indium-Gallium-Zinc Oxide) photosynaptic device

1118 Control of Single Axis Magnetic Levitation System Using Fuzzy Logic Control

Authors: A. M. Benomair, M. O. Tokhi

Abstract:

This paper presents the investigation on a system model for the stabilization of a Magnetic Levitation System (Maglev’s). The magnetic levitation system is a challenging nonlinear mechatronic system in which an electromagnetic force is required to suspend an object (metal sphere) in air space. The electromagnetic force is very sensitive to the noise which can create acceleration forces on the metal sphere, causing the sphere to move into the unbalanced region. Maglev’s give the contribution in industry and this system has reduce the power consumption, has increase the power efficiency and reduce the cost maintenance. The common applications for Maglev’s Power Generation (e.g. wind turbine), Maglev’s trains and Medical Device (e.g. Magnetically suspended Artificial Heart Pump). This paper presents the comparison between dynamic response and robust characteristic for both conventional PD and Fuzzy PD controller. The main contribution of this paper is the proof of fuzzy PD type stabilization and robustness. By use of a method to tune the scaling factors of the linear PD type fuzzy controller from an equivalent tuned conventional PD.

Keywords: magnetic levitation system, PD controller, Fuzzy Logic Control, Fuzzy PD

Procedia PDF Downloads 269
1117 Carbon Coated Yarn Supercapacitors: Parametric Study of Performance Output

Authors: Imtiaz Ahmed Khan, Sabu John, Sania Waqar, Lijing Wang, Mac Fergusson, Ilija Najdovski

Abstract:

Evolution of textiles, from its orthodox to more interactive role has stirred the researchers to uncover its application in numerous arenas. The idea of using textile based materials for wearable energy harvesting and storage devices have gained immense popularity. This is mainly due to textile comfort and flexibility features. In this work, nano-carbonous materials were infused on cellulosic fibers using caustic soda treatment. This paper presents the complete procedure of yarn supercapacitors fabrication process through dip coating technique and its characterization method. The main objective is to study, the effect of varying caustic soda concentration on mass loading of activated carbon on yarns and the related capacitance output of the designed yarn supercapacitor. Polyvinyl alcohol and Phosphoric acid were used as electrolyte in a two-electrode cell assembly to measure device electrochemical performance. The results show a promising increase in capacitance value using this technique.

Keywords: yarn supercapacitors, activated carbon, dip coating, caustic soda, electrolyte, electrochemical characterization

Procedia PDF Downloads 459
1116 Molecular Dynamics Study on Mechanical Responses of Circular Graphene Nanoflake under Nanoindentation

Authors: Jeong-Won Kang

Abstract:

Graphene, a single-atom sheet, has been considered as the most promising material for making future nanoelectromechanical systems as well as purely electrical switching with graphene transistors. Graphene-based devices have advantages in scaled-up device fabrication due to the recent progress in large area graphene growth and lithographic patterning of graphene nanostructures. Here we investigated its mechanical responses of circular graphene nanoflake under the nanoindentation using classical molecular dynamics simulations. A correlation between the load and the indentation depth was constructed. The nanoindented force in this work was applied to the center point of the circular graphene nanoflake and then, the resonance frequency could be tuned by a nanoindented depth. We found the hardening or the softening of the graphene nanoflake during its nanoindented-deflections, and such properties were recognized by the shift of the resonance frequency. The calculated mechanical parameters in the force vs deflection plot were in good agreement with previous experimental and theoretical works. This proposed schematics can detect the pressure via the deflection change or/and the resonance frequency shift, and also have great potential for versatile applications in nanoelectromechanical systems.

Keywords: graphene, pressure sensor, circular graphene nanoflake, molecular dynamics

Procedia PDF Downloads 384
1115 Improvements and Implementation Solutions to Reduce the Computational Load for Traffic Situational Awareness with Alerts (TSAA)

Authors: Salvatore Luongo, Carlo Luongo

Abstract:

This paper discusses the implementation solutions to reduce the computational load for the Traffic Situational Awareness with Alerts (TSAA) application, based on Automatic Dependent Surveillance-Broadcast (ADS-B) technology. In 2008, there were 23 total mid-air collisions involving general aviation fixed-wing aircraft, 6 of which were fatal leading to 21 fatalities. These collisions occurred during visual meteorological conditions, indicating the limitations of the see-and-avoid concept for mid-air collision avoidance as defined in the Federal Aviation Administration’s (FAA). The commercial aviation aircraft are already equipped with collision avoidance system called TCAS, which is based on classic transponder technology. This system dramatically reduced the number of mid-air collisions involving air transport aircraft. In general aviation, the same reduction in mid-air collisions has not occurred, so this reduction is the main objective of the TSAA application. The major difference between the original conflict detection application and the TSAA application is that the conflict detection is focused on preventing loss of separation in en-route environments. Instead TSAA is devoted to reducing the probability of mid-air collision in all phases of flight. The TSAA application increases the flight crew traffic situation awareness providing alerts of traffic that are detected in conflict with ownship in support of the see-and-avoid responsibility. The relevant effort has been spent in the design process and the code generation in order to maximize the efficiency and performances in terms of computational load and memory consumption reduction. The TSAA architecture is divided into two high-level systems: the “Threats database” and the “Conflict detector”. The first one receives the traffic data from ADS-B device and provides the memorization of the target’s data history. Conflict detector module estimates ownship and targets trajectories in order to perform the detection of possible future loss of separation between ownship and each target. Finally, the alerts are verified by additional conflict verification logic, in order to prevent possible undesirable behaviors of the alert flag. In order to reduce the computational load, a pre-check evaluation module is used. This pre-check is only a computational optimization, so the performances of the conflict detector system are not modified in terms of number of alerts detected. The pre-check module uses analytical trajectories propagation for both target and ownship. This allows major accuracy and avoids the step-by-step propagation, which requests major computational load. Furthermore, the pre-check permits to exclude the target that is certainly not a threat, using an analytical and efficient geometrical approach, in order to decrease the computational load for the following modules. This software improvement is not suggested by FAA documents, and so it is the main innovation of this work. The efficiency and efficacy of this enhancement are verified using fast-time and real-time simulations and by the execution on a real device in several FAA scenarios. The final implementation also permits the FAA software certification in compliance with DO-178B standard. The computational load reduction allows the installation of TSAA application also on devices with multiple applications and/or low capacity in terms of available memory and computational capabilities

Keywords: traffic situation awareness, general aviation, aircraft conflict detection, computational load reduction, implementation solutions, software certification

Procedia PDF Downloads 277
1114 Development of Paper Based Analytical Devices for Analysis of Iron (III) in Natural Water Samples

Authors: Sakchai Satienperakul, Manoch Thanomwat, Jutiporn Seedasama

Abstract:

A paper based analytical devices (PADs) for the analysis of Fe (III) ion in natural water samples is developed, using reagent from guava leaf extract. The extraction is simply performed in deionized water pH 7, where tannin extract is obtained and used as an alternative natural reagent. The PADs are fabricated by ink-jet printing using alkenyl ketene dimer (AKD) wax. The quantitation of Fe (III) is carried out using reagent from guava leaf extract prepared in acetate buffer at the ratio of 1:1. A color change to gray-purple is observed by naked eye when dropping sample contained Fe (III) ion on PADs channel. The reflective absorption measurement is performed for creating a standard curve. The linear calibration range is observed over the concentration range of 2-10 mg L-1. Detection limited of Fe (III) is observed at 2 mg L-1. In its optimum form, the PADs is stable for up to 30 days under oxygen free conditions. The small dimensions, low volume requirement and alternative natural reagent make the proposed PADs attractive for on-site environmental monitoring and analysis.

Keywords: green chemical analysis, guava leaf extract, lab on a chip, paper based analytical device

Procedia PDF Downloads 238
1113 Functional Characteristics of Chemosensory Proteins in the Sawyer Beetle Monochamus alternatus Hope

Authors: Saqib Ali, Man-Qun Wang

Abstract:

The Japanese pine sawyer, Monochamus alternatus Hope (Coleoptera: Cerambycidae), is a major pest of pines and it is also the key vector of the exotic pinewood nematode in China. In the present study, we cloned, expressed, and purified a chemosensory protein (CSP) in M. alternatus. We surveyed its expression in various developmental stages of male and female adult tissues and determined its binding affinities for different pine volatiles using a competitive binding fluorescence assay. A CSP known as CSP5 in M. alternatus was obtained from an antennal cDNA library and expressed in Escherichia coli. Quantitative reverse transcription polymerase chain reaction results indicated that the CSP5 gene was mainly expressed in male and female antennae. Competitive binding assays were performed to test the binding affinity of recombinant CSP5 to 13 odour molecules of pine volatiles. The results showed that CSP5 showed very strong binding abilities to myrcene, (+)-β-pinene, and (−)-isolongifolene, whereas the volatiles 2-methoxy-4-vinylphenol, p-cymene, and (+)-limonene oxide have relatively weak binding affinity at pH 5.0. Three volatiles myrcene, (+)-β-pinene, and (−)-isolongifolene may play crucial roles in CSP5 binding with ligands, but this needs further study for confirmation. The sensitivity of insect to host plant volatiles can effectively be used to control and monitor the population through mass trapping as part of integrated pest management programs.

Keywords: olfactory-specific protein, volatiles, competitive binding assay, expression characteristics, qPCR

Procedia PDF Downloads 125
1112 A Novel All-Solid-State Microsupercapacitor Based on Carbon Nanotube Sheets

Authors: Behnoush Dousti, Ye Choi, Gil S. Lee

Abstract:

Supercapacitors which are also known as ultra supercapacitors play a significant role in development of energy storage devices owing to their high power density and rate capability. Nobel research has been conducted on micro scale energy storage systems currently to address the demand for smaller wearable technology and portable devices. Improving the performance of these microsupercapacitors have been always a challenge. Here, we demonstrate a facile fabrication of a microsupercapacitor (MSC) with interdigitated electrodes using novel structure of carbon nanotube sheets which are spun directly from as-grown carbon nanotube forests. Stability and performance of the device was tested using an aqueous PVA-H3PO4 gel electrolyte that also offers desirable electrochemical capacitive properties. High Coulombic efficiency around 100%, great rate capability and excellent capacitance retention over 15,000 cycles were obtained. Capacitive performance greatly improved with surface modification with acid and nitrogen doping of the CNT sheets. The high power density and stable cycling performance make this microsupercapacitor a suitable candidate for verity of energy storage application.

Keywords: carbon nanotube sheet, energy storage, solid state electrolyte, supercapacitor

Procedia PDF Downloads 139
1111 Mental Health of the Elderly: Evaluating a Newly Developed Structured Life-Review Manual Using a Within-Subjects Pre-Post Design

Authors: Wladislaw Mill, Hariet Kirschner, Anna Zimmermann, Sashi Singh, Simon Forstmeier, Uwe Berger, Bernhard Strauss, Benedikt Werner

Abstract:

Introduction: A promising method to improve mental health of elderly people are structured life-reviews. We report the evaluation of our newly developed manual for structured life-reviews. The manual was created with the emphasis on straightforward application so that it can be used by professionals and lay people alike. Method: A within-subjects pre-post design is used to evaluate the manual using a geriatric depression scale and a self-integrity measure. Participants are elderly people living by themselves and in nursing homes. Findings: It is shown that elderly people perceive the structured life-review as a very positive experience. More importantly, it is shown that a negative trend of self-integrity and geriatric depression is significantly reduced by the intervention. Conclusion: The data suggest that the manual contributes positively to self- perception and mental health. We conclude that this newly developed device is very valuable to augment elderly care.

Keywords: structured life-review, self-integrity, geriatric depression, preventation research

Procedia PDF Downloads 255
1110 Study on the OTP Authentication Method and Security for User Mobility in the Cloud

Authors: Jong-Won Lee

Abstract:

Since Cloud environment has appeared as the most powerful keyword in the computing industry, the growth in VDI (Virtual Desktop Infrastructure) became remarkable in domestic market. In recent years, with the trend that mobile devices such as smartphones and pads spread so rapidly, the strengths of VDI that allows people to access and perform business on the move along with companies' office needs expedite more rapid spread of VDI. However, although this enhanced accessibility and mobility can bring the enhanced productivity, it sometimes conflicts with the security, so there should be more detailed security solution, which is user authentication. In this paper, mobile OTP (One-Time Password) authentication method is proposed to secure mobile device portability through rapid and secure authentication using mobile devices such as mobile phones or pads, which does not require additional purchase or possession of OTP tokens of users. However, in order to use the service continuously and reliably in the cloud environment, both service provider and user have to prepare for security awareness and security threats, and continuously study the conflicting aspect between the improving user convenience and the security and supplement so that cloud service can provide opportunities to develop as a new growth industry in the future and create a new market in IT industry.

Keywords: cloud, OTP, mobility, security, authentication

Procedia PDF Downloads 345
1109 Microwave Dielectric Properties and Microstructures of Nd(Ti₀.₅W₀.₅)O₄ Ceramics for Application in Wireless Gas Sensors

Authors: Yih-Chien Chen, Yue-Xuan Du, Min-Zhe Weng

Abstract:

Carbon monoxide is a substance produced by the incomplete combustion. It is toxic even at concentrations of less than 100ppm. Since it is colorless and odorless, it is difficult to detect. CO sensors have been developed using a variety of physical mechanisms, including semiconductor oxides, solid electrolytes, and organic semiconductors. Many works have focused on using semiconducting sensors composed of sensitive layers such as ZnO, TiO₂, and NiO with high sensitivity for gases. However, these sensors working at high temperatures increased their power consumption. On the other hand, the dielectric resonator (DR) is attractive for gas detection due to its large surface area and sensitivity for external environments. Materials that are to be employed in sensing devices must have a high-quality factor. Numerous researches into the fergusonite-type structure and related ceramic systems have explored. Extensive research into RENbO₄ ceramics has explored their potential application in resonators, filters, and antennas in modern communication systems, which are operated at microwave frequencies. Nd(Ti₀.₅W₀.₅)O₄ ceramics were synthesized herein using the conventional mixed-oxide method. The Nd(Ti₀.₅W₀.₅)O₄ ceramics were prepared using the conventional solid-state method. Dielectric constants (εᵣ) of 15.4-19.4 and quality factor (Q×f) of 3,600-11,100 GHz were obtained at sintering temperatures in the range 1425-1525°C for 4 h. The dielectric properties of the Nd(Ti₀.₅W₀.₅)O₄ ceramics at microwave frequencies were found to vary with the sintering temperature. For a further understanding of these microwave dielectric properties, they were analyzed by densification, X-ray diffraction (XRD), and by making microstructural observations.

Keywords: dielectric constant, dielectric resonators, sensors, quality factor

Procedia PDF Downloads 256
1108 Harmonics and Flicker Levels at Substation

Authors: Ali Borhani Manesh, Sirus Mohammadi

Abstract:

Harmonic distortion is caused by nonlinear devices in the power system. A nonlinear device is one in which the current is not proportional to the applied voltage. Harmonic distortion is present to some degree on all power systems. Proactive monitoring of power quality disturbance levels by electricity utilities is vital to allow cost-effective mitigation when disturbances are perceived to be approaching planning levels and also to protect the security of customer installations. Ensuring that disturbance levels are within limits at the HV and EHV points of supply of the network is essential if satisfactory levels downstream are to be maintained. This paper presents discussion on a power quality monitoring campaign performed at the sub-transmission point of supply of a distribution network with the objective of benchmarking background disturbance levels prior to modifications to the substation and to ensure emissions from HV customers and the downstream MV networks are within acceptable levels. Some discussion on the difficulties involved in such a study is presented. This paper presents a survey of voltage and current harmonic distortion levels at transmission system in Kohgiloye and Boyrahmad. The effects of harmonics on capacitors and power transformers are discussed.

Keywords: power quality, harmonics, flicker, measurement, substation

Procedia PDF Downloads 693
1107 Breakthrough Highly-Effective Extraction of Perfluoroctanoic Acid Using Natural Deep Eutectic Solvents

Authors: Sana Eid, Ahmad S. Darwish, Tarek Lemaoui, Maguy Abi Jaoude, Fawzi Banat, Shadi W. Hasan, Inas M. AlNashef

Abstract:

Addressing the growing challenge of per- and polyfluoroalkyl substances (PFAS) pollution in water bodies, this study introduces natural deep eutectic solvents (NADESs) as a pioneering solution for the efficient extraction of perfluorooctanoic acid (PFOA), one of the most persistent and concerning PFAS pollutants. Among the tested NADESs, trioctylphosphine oxide: lauric acid (TOPO:LauA) in a 1:1 molar ratio was distinguished as the most effective, achieving an extraction efficiency of approximately 99.52% at a solvent-to-feed (S:F) ratio of 1:2, room temperature, and neutral pH. This efficiency is achieved within a notably short mixing time of only one min, which is significantly less than the time required by conventional methods, underscoring the potential of TOPO:LauA for rapid and effective PFAS remediation. TOPO:LauA maintained consistent performance across various operational parameters, including a range of initial PFOA concentrations (0.1 ppm to 1000 ppm), temperatures (15 °C to 100 °C), pH values (3 to 9), and S:F ratios (2:3 to 1:7), demonstrating its versatility and robustness. Furthermore, its effectiveness was consistently high over seven consecutive extraction cycles, highlighting TOPO:LauA as a sustainable, environmentally friendly alternative to hazardous organic solvents, with promising applications for reliable, repeatable use in combating persistent water pollutants such as PFOA.

Keywords: deep eutectic solvents, natural deep eutectic solvents, perfluorooctanoic acid, water remediation

Procedia PDF Downloads 58
1106 Modeling and Estimating Reserve of the Ali Javad Porphyry Copper-Gold Deposit, East Azerbaijan, Iran

Authors: Behzad Hajalilou, Nasim Hajalilou, Saeid Ansari

Abstract:

The study area is located in East Azerbaijan province, north of Ahar city, and 1/100000 geological map of Varzgan. This region is located in the middle of Iran zone. Ali Javad Porphyry copper-gold ore deposit has been created in a magmatic complex containing intrusive masses, combining Granodiorite and quartz Monzonite that penetrates into the Eocene volcanic aggregate. The most important mineralization includes primary oxides minerals (magnetite), sulfide (pyrite, chalcopyrite, Molybdenite, Bornite, Chalcocite, Covollite), secondary oxide or hydroxide minerals (hematite, goethite, limonite), and carbonate (malachite and Azurite). The mineralization forms into the vein-veinlets and scattered system. The alterations observed in the region include intermediate Argillic, advanced Argillic, Phyllic, silica, Propylitic, chlorite and Potassic. The 3D model of mineralization of the Alijavad is provided by Data DATAMINE software and based on the study of 700 polished sections of 32 drilled boreholes in the region. This model is completely compatible with the model provided by Lowell and Gilbert for the mineralization of porphyry copper deposits of quartz Monzonite type. The estimated cumulative residual value of copper for Ali Javad deposit is 81.5 million tons with 0.75 percent of copper, and for gold is 8.37 million tons with 1.8 ppm.

Keywords: porphyry copper, mineralization, Ali Javad, modeling, reserve estimation

Procedia PDF Downloads 214
1105 Mobile Phones and Language Learning: A Qualitative Meta-Analysis of Studies Published between 2008 and 2012 in the Proceedings of the International Conference on Mobile Learning

Authors: Lucia Silveira Alda

Abstract:

This research aims to analyze critically a set of studies published in the Proceedings of the International Conference on Mobile Learning of IADIS, from 2008 until 2012, which addresses the issue of foreign language learning mediated by mobile phones. The theoretical review of this study is based on the Vygotskian assumptions about tools and mediated learning and the concepts of mobile learning, CALL and MALL. In addition, the diffusion rates of the mobile phone and especially its potential are considered. Through systematic review and meta-analysis, this research intended to identify similarities and differences between the identified characteristics in the studies on the subject of language learning and mobile phone. From the analysis of the results, this study verifies that the mobile phone stands out for its mobility and portability. Furthermore, this device presented positive aspects towards student motivation in language learning. The studies were favorable to mobile phone use for learning. It was also found that the challenges in using this tool are not technical, but didactic and methodological, including the need to reflect on practical proposals. The findings of this study may direct further research in the area of language learning mediated by mobile phones.

Keywords: language learning, mobile learning, mobile phones, technology

Procedia PDF Downloads 281
1104 Ambient Notifications and the Interruption Effect

Authors: Trapond Hiransalee

Abstract:

The technology of mobile devices has changed our daily lives. Since smartphone have become a multi-functional device, many people spend unnecessary time on them, and could be interrupted by inappropriate notifications such as unimportant messages from social media. Notifications from smartphone could draw people’s attention and distract them from their priorities and current tasks. This research investigated that if the users were notified by their surroundings instead of smartphone, would it create less distraction and keep their focus on the present task. The experiment was a simulation of a lamp and door notification. Notifications related to work will be embedded in the lamp such as an email from a colleague. A notification that is useful when going outside such as weather information, traffic information, and schedule reminder will be embedded in the door. The experiment was conducted by sending notifications to the participant while he or she was working on a primary task and the working performance was measured. The results show that the lamp notification had fewer interruption effects than the smartphone. For the door notification, it was simulated in order to gain opinions and insights on ambient notifications from participants. Many participants agreed that the ambient notifications are useful and being informed by them could lessen the usage of their smartphone. The results and insights from this research could be used to guide the design process of ambient notifications.

Keywords: HCI, interaction, interaction design, usability testing

Procedia PDF Downloads 404
1103 Colloid-Based Biodetection at Aqueous Electrical Interfaces Using Fluidic Dielectrophoresis

Authors: Francesca Crivellari, Nicholas Mavrogiannis, Zachary Gagnon

Abstract:

Portable diagnostic methods have become increasingly important for a number of different purposes: point-of-care screening in developing nations, environmental contamination studies, bio/chemical warfare agent detection, and end-user use for commercial health monitoring. The cheapest and most portable methods currently available are paper-based – lateral flow and dipstick methods are widely available in drug stores for use in pregnancy detection and blood glucose monitoring. These tests are successful because they are cheap to produce, easy to use, and require minimally invasive sampling. While adequate for their intended uses, in the realm of blood-borne pathogens and numerous cancers, these paper-based methods become unreliable, as they lack the nM/pM sensitivity currently achieved by clinical diagnostic methods. Clinical diagnostics, however, utilize techniques involving surface plasmon resonance (SPR) and enzyme-linked immunosorbent assays (ELISAs), which are expensive and unfeasible in terms of portability. To develop a better, competitive biosensor, we must reduce the cost of one, or increase the sensitivity of the other. Electric fields are commonly utilized in microfluidic devices to manipulate particles, biomolecules, and cells. Applications in this area, however, are primarily limited to interfaces formed between immiscible interfaces. Miscible, liquid-liquid interfaces are common in microfluidic devices, and are easily reproduced with simple geometries. Here, we demonstrate the use of electrical fields at liquid-liquid electrical interfaces, known as fluidic dielectrophoresis, (fDEP) for biodetection in a microfluidic device. In this work, we apply an AC electric field across concurrent laminar streams with differing conductivities and permittivities to polarize the interface and induce a discernible, near-immediate, frequency-dependent interfacial tilt. We design this aqueous electrical interface, which becomes the biosensing “substrate,” to be intelligent – it “moves” only when a target of interest is present. This motion requires neither labels nor expensive electrical equipment, so the biosensor is inexpensive and portable, yet still capable of sensitive detection. Nanoparticles, due to their high surface-area-to-volume ratio, are often incorporated to enhance detection capabilities of schemes like SPR and fluorimetric assays. Most studies currently investigate binding at an immobilized solid-liquid or solid-gas interface, where particles are adsorbed onto a planar surface, functionalized with a receptor to create a reactive substrate, and subsequently flushed with a fluid or gas with the relevant analyte. These typically involve many preparation and rinsing steps, and are susceptible to surface fouling. Our microfluidic device is continuously flowing and renewing the “substrate,” and is thus not subject to fouling. In this work, we demonstrate the ability to electrokinetically detect biomolecules binding to functionalized nanoparticles at liquid-liquid interfaces using fDEP. In biotin-streptavidin experiments, we report binding detection limits on the order of 1-10 pM, without amplifying signals or concentrating samples. We also demonstrate the ability to detect this interfacial motion, and thus the presence of binding, using impedance spectroscopy, allowing this scheme to become non-optical, in addition to being label-free.

Keywords: biodetection, dielectrophoresis, microfluidics, nanoparticles

Procedia PDF Downloads 384
1102 Optimal Designof Brush Roll for Semiconductor Wafer Using CFD Analysis

Authors: Byeong-Sam Kim, Kyoungwoo Park

Abstract:

This research analyzes structure of flat panel display (FPD) such as LCD as quantitative through CFD analysis and modeling change to minimize the badness rate and rate of production decrease by damage of large scale plater at wafer heating chamber at semi-conductor manufacturing process. This glass panel and wafer device with atmospheric pressure or chemical vapor deposition equipment for transporting and transferring wafers, robot hands carry these longer and wider wafers can also be easily handled. As a contact handling system composed of several problems in increased potential for fracture or warping. A non-contact handling system is required to solve this problem. The panel and wafer warping makes it difficult to carry out conventional contact to analysis. We propose a new non-contact transportation system with combining air suction and blowout. The numerical analysis and experimental is, therefore, should be performed to obtain compared to results achieved with non-contact solutions. This wafer panel noncontact handler shows its strength in maintaining high cleanliness levels for semiconductor production processes.

Keywords: flat panel display, non contact transportation, heat treatment process, CFD analysis

Procedia PDF Downloads 414
1101 Fast Prediction Unit Partition Decision and Accelerating the Algorithm Using Cudafor Intra and Inter Prediction of HEVC

Authors: Qiang Zhang, Chun Yuan

Abstract:

Since the PU (Prediction Unit) decision process is the most time consuming part of the emerging HEVC (High Efficient Video Coding) standardin intra and inter frame coding, this paper proposes the fast PU decision algorithm and speed up the algorithm using CUDA (Compute Unified Device Architecture). In intra frame coding, the fast PU decision algorithm uses the texture features to skip intra-frame prediction or terminal the intra-frame prediction for smaller PU size. In inter frame coding of HEVC, the fast PU decision algorithm takes use of the similarity of its own two Nx2N size PU's motion vectors and the hierarchical structure of CU (Coding Unit) partition to skip some modes of PU partition, so as to reduce the motion estimation times. The accelerate algorithm using CUDA is based on the fast PU decision algorithm which uses the GPU to make the motion search and the gradient computation could be parallel computed. The proposed algorithm achieves up to 57% time saving compared to the HM 10.0 with little rate-distortion losses (0.043dB drop and 1.82% bitrate increase on average).

Keywords: HEVC, PU decision, inter prediction, intra prediction, CUDA, parallel

Procedia PDF Downloads 392
1100 Controller Design and Experimental Evaluation of a Motorized Assistance for a Patient Transfer Floor Lift

Authors: Donatien Callon, Ian Lalonde, Mathieu Nadeau, Alexandre Girard

Abstract:

Patient transfer is a challenging, critical task because it exposes caregivers to injury risks. Available transfer devices, like floor lifts, lead to improvements but are far from perfect. They do not eliminate the caregivers’ risk of musculoskeletal disorders, and they can be burdensome to use due to their poor maneuverability. This paper presents a new motorized floor lift with a single central motorized wheel connected to an instrumented handle. Admittance controllers are designed to 1) improve the device maneuverability, 2) reduce the required caregiver effort, and 3) ensure the security and comfort of patients. Two controller designs, one with a linear admittance law and a non-linear admittance law with variable damping, were developed and implemented on a prototype. Tests were performed on seven participants to evaluate the performance of the assistance system and the controllers. The experimental results show that 1) the motorized assistance with the variable damping controller improves maneuverability by 28%, 2) reduces the amount of effort required to push the lift by 66%, and 3) provides the same level of patient comfort compared to a standard unassisted floor lift.

Keywords: floor lift, human robot interaction, admittance controller, variable admittance

Procedia PDF Downloads 105
1099 Anti-inflammatory and Antioxidant Activity of Heliotropium indicum Linn. Used for Cancer Patients Treatment

Authors: Jitpisute Chunthorng-Orn, Thana Juckmeta, Onmanee Prajuabjinda, Arunporn Itharat

Abstract:

Inflammation and oxidative stress work together to produce symptoms in cancer patients. The whole part of it is used as a preparation to treat cancer patients in Khampramong temple which has been a place of treatment and palliative care for cancer patients since 2005. Thus, the objective of this study was to investigate anti-inflammatory and antioxidant activities of Heliotropium indicum extracts. Dried plant materials were extracted in a similar manner to those practiced by the Khampramong Temple i.e. maceration in 95% ethanol and boiling in water. For anti-inflammation activity, both extracts were tested for suppression of nitric oxide (NO) production in LPS-induced RAW 264.7 cells. They were also tested for antioxidant activity by DPPH radical scavenging assay. This study found that the ethanolic extract of Heliotropium indicum exhibited higher inhibitory activity of NO release than Indomethacin as a positive control (IC50 value of 24.17±2.12 and 34.67±6.23 μg/mL, respectively). For DPPH radical scavenging assay, the ethanolic extract also exhibited antioxidant activity but less than BHT as a antioxidant compound (EC50 values = 28.91±4.26 and 13.08±0.29 μg/mL, respectively). In contrast, its water extract had no inhibitory activity on NO release (IC50 > 100 μg/mL) and no inhibitory activity on DPPH radicals (EC50 values > 100 μg/mL). The results showed correlation between anti-inflammation and antioxidant activity and these results also support using this plant to treat cancer patients.

Keywords: Heliotropium indicum, RAW 264.7, DPPH, Khampramong Temple

Procedia PDF Downloads 536
1098 Anti-Melanogenesis and Anti-Inflammatory Effects of Opuntia humifusa

Authors: Yonghwa Lee, Yoon Suk Kim, Yongsub Yi

Abstract:

This study was to confirm the effects of anti-melanogenesis and anti-inflammatory effects from Opuntia humifusa fruit and stem extracts. A potent anti-oxidant activity was shown from the leaf extract at IC50 value of 38.33±1.07 μg/mL and fruit extract at IC50 value of 40.23±2.21 μg/mL by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Also, phenolic contents were confirmed total phenolic assay by high performance liquid chromatography (HPLC). Fraction of taxifolin from leaf extract was identified using HPLC and gas chromatography/mass spectrometry. The extracts of Opuntia humifusa fruit and stem were confirmed about toxicity effect in B16 F1 by cell viability. Melanin contents were decreased. Opuntia humifusa fruit and stem extracts had a positive effect of melanin synthesis inhibition for skin whitening. In investigating the anti-inflammatory activities of Opuntia humifusa, the results of cell viability indicated that taxifolin did not show cytotoxicity on RAW264.7 cells at 500 μM of concentration. The results show that taxifolin inhibited lipopolysaccharide (LPS)-induced production of Nitrite oxide (NO). In addition, taxifolin indicated the inhibition of lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF) -α and interleukin (IL) -6 productions by cytokine assay and cyclooxygenase (COX)-2 expression by western blot analysis, meaning that taxifolin had a significant anti-inflammatory effect. Our results suggested that taxifolin from Opuntia humifusa has anti-melanogenesis and anti-inflammatory activities.

Keywords: anti-melanogenesis, anti-inflammatory, Opuntia humifusa, taxifolin

Procedia PDF Downloads 310
1097 Carbon Coated Silicon Nanoparticles Embedded MWCNT/Graphene Matrix Anode Material for Li-Ion Batteries

Authors: Ubeyd Toçoğlu, Miraç Alaf, Hatem Akbulut

Abstract:

We present a work which was conducted in order to improve the cycle life of silicon based lithium ion battery anodes by utilizing novel composite structure. In this study, carbon coated nano sized (50-100 nm) silicon particles were embedded into Graphene/MWCNT silicon matrix to produce free standing silicon based electrodes. Also, conventional Si powder anodes were produced from Si powder slurry on copper current collectors in order to make comparison of composite and conventional anode structures. Free –standing composite anodes (binder-free) were produced via vacuum filtration from a well dispersion of Graphene, MWCNT and carbon coated silicon powders. Carbon coating process of silicon powders was carried out via microwave reaction system. The certain amount of silicon powder and glucose was mixed under ultrasonication and then coating was conducted at 200 °C for two hours in Teflon lined autoclave reaction chamber. Graphene which was used in this study was synthesized from well-known Hummers method and hydrazine reduction of graphene oxide. X-Ray diffraction analysis and RAMAN spectroscopy techniques were used for phase characterization of anodes. Scanning electron microscopy analyses were conducted for morphological characterization. The electrochemical performance tests were carried out by means of galvanostatic charge/discharge, cyclic voltammetry and electrochemical impedance spectroscopy.

Keywords: graphene, Li-Ion, MWCNT, silicon

Procedia PDF Downloads 251
1096 Estimating the Power Influence of an Off-Grid Photovoltaic Panel on the Indicting Rate of a Storage System (Batteries)

Authors: Osamede Asowata

Abstract:

The current resurgence of interest in the use of renewable energy is driven by the need to reduce the high environmental impact of fossil-based energy. The aim of this paper is to evaluate the effect of a stationary PV panel on the charging rate of deep-cycle valve regulated lead-acid (DCVRLA) batteries. Stationary PV panels are set to a fixed tilt and orientation angle, which plays a major role in dictating the output power of a PV panel and subsequently on the charging time of a DCVRLA battery. In a basic PV system, an energy storage device that stores the power from the PV panel is necessary due to the fluctuating nature of the PV voltage caused by climatic conditions. The charging and discharging times of a DCVRLA battery were determined for a twelve month period from January through December 2012. Preliminary results, which include regression analysis (R2), conversion-time per week and work-time per day, indicate that a 36 degrees tilt angle produces a good charging rate for a latitude of 26 degrees south throughout the year.

Keywords: tilt and orientation angles, solar chargers, PV panels, storage devices, direct solar radiation.

Procedia PDF Downloads 236
1095 Bilateral Telecontrol of AutoMerlin Mobile Robot Using Time Domain Passivity Control

Authors: Aamir Shahzad, Hubert Roth

Abstract:

This paper is presenting the bilateral telecontrol of AutoMerlin Mobile Robot having communication delay. Passivity Observers has been designed to monitor the net energy at both ports of a two port network and if any or both ports become active making net energy negative, then the passivity controllers dissipate the proper energy to make the overall system passive in the presence of time delay. The environment force is modeled and sent back to human operator so that s/he can feel it and has additional information about the environment in the vicinity of mobile robot. The experimental results have been presented to show the performance and stability of bilateral controller. The results show the whenever the passivity observers observe active behavior then the passivity controller come into action to neutralize the active behavior to make overall system passive.

Keywords: bilateral control, human operator, haptic device, communication network, time domain passivity control, passivity observer, passivity controller, time delay, mobile robot, environment force

Procedia PDF Downloads 388
1094 Grating Assisted Surface Plasmon Resonance Sensor for Monitoring of Hazardous Toxic Chemicals and Gases in an Underground Mines

Authors: Sanjeev Kumar Raghuwanshi, Yadvendra Singh

Abstract:

The objective of this paper is to develop and optimize the Fiber Bragg (FBG) grating based Surface Plasmon Resonance (SPR) sensor for monitoring the hazardous toxic chemicals and gases in underground mines or any industrial area. A fully cladded telecommunication standard FBG is proposed to develop to produce surface plasmon resonance. A thin few nm gold/silver film (subject to optimization) is proposed to apply over the FBG sensing head using e-beam deposition method. Sensitivity enhancement of the sensor will be done by adding a composite nanostructured Graphene Oxide (GO) sensing layer using the spin coating method. Both sensor configurations suppose to demonstrate high responsiveness towards the changes in resonance wavelength. The GO enhanced sensor may show increased sensitivity of many fold compared to the gold coated traditional fibre optic sensor. Our work is focused on to optimize GO, multilayer structure and to develop fibre coating techniques that will serve well for sensitive and multifunctional detection of hazardous chemicals. This research proposal shows great potential towards future development of optical fiber sensors using readily available components such as Bragg gratings as highly sensitive chemical sensors in areas such as environmental sensing.

Keywords: surface plasmon resonance, fibre Bragg grating, sensitivity, toxic gases, MATRIX method

Procedia PDF Downloads 264
1093 Comparison of Remifentanil EC50 for Facilitating I-Gel and Laryngeal Mask Airway Insertion with Propofol Anesthesia

Authors: Jong Yeop Kim, Jong Bum Choi, Hyun Jeong Kwak, Sook Young Lee

Abstract:

Background: Each supraglottic airway requires different anesthetic depth because it has a specific structure and different compressive force in the oropharyngeal cavity. We designed the study to investigate remifentanil effect-site concentration (Ce) in 50% of patients (EC50) for successful insertion of i- gel, and to compare it with that for laryngeal mask airway (LMA) insertion during propofol target-controlled infusion (TCI). Methods: Forty-one female patients were randomized to the i-gel group (n=20) or the LMA group (n=21). Anesthesia induction was performed using propofol Ce of 5 μg/ml and the predetermined remifentanil Ce, and i-gel or LMA insertion was attempted 5 min later. The remifentanil Ce was estimated by modified Dixon's up-and-down method (initial concentration: 3.0 ng/ml, step size: 0.5 ng/ml). The patient’s response to device insertion was classified as either ‘success (no movement)’ or ‘failure (movement)’. Results: Using the Dixon’s up and down method, EC50 of remifentanil Ce for i-gel (1.58 ± 0.41 ng/ml) was significantly lower than that for LMA (2.25 ± 0.55 ng/ml) (p=0.038). Using isotonic regression, EC50 (83% CI) of remifentanil in the i-gel group [1.50 (1.37-1.80) ng/ml] was statistically lower than that in the LMA group [2.00 (1.82-2.34) ng/ml]. EC95 (95% CI) of remifentanil in the i-gel group [2.38 (1.48-2.50) ng/ml] was statistically lower than that in the LMA group [3.35 (2.58-3.48) ng/ml]. Conclusion: We found that EC50 of remifentanil Ce for i-gel insertion (1.58 ng/ml) was significantly lower than that for LMA insertion (2.25 ng/ml), in female patients during propofol TCI without neuromuscular blockade.

Keywords: i-gel, laryngeal mask airway, propofol, remifentanil

Procedia PDF Downloads 379
1092 Air Conditioning Variation of 1kW Open-Cathode Proton Exchange Membrane (PEM) Fuel Cell

Authors: Mohammad Syahirin Aisha, Khairul Imran Sainan

Abstract:

The PEM fuel cell is a device that generate electric by electrochemical reaction between hydrogen fuel and oxygen in the fuel cell stack. PEM fuel cell consists of an anode (hydrogen supply), a cathode (oxygen supply) and an electrolyte that allow charges move between the two positions of the fuel cell. The only product being developed after the reaction is water (H2O) and heat as the waste which does not emit greenhouse gasses. The performance of fuel cell affected by numerous parameters. This study is restricted to cathode parameters that affect fuel cell performance. At the anode side, the reactant is not going through any changes. Experiments with variation in air velocity (3m/s, 6m/s and 9m/s), temperature (10oC, 20oC, 35oC) and relative humidity (50%, 60%, and 70%) have been carried out. The experiments results are presented in the form of fuel cell stack power output over time, which demonstrate the impacts of the various air condition on the execution of the PEM fuel cell. In this study, the experimental analysis shows that with variation of air conditions, it gives different fuel cell performance behavior. The maximum power output of the experiment was measured at an ambient temperature of 25oC with relative humidity and 9m/s velocity of air.

Keywords: air-breathing PEM fuel cell, cathode side, performance, variation in air condition

Procedia PDF Downloads 456
1091 Radical Degradation of Acetaminophen with Peroxymonosulfate-Based Oxidation Processes

Authors: Chaoqun Tan, Naiyun Gao, Xiaoyan Xin

Abstract:

Perxymonosulfate (PMS)-based oxidation processes, as an alternative of hydrogen peroxide-based oxidation processes, are more and more popular because of reactive radical species (SO4-•, OH•) produced in systems. Magnetic nano-scaled particles Fe3O4 and ferrous anion (Fe2+) were studied for the activation of PMS for degradation of acetaminophen (APAP) in water. The Fe3O4 MNPs were found to effectively catalyze PMS for APAP and the reactions well followed a pseudo-first-order kinetics pattern (R2>0.95). While the degradation of APAP in PMS-Fe2+ system proceeds through two stages: a fast stage and a much slower stage. Within 5 min, approximately 7% and 18% of 10 ppm APAP was accomplished by 0.2 mM PMS in Fe3O4 (0.8g/L) and Fe2+ (0.1mM) activation process. However, as reaction proceed to 120 min, approximately 75% and 35% of APAP was removed in Fe3O4 activation process and Fe2+ activation process, respectively. Within 120 min, the mineralization of APAP was about 7.5% and 5.0% (initial APAP of 10 ppm and [PMS]0 of 0.2 mM) in Fe3O4-PMS and Fe2+-PMS system, while the mineralization could be greatly increased to about 31% and 40% as [PMS]0 increased to 2.0 mM in in Fe3O4-PMS and Fe2+-PMS system, respectively. At last, the production of reactive radical species were validated directly from Electron Paramagnetic Resonance (ESR) tests with 0.1 M 5,5-Dimethyl-1-pyrrolidine N-oxide (DMPO). Plausible mechanisms on the radical generation from Fe3O4 and Fe2+ activation of PMS are proposed on the results of radial identification tests. The results demonstrated that Fe3O4 MNPs activated PMS and Fe2+ anion activated PMS systems are promising technologies for water pollution caused by contaminants such as pharmaceutical. Fe3O4-PMS system is more suitable for slowly remediation, while Fe2+-PMS system is more suitable for fast remediation.

Keywords: acetaminophen, peroxymonosulfate, radicals, Electron Paramagnetic Resonance (ESR)

Procedia PDF Downloads 344
1090 A Comparative Assessment of Daylighting Metrics Assessing the Daylighting Performance of Three Shading Devices under Four Different Orientations

Authors: Mohamed Boubekri, Jaewook Lee

Abstract:

The assessment of the daylighting performance of a design solution is a complex task due to the changing nature of daylight. A few quantitative metrics are available to designers to assess such a performance, among them are the mean hourly illuminance (MHI), the daylight factor (DF), the daylight autonomy (DA) and the useful daylight illuminance (UDI). Each of these metrics has criteria and limitations that affect the outcome of the evaluation. When to use one metric instead of another depends largely on the design goals to be achieved. Using Design Iterate Validate Adapt (DIVA) daylighting simulation program we set out to examine the performance behavior of these four metrics with the changing dimensions of three shading devices: a horizontal overhang, a horizontal louver system, and a vertical louver system, and compare their performance behavior as the orientation of the window changes. The context is a classroom of a prototypical elementary school in South Korea. Our results indicate that not all four metrics behave similarly as we vary the size of each shading device and as orientations changes. The UDI is the metric that leads to outcome most different than the other three metrics. Our conclusion is that not all daylighting metrics lead to the same conclusions and that it is important to use the metric that corresponds to the specific goals and objectives of the daylighting solution.

Keywords: daylight factor, hourly daylight illuminance, daylight autonomy, useful daylight illuminance

Procedia PDF Downloads 281
1089 Vertically Coupled III-V/Silicon Single Mode Laser with a Hybrid Grating Structure

Authors: Zekun Lin, Xun Li

Abstract:

Silicon photonics has gained much interest and extensive research for a promising aspect for fabricating compact, high-speed and low-cost photonic devices compatible with complementary metal-oxide-semiconductor (CMOS) process. Despite the remarkable progress made on the development of silicon photonics, high-performance, cost-effective, and reliable silicon laser sources are still missing. In this work, we present a 1550 nm III-V/silicon laser design with stable single-mode lasing property and robust and high-efficiency vertical coupling. The InP cavity consists of two uniform Bragg grating sections at sides for mode selection and feedback, as well as a central second-order grating for surface emission. A grating coupler is etched on the SOI waveguide by which the light coupling between the parallel III-V and SOI is reached vertically rather than by evanescent wave coupling. Laser characteristic is simulated and optimized by the traveling-wave model (TWM) and a Green’s function analysis as well as a 2D finite difference time domain (FDTD) method for the coupling process. The simulation results show that single-mode lasing with SMSR better than 48dB is achievable, and the threshold current is less than 15mA with a slope efficiency of around 0.13W/A. The coupling efficiency is larger than 42% and possesses a high tolerance with less than 10% reduction for 10 um horizontal or 15 um vertical dislocation. The design can be realized by standard flip-chip bonding techniques without co-fabrication of III-V and silicon or precise alignment.

Keywords: III-V/silicon integration, silicon photonics, single mode laser, vertical coupling

Procedia PDF Downloads 151