Search results for: Deep learning based segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33236

Search results for: Deep learning based segmentation

31106 English Language Teaching and Learning Analysis in Iran

Authors: F. Zarrabi, J. R. Brown

Abstract:

Although English is not a second language in Iran, it has become an inseparable part of many Iranian people’s lives and is becoming more and more widespread. This high demand has caused a significant increase in the number of private English language institutes in Iran. Although English is a compulsory course in schools and universities, the majority of Iranian people are unable to communicate easily in English. This paper reviews the current state of teaching and learning English as an international language in Iran. Attitudes and motivations about learning English are reviewed. Five different aspects of using English within the country are analysed, including: English in public domain, English in Media, English in organizations/businesses, English in education, and English in private language institutes. Despite the time and money spent on English language courses in private language institutes, the majority of learners seem to forget what has been learned within months of completing their course. That is, when they are students with the support of the teacher and formal classes, they appear to make progress and use English more or less fluently. When this support is removed, their language skills either stagnant or regress. The findings of this study suggest that a dependant approach to learning is potentially one of the main reasons for English language learning problems and this is encouraged by English course books and approaches to teaching.

Keywords: English in Iran, English language learning, English language teaching, evaluation

Procedia PDF Downloads 419
31105 Classification of Multiple Cancer Types with Deep Convolutional Neural Network

Authors: Nan Deng, Zhenqiu Liu

Abstract:

Thousands of patients with metastatic tumors were diagnosed with cancers of unknown primary sites each year. The inability to identify the primary cancer site may lead to inappropriate treatment and unexpected prognosis. Nowadays, a large amount of genomics and transcriptomics cancer data has been generated by next-generation sequencing (NGS) technologies, and The Cancer Genome Atlas (TCGA) database has accrued thousands of human cancer tumors and healthy controls, which provides an abundance of resource to differentiate cancer types. Meanwhile, deep convolutional neural networks (CNNs) have shown high accuracy on classification among a large number of image object categories. Here, we utilize 25 cancer primary tumors and 3 normal tissues from TCGA and convert their RNA-Seq gene expression profiling to color images; train, validate and test a CNN classifier directly from these images. The performance result shows that our CNN classifier can archive >80% test accuracy on most of the tumors and normal tissues. Since the gene expression pattern of distant metastases is similar to their primary tumors, the CNN classifier may provide a potential computational strategy on identifying the unknown primary origin of metastatic cancer in order to plan appropriate treatment for patients.

Keywords: bioinformatics, cancer, convolutional neural network, deep leaning, gene expression pattern

Procedia PDF Downloads 301
31104 Exploring Smartphone Applications for Enhancing Second Language Vocabulary Learning

Authors: Abdulmajeed Almansour

Abstract:

Learning a foreign language with the assistant of technological tools has become an interest of learners and educators. Increased use of smartphones among undergraduate students has made them popular for not only social communication but also for entertainment and educational purposes. Smartphones have provided remarkable advantages in language learning process. Learning vocabulary is an important part of learning a language. The use of smartphone applications for English vocabulary learning provides an opportunity for learners to improve vocabulary knowledge beyond the classroom wall anytime anywhere. Recently, various smartphone applications were created specifically for vocabulary learning. This paper aims to explore the use of smartphone application Memrise designed for vocabulary learning to enhance academic vocabulary among undergraduate students. It examines whether the use of a Memrise smartphone application designed course enhances the academic vocabulary learning among ESL learners. The research paradigm used in this paper followed a mixed research model combining quantitative and qualitative research. The study included two hundred undergraduate students randomly assigned to the experimental and controlled group during the first academic year at the Faculty of English Language, Imam University. The research instruments included an attitudinal questionnaire and an English vocabulary pre-test administered to students at the beginning of the semester whereas post-test and semi-structured interviews administered at the end of the semester. The findings of the attitudinal questionnaire revealed a positive attitude towards using smartphones in learning vocabulary. The post-test scores showed a significant difference in the experimental group performance. The results from the semi-structure interviews showed that there were positive attitudes towards Memrise smartphone application. The students found the application enjoyable, convenient and efficient learning tool. From the study, the use of the Memrise application is seen to have long-term and motivational benefits to students. For this reason, there is a need for further research to identify the long-term optimal effects of learning a language using smartphone applications.

Keywords: second language vocabulary learning, academic vocabulary, mobile learning technologies, smartphone applications

Procedia PDF Downloads 161
31103 Three Memorizing Strategies Reflective of Individual Students' Learning Modalities Applied to Piano Education

Authors: Olga Guseynova

Abstract:

Being an individual activity, the memorizing process is affected to a greater degree by the individual variables; therefore, one of the decisive factors influencing the memorization is students’ individual characteristics. Based on an extensive literature study in the domains of piano education, psychology, and neuroscience, this comprehensive research was designed in order to develop three memorizing strategies that are reflective of individual students’ learning modalities (visual, kinesthetic and auditory) applied to the piano education. The design of the study required an interdisciplinary approach which incorporated the outcome of neuropsychological and pedagogic experiments. The objectives were to determine the interaction between the process of perception and the process of memorizing music; to systematize the methods of memorizing piano sheet music in accordance with the specifics of perception types; to develop Piano Memorization Inventory (PMI) and the Three Memorizing Strategies (TMS). The following research methods were applied: a method of interdisciplinary analysis and synthesis, a method of non-participant observation. As a result of literature analysis, the following conclusions were made: the majority of piano teachers and piano students participated in the surveys, had not used and usually had not known any memorizing strategy regarding learning styles. As a result, they had used drilling as the main strategy of memorizing. The Piano Memorization Inventory and Three Memorizing Strategies developed by the author of the research were based on the observation and findings of the previous researches and considered the experience of pedagogical and neuropsychological studies.

Keywords: interdisciplinary approach, memorizing strategies, perceptual learning styles, piano memorization inventory

Procedia PDF Downloads 305
31102 Learning Grammars for Detection of Disaster-Related Micro Events

Authors: Josef Steinberger, Vanni Zavarella, Hristo Tanev

Abstract:

Natural disasters cause tens of thousands of victims and massive material damages. We refer to all those events caused by natural disasters, such as damage on people, infrastructure, vehicles, services and resource supply, as micro events. This paper addresses the problem of micro - event detection in online media sources. We present a natural language grammar learning algorithm and apply it to online news. The algorithm in question is based on distributional clustering and detection of word collocations. We also explore the extraction of micro-events from social media and describe a Twitter mining robot, who uses combinations of keywords to detect tweets which talk about effects of disasters.

Keywords: online news, natural language processing, machine learning, event extraction, crisis computing, disaster effects, Twitter

Procedia PDF Downloads 480
31101 Design and Analysis of Deep Excavations

Authors: Barham J. Nareeman, Ilham I. Mohammed

Abstract:

Excavations in urban developed area are generally supported by deep excavation walls such as; diaphragm wall, bored piles, soldier piles and sheet piles. In some cases, these walls may be braced by internal braces or tie back anchors. Tie back anchors are by far the predominant method for wall support, the large working space inside the excavation provided by a tieback anchor system has a significant construction advantage. This paper aims to analyze a deep excavation bracing system of contiguous pile wall braced by pre-stressed tie back anchors, which is a part of a huge residential building project, located in Turkey/Gaziantep province. The contiguous pile wall will be constructed with a length of 270 m that consists of 285 piles, each having a diameter of 80 cm, and a center to center spacing of 95 cm. The deformation analysis was carried out by a finite element analysis tool using PLAXIS. In the analysis, beam element method together with an elastic perfect plastic soil model and Soil Hardening Model was used to design the contiguous pile wall, the tieback anchor system, and the soil. The two soil clusters which are limestone and a filled soil were modelled with both Hardening soil and Mohr Coulomb models. According to the basic design, both soil clusters are modelled as drained condition. The simulation results show that the maximum horizontal movement of the walls and the maximum settlement of the ground are convenient with 300 individual case histories which are ranging between 1.2mm and 2.3mm for walls, and 15mm and 6.5mm for the settlements. It was concluded that tied-back contiguous pile wall can be satisfactorily modelled using Hardening soil model.

Keywords: deep excavation, finite element, pre-stressed tie back anchors, contiguous pile wall, PLAXIS, horizontal deflection, ground settlement

Procedia PDF Downloads 257
31100 Promoting Personhood and Citizenship Amongst Individuals with Learning Disabilities: An Occupational Therapy Approach

Authors: Rebecca Haythorne

Abstract:

Background: Agendas continuously emphasise the need to increase work based training and opportunities for individuals with learning disabilities. However research and statistics suggest that there is still significant stigma and stereotypes as to what they can contribute, or gain from being part of the working environment. Method: To tackles some of these prejudices an Occupational Therapy based intervention was developed for learning disability service users working at a social enterprise farm. The intervention aimed to increase positive public perception around individual capabilities and encourage individuals with learning disabilities to take ownership and be proud of their individual personhood and citizenship. This was achieved by using components of the Model of Human Occupation to tailor the intervention to individual values, skills and working contributions. The final project involved making creative wall art for public viewing, focusing on 'who works there and what they do'. This was accompanied by a visitor information guide, allowing individuals to tell visitors about themselves, the work they do and why it is meaningful to them. Outcomes: The intervention has helped to increased metal well-being and confidence of learning disability service users “people will know I work here now” and “I now have something to show my family about the work I do at the farm”. The intervention has also increased positive public perception and community awareness “you can really see the effort that’s gone into doing this” and “it’s a really visual experience to see people you don’t expect to see doing this type of work”. Resources left behind have further supported individuals to take ownership in creating more wall art to be sold at the farm shop. Conclusion: the intervention developed has helped to improve mental well-being of both service users and staff and improve community awareness. Due to this, the farm has decided to roll out the intervention to other areas of the social enterprise and is considering having more Occupational Therapy involvement in the future.

Keywords: citizenship, intervention, occupational therapy, personhood

Procedia PDF Downloads 471
31099 Protein Tertiary Structure Prediction by a Multiobjective Optimization and Neural Network Approach

Authors: Alexandre Barbosa de Almeida, Telma Woerle de Lima Soares

Abstract:

Protein structure prediction is a challenging task in the bioinformatics field. The biological function of all proteins majorly relies on the shape of their three-dimensional conformational structure, but less than 1% of all known proteins in the world have their structure solved. This work proposes a deep learning model to address this problem, attempting to predict some aspects of the protein conformations. Throughout a process of multiobjective dominance, a recurrent neural network was trained to abstract the particular bias of each individual multiobjective algorithm, generating a heuristic that could be useful to predict some of the relevant aspects of the three-dimensional conformation process formation, known as protein folding.

Keywords: Ab initio heuristic modeling, multiobjective optimization, protein structure prediction, recurrent neural network

Procedia PDF Downloads 206
31098 An Application of E-Learning Technology for Students with Deafness and Hearing Impairment

Authors: Eyup Bayram Guzel

Abstract:

There have been growing awareness that technology offers unique and promising advantages by offering up-to-data educational materials in promoting teaching and learning materials, new strategies for building enhanced communication environment for people with disabilities and specifically for this study concentrated on the students with deafness and hearing impairments. Creating e-learning environment where teachers and students work in collaboration to develop better educational outcomes is the foremost reason of conducting this research. This study examined the perspectives of special education teachers’ regarding an application of e-learning software called Multimedia Builder on the students with deafness and hearing impairments. Initial and follow up interviews were conducted with 15 special education teachers around the scope of qualitative case study. Grounded approach has been used to analyse and interpret the data. The research results revealed that application of Multimedia Builder software were influential on reading, sign language, vocabulary improvements, computer and ICT usage developments and on audio-visual learning achievements for the advantages of students with deafness and hearing impairments. The implications of the study encouraged the ways of using e-learning tools and strategies to promote unique and comprehensive learning experiences for the targeted students and their teachers.

Keywords: e-learning, special education, deafness and hearing impairment, computer-ICT usage.

Procedia PDF Downloads 440
31097 The Impact of Information and Communication Technology on Learning Quality and Conceptual Change in Moroccan High School Students

Authors: Azzeddine Atibi, Khadija El Kababi, Salim Ahmed, Mohamed Radid

Abstract:

Teaching and learning occupy a significant position globally, as the sustainable development of all sectors is intrinsically linked to the improvement of the educational system. The COVID-19 pandemic demonstrated that the integration of Information and Communication Technology (ICT) in the learning process is not optional but essential, and that proficiency in computer tools is an asset that will enhance pedagogy and ensure the continuity of learning under any circumstances. The objective of our study is to evaluate the impact of introducing computer tools on the quality of learning and the realization of conceptual change in learners. To this end, a learning situation was meticulously prepared, targeting first-year baccalaureate students in experimental sciences at a public high school, "Khadija Oum Almouminin," focusing on the chapter on glycemia regulation in the Moroccan Life and Earth Sciences (LES) curriculum. The learning situation was implemented with a pilot group that utilized computer tools and a control group that studied the same chapter without using ICT. The analysis and comparison of the results allowed us to verify the research question posed and to propose perspectives to ensure conceptual change in learners.

Keywords: information and communication technology, conceptual change, continuity of learning, life and earth sciences, glycemia regulation

Procedia PDF Downloads 40
31096 Cardiovascular Disease Prediction Using Machine Learning Approaches

Authors: P. Halder, A. Zaman

Abstract:

It is estimated that heart disease accounts for one in ten deaths worldwide. United States deaths due to heart disease are among the leading causes of death according to the World Health Organization. Cardiovascular diseases (CVDs) account for one in four U.S. deaths, according to the Centers for Disease Control and Prevention (CDC). According to statistics, women are more likely than men to die from heart disease as a result of strokes. A 50% increase in men's mortality was reported by the World Health Organization in 2009. The consequences of cardiovascular disease are severe. The causes of heart disease include diabetes, high blood pressure, high cholesterol, abnormal pulse rates, etc. Machine learning (ML) can be used to make predictions and decisions in the healthcare industry. Thus, scientists have turned to modern technologies like Machine Learning and Data Mining to predict diseases. The disease prediction is based on four algorithms. Compared to other boosts, the Ada boost is much more accurate.

Keywords: heart disease, cardiovascular disease, coronary artery disease, feature selection, random forest, AdaBoost, SVM, decision tree

Procedia PDF Downloads 154
31095 Coevaluations Software among Students in Active Learning Methodology

Authors: Adriano Pinargote, Josue Mosquera, Eduardo Montero, Dalton Noboa, Jenny Venegas, Genesis Vasquez Escuela

Abstract:

In the framework of Pre University learning of the Polytechnic School of the Litoral, Guayaquil, Ecuador, the methodology of Active Learning (Flipped Classroom) has been implemented for applicants who wish to obtain a quota within the university. To complement the Active Learning cycle, it has been proposed that the respective students influence the qualification of their work groups, for which a web platform has been created that allows them to evaluate the performance of their peers through a digital coevaluation that measures through statistical methods, the group and individual performance score that can reflect in numbers a weighting score corresponding to the grade of each student. Their feedback provided by the group help to improve the performance of the activities carried out in classes because the note reflects the commitment with their classmates shown in the class, within this analysis we will determine if this implementation directly influences the performance of the grades obtained by the student.

Keywords: active learning, coevaluation, flipped classroom, pre university

Procedia PDF Downloads 139
31094 English for Academic and Specific Purposes: A Corpus-Informed Approach to Designing Vocabulary Teaching Materials

Authors: Said Ahmed Zohairy

Abstract:

Significant shifts in the theory and practice of teaching vocabulary affect teachers’ decisions about learning materials’ design. Relevant literature supports teaching specialised, authentic, and multi-word lexical items rather than focusing on single-word vocabulary lists. Corpora, collections of texts stored in a database, presents a reliable source of teaching and learning materials. Although corpus-informed studies provided guidance for teachers to identify useful language chunks and phraseological units, there is a scarcity in the literature discussing the use of corpora in teaching English for academic and specific purposes (EASP). The aim of this study is to improve teaching practices and provide a description of the pedagogical choices and procedures of an EASP tutor in an attempt to offer guidance for novice corpus users. It draws on the researcher’s experience of utilising corpus linguistic tools to design vocabulary learning activities without focusing on students’ learning outcomes. Hence, it adopts a self-study research methodology which is based on five methodological components suggested by other self-study researchers. The findings of the study noted that designing specialised and corpus-informed vocabulary learning activities could be challenging for teachers, as they require technical knowledge of how to navigate corpora and utilise corpus analysis tools. Findings also include a description of the researcher’s approach to building and analysing a specialised corpus for the benefit of novice corpus users; they should be able to start their own journey of designing corpus-based activities.

Keywords: corpora, corpus linguistics, corpus-informed, English for academic and specific purposes, agribusiness, vocabulary, phraseological units, materials design

Procedia PDF Downloads 27
31093 Reframing the Teaching-Learning Framework in Health Sciences Education: Opportunities, Challenges and Prospects

Authors: Raul G. Angeles, Rowena R. De Guzman

Abstract:

The future workforce for health in a globalized context highlights better health human resource planning. Health sciences students are challenged to develop skills needed for global migration. Advancing health sciences education is crucial in preparing them to overcome border challenges. The purpose of this mixed-method, two-part study was to determine the extent by which the current instructional planning and implementation (IPI) framework is reframed with teaching approaches that foster students' 21st-century skills development and to examine participants’ over-all insights on learner-centered teaching and learning (LCTL) particularly in health sciences classrooms. Participants were groups of teachers and students drawn from a national sample through the Philippine higher education institutions (HEIs). To the participants, the use of technology, practices driven by students’ interests and enriching learning experiences through project-based learning are the approaches that must be incorporated with great extent in IPI to encourage student engagement, active learning and collaboration. Participants were asked to detail their insights of learner-centered teaching and learning and using thematic content analysis parallel insights between the groups of participants lead to three emerging themes: opportunities, challenges and prospects. More contemporary understanding of LTCL in today’s health sciences classrooms were demonstrated by the participants. Armed with true understanding, educational leaders can provide interventions appropriate to the students’ level of need, teachers’ preparation and school’s readiness in terms of resources. Health sciences classrooms are innovated to meet the needs of the current and future students.

Keywords: globalization, health workforce, role of education, student-centered teaching and learning, technology in education

Procedia PDF Downloads 206
31092 Developing Language Ownership: An Autoethnographic Perspective on Transformative Learning

Authors: Thomas Abbey

Abstract:

This paper is part of an ongoing research addressing the experience of language learners in developing a sense of language ownership in their second language. For the majority of language learners, the main goal of learning a second or foreign language is to develop proficiency in the target language. Language proficiency comprises numerous intersecting competency skills ranging from causally listening to speaking using certain registers. This autoethnography analyzes lived experiences related to transitioning from learning a language in a classroom to being in an environment where the researcher's second language is the primary means of communication. Focused on lived experiences, the purpose of this research is to provide an insight into the experiences of language learners entering new environments and needing to navigate life within another language. Through reflections, this paper offers a critical account of experience traveling to Baku, Azerbaijan as a Russian language learner. The analysis for this paper focuses on the development of a sense of language ownership.

Keywords: autoethnography, language learning, language ownership, transformative learning

Procedia PDF Downloads 66
31091 Droning the Pedagogy: Future Prospect of Teaching and Learning

Authors: Farha Sattar, Laurence Tamatea, Muhammad Nawaz

Abstract:

Drones, the Unmanned Aerial Vehicles are playing an important role in real-world problem-solving. With the new advancements in technology, drones are becoming available, affordable and user- friendly. Use of drones in education is opening new trends in teaching and learning practices in an innovative and engaging way. Drones vary in types and sizes and possess various characteristics and capabilities which enhance their potential to be used in education from basic to advanced and challenging learning activities which are suitable for primary, middle and high school level. This research aims to provide an insight to explore different types of drones and their compatibility to be used in teaching different subjects at various levels. Research focuses on integrating the drone technology along with Australian curriculum content knowledge to reinforce the understanding of the fundamental concepts and helps to develop the critical thinking and reasoning in the learning process.

Keywords: critical thinking, drone technology, drone types, innovative learning

Procedia PDF Downloads 310
31090 The Motivating and Limiting Factors of Learners’ Engagement in an Online Discussion Forum

Authors: K. Durairaj, I. N. Umar

Abstract:

Lately, asynchronous discussion forum is integrated in higher educational institutions as it may increase learning process, learners’ understanding, achievement and knowledge construction. Asynchronous discussion forum is used to complement the traditional, face-to-face learning session in hybrid learning courses. However, studies have proven that students’ engagement in online forum are still unconvincing. Thus, the aim of this study is to investigate the motivating factors and obstacles that affect the learners’ engagement in asynchronous discussion forum. This study is carried out in one of the public higher educational institutions in Malaysia with 18 postgraduate students as samples. The authors have developed a 40-items questionnaire based on literature review. The results indicate several factors that have encouraged or limited students’ engagement in asynchronous discussion forum: (a) the practices or behaviors of peers, or instructors, (b) the needs for the discussions, (c) the learners’ personalities, (d) constraints in continuing the discussion forum, (e) lack of ideas, (f) the level of thoughts, (g) the level of knowledge construction, (h) technical problems, (i) time constraints and (j) misunderstanding. This study suggests some recommendations to increase the students’ engagement in online forums. Finally, based upon the findings, some implications are proposed for further research.

Keywords: asynchronous discussion forum, engagement, factors, motivating, limiting

Procedia PDF Downloads 329
31089 Automatic Music Score Recognition System Using Digital Image Processing

Authors: Yuan-Hsiang Chang, Zhong-Xian Peng, Li-Der Jeng

Abstract:

Music has always been an integral part of human’s daily lives. But, for the most people, reading musical score and turning it into melody is not easy. This study aims to develop an Automatic music score recognition system using digital image processing, which can be used to read and analyze musical score images automatically. The technical approaches included: (1) staff region segmentation; (2) image preprocessing; (3) note recognition; and (4) accidental and rest recognition. Digital image processing techniques (e.g., horizontal /vertical projections, connected component labeling, morphological processing, template matching, etc.) were applied according to musical notes, accidents, and rests in staff notations. Preliminary results showed that our system could achieve detection and recognition rates of 96.3% and 91.7%, respectively. In conclusion, we presented an effective automated musical score recognition system that could be integrated in a system with a media player to play music/songs given input images of musical score. Ultimately, this system could also be incorporated in applications for mobile devices as a learning tool, such that a music player could learn to play music/songs.

Keywords: connected component labeling, image processing, morphological processing, optical musical recognition

Procedia PDF Downloads 423
31088 The Effect of Video Games on English as a Foreign Language Students' Language Learning Motivation

Authors: Shamim Ali

Abstract:

Researchers and teachers have begun developing digital games and model environments for educational purpose; therefore this study examines the effect of a videos game on secondary school students’ language learning motivation. Secondly, it tries to find out the opportunities to develop a decision making process and simultaneously it analyzes the solutions for further implementation in educational setting. Participants were 30 male students randomly assigned to one of the following three treatments: 10 students were assigned to read the game’s story; 10 students were players, who played video game; and, and the last 10 students acted as watchers and observers, their duty was to watch their classmates play the digital video game. A language learning motivation scale was developed and it was given to the participants as a pre- and post-test. Results indicated a significant language learning motivation and the participants were quite motivated in the end. It is, thus, concluded that the use of video games can help enhance high school students’ language learning motivation. It was suggested that video games should be used as a complementary activity not as a replacement for textbook since excessive use of video games can divert the original purpose of learning.

Keywords: EFL, English as a Foreign Language, motivation, video games, EFL learners

Procedia PDF Downloads 182
31087 Transformative Leadership and Learning Management Systems Implementation: Leadership Practices in Instructional Design for Online Learning

Authors: Felix Brito

Abstract:

With the growth of online learning, several higher education institutions have attempted to incorporate technology in their curriculum. Successful technology implementation projects really on technology infrastructure and on the acceptance of education professionals towards innovation. This research study is aimed at illustrating the relevance of the human component in technology implementation projects in higher education by describing the Learning Management System implementation project executed by instructional designers working for a higher education institution in the southeast region of the United States. An analysis of the Transformative Leadership Theory, the Technology Acceptance Model, and the Diffusion of Innovation Process provide the support for a solid understanding of this issue and address recommendations for future technology implementation projects in higher education institutions.

Keywords: diffusion of innovation process, instructional design, leadership, learning management systems, online learning, technology acceptance model, transformative leadership theory

Procedia PDF Downloads 333
31086 Collaborative Reflexive/Reflective Teaching and Action Research in TESL

Authors: O. F. Elkommos

Abstract:

Teaching English as a Second Language (TESL) has become a very rich area of research. Practitioners or teachers of English as a foreign or a second language are now promoting both collaborative learning and collaborative teaching. Students learning a language collaboratively and cooperatively are learning in a better environment of team work where they learn from each other. Further, teaching English collaboratively also creates an enriching environment that is also very enriching to students’ and teachers’ experiences of learning and teaching. Moreover, action research stems from actual teacher concerns and students’ needs. Reflection in turn, on the experience of the material taught and the delivery of material is becoming an integral part of the teaching and learning experience self- evaluation and self-development. In this case, the concern of the research field in the area of TESL will be the development of teaching delivery, material and quality of learning. In the present research, the TESL module taught to year two students in the Faculty of Arts and Humanities, British University in Egypt (BUE) will be evaluated reflexively by the students and teachers. The module was taught to students in two different specialisms. It was taught and delivered through collaborative teaching and was evaluated by both teachers and students as very successful and enjoyable. The reflections of both teachers and students as well as student results confirm that it was a success.

Keywords: action research, addressing differentiation, collaborative teaching, reflective teaching and learning, reflexive learning, reflexive teaching, self-development, self-evaluation, TESL

Procedia PDF Downloads 125
31085 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification

Procedia PDF Downloads 465
31084 A Comparative Study of Language Learning Strategy Use of Iranian Kurdish Bilingual and Persian Monolingual in EFL Context

Authors: Reza Khani, Ziba Hosseini

Abstract:

This study was an attempt to investigate the difference between learners of Iranian Kurdish–Persian bilingual language and Persian monolinguals, regarding language strategy use (LLS). The participants of the study were 120 monolingual Persian and 120 bilingual Kurdish studying English as a foreign language (EFL). Data were collected using strategy inventory for language learning SILL. The results show bilingual reported higher use of language learning strategies in all categories of SILL except memory strategies.

Keywords: language learning, memory, monolingual, comparative study

Procedia PDF Downloads 405
31083 A Desire to be ‘Recognizable and Reformed’: Natives’ Identity in Walcott’s “Dream on Monkey Mountain”

Authors: S. Khurram, N. Mubashar

Abstract:

The paper examines, through the lens of Postcolonial Theory, how natives resist and react in Derrek Walcott’s “Dream on Monkey Mountain”. It aims at how natives, for being ‘recognized and reformed’, mimic and adapt the white’s ways of living. It also focuses how Walcott expresses natives’ reaction when they cannot construct their identity. Moreover, the paper exploits the Homi. K Bhaba’s concept of Mimicry and Berry’s concepts of Hybridity to explain Caribbean native’s plight. Furthermore, it bring forth Walcott’s deep insight into the psychology of the Caribbean natives. He digs deep into the colonial discourse to reconstruct post-colonial identity and he, as a post-colonial writer, does so by deconstructing colonial ideology of racism by resisting against it.

Keywords: postcolonial theory, mimicry, hybridity, reaction

Procedia PDF Downloads 185
31082 Thick Data Analytics for Learning Cataract Severity: A Triplet Loss Siamese Neural Network Model

Authors: Jinan Fiaidhi, Sabah Mohammed

Abstract:

Diagnosing cataract severity is an important factor in deciding to undertake surgery. It is usually conducted by an ophthalmologist or through taking a variety of fundus photography that needs to be examined by the ophthalmologist. This paper carries out an investigation using a Siamese neural net that can be trained with small anchor samples to score cataract severity. The model used in this paper is based on a triplet loss function that takes the ophthalmologist best experience in rating positive and negative anchors to a specific cataract scaling system. This approach that takes the heuristics of the ophthalmologist is generally called the thick data approach, which is a kind of machine learning approach that learn from a few shots. Clinical Relevance: The lens of the eye is mostly made up of water and proteins. A cataract occurs when these proteins at the eye lens start to clump together and block lights causing impair vision. This research aims at employing thick data machine learning techniques to rate the severity of the cataract using Siamese neural network.

Keywords: thick data analytics, siamese neural network, triplet-loss model, few shot learning

Procedia PDF Downloads 114
31081 Digital Tools in Education and Online Learning in the Field of Accounting

Authors: Marina Ercegović, Mateja Brozović, Nikolina Dečman

Abstract:

The extent of using digital technologies in teaching has definitely intensified during the pandemic, leading to the replacement of traditional learning with online learning. The experiences through the pandemic have shown that not all fields of study and all levels of education are equally suitable for the implementation of digital tools and online learning. It is generally expected that students at higher levels of study have better digital competences and are therefore more equipped and prepared to participate in online education or traditional education in classrooms that include the use of digital tools. Accounting as a field of study has good predispositions to be suitable for the use of digital tools and online learning: it can usually be taught remotely, while modern accounting also incorporates the use of different digital tools. The goals of the research are: 1) to systematize the results of the existing literature regarding the use of digital tools and online learning in education, with a special emphasis on teaching accounting, 2) to analyze the current level of digital competences of accounting students in Croatia, 3) to investigate the current attitudes of accounting students in Croatia regarding the use of digital tools in education, as well as the advantages and disadvantages of online learning, and 4) to compare the results of the research conducted in 2024/2025 with the same research conducted in 2021/2022. In addition to the literature review, a primary research using an online questionnaire was conducted among accounting students in Croatia. The sample included students enrolled in the university or professional study program related to accounting and finance, or accounting and auditing. The original research was conducted in 2021/2022, i.e. during the pandemic, when students had to suddenly transition from traditional learning to online learning, mostly without proper preparation and planning, which might have negatively affected the attitudes of students towards online learning and digital tools. This is why it repeated the research in 2024/2025, to compare the results and to explore if there are any significant differences.

Keywords: digital tools, accounting, online learning, education

Procedia PDF Downloads 6
31080 Selection of Optimal Reduced Feature Sets of Brain Signal Analysis Using Heuristically Optimized Deep Autoencoder

Authors: Souvik Phadikar, Nidul Sinha, Rajdeep Ghosh

Abstract:

In brainwaves research using electroencephalogram (EEG) signals, finding the most relevant and effective feature set for identification of activities in the human brain is a big challenge till today because of the random nature of the signals. The feature extraction method is a key issue to solve this problem. Finding those features that prove to give distinctive pictures for different activities and similar for the same activities is very difficult, especially for the number of activities. The performance of a classifier accuracy depends on this quality of feature set. Further, more number of features result in high computational complexity and less number of features compromise with the lower performance. In this paper, a novel idea of the selection of optimal feature set using a heuristically optimized deep autoencoder is presented. Using various feature extraction methods, a vast number of features are extracted from the EEG signals and fed to the autoencoder deep neural network. The autoencoder encodes the input features into a small set of codes. To avoid the gradient vanish problem and normalization of the dataset, a meta-heuristic search algorithm is used to minimize the mean square error (MSE) between encoder input and decoder output. To reduce the feature set into a smaller one, 4 hidden layers are considered in the autoencoder network; hence it is called Heuristically Optimized Deep Autoencoder (HO-DAE). In this method, no features are rejected; all the features are combined into the response of responses of the hidden layer. The results reveal that higher accuracy can be achieved using optimal reduced features. The proposed HO-DAE is also compared with the regular autoencoder to test the performance of both. The performance of the proposed method is validated and compared with the other two methods recently reported in the literature, which reveals that the proposed method is far better than the other two methods in terms of classification accuracy.

Keywords: autoencoder, brainwave signal analysis, electroencephalogram, feature extraction, feature selection, optimization

Procedia PDF Downloads 115
31079 Trainees' Perception of Virtual Learning Skills in Setting up the Simulator Welding Technology

Authors: Mohd Afif Md Nasir, Mohd Faizal Amin Nur, Jamaluddin Hasim, Abd Samad Hasan Basari, Mohd Halim Sahelan

Abstract:

This study is aimed to investigate the suitability of Computer-Based Training (CBT) as one of the approaches in skills competency development at the Centre of Instructor and Advanced Skills Training (CIAST) Shah Alam Selangor and National Youth Skills Institute (NYSI) Pagoh Muar Johor. This study has also examined the perception among trainees toward Virtual Learning Environment (VLE) as to realize the development of skills in Welding Technology. The significance of the study is to create a computer-based skills development approach in welding technology among new trainees in CIAST and IKBN as well as to cultivate the element of general skills among them. This study is also important in elevating the number of individual knowledge workers (K-Workers) working in manufacturing industry in order to achieve the national vision which is to be an industrial nation in the year 2020. The design is a survey of research which using questionnaires as the instruments and is conducted towards 136 trainees from CIAST and IKBN. Data from the questionnaires is proceeding in a Statistical Package for Social Science (SPSS) in order to find the frequency, mean and chi-square testing. The findings of the study show the welding technology skills have developed in the trainees as a result of the application of the Virtual Reality simulator at a high level (mean=3.90) and the respondents agreed the skills could be embedded through the application of the Virtual Reality simulator (78.01%). The Study also found that there is a significant difference between trainee skill characteristics through the application of the Virtual Reality simulator (p<0.05). Thereby, the Virtual Reality simulator is suitable to be used in the development of welding skills among trainees through the skills training institute.

Keywords: computer-based training, virtual learning environment, welding technology, virtual reality simulator, virtual learning environment

Procedia PDF Downloads 427
31078 The Impact of a Gait Assessment Model on Learning Outcomes

Authors: Seema Saini, Arsh Shikalgar, Neelam Tejani, Tushar J. Palekar

Abstract:

This study introduces and evaluates a gait assessment system device as an educational model for healthcare students. The system aims to enhance learning through active experimentation with educators, focusing on teaching fundamental concepts like torque, potential energy, and kinetic movements. A total of 80 fourth-year healthcare students specializing in physiotherapy participated in this study. The study utilized a pre-post multiple-choice question (MCQ) examination format to evaluate the student's learning outcomes. Post-test performance significantly improved compared to pre-test scores (mean difference p<0.001, t=5.96). Participants reported that the gait assessment model effectively aided in achieving learning objectives, increasing topic understanding and interest, and enhancing comprehension of biomechanical events in gait.

Keywords: biomechanics, educational innovation, interactive learning, healthcare education

Procedia PDF Downloads 32
31077 Failure Analysis of the Gasoline Engines Injection System

Authors: Jozef Jurcik, Miroslav Gutten, Milan Sebok, Daniel Korenciak, Jerzy Roj

Abstract:

The paper presents the research results of electronic fuel injection system, which can be used for diagnostics of automotive systems. In the paper is described the construction and operation of a typical fuel injection system and analyzed its electronic part. It has also been proposed method for the detection of the injector malfunction, based on the analysis of differential current or voltage characteristics. In order to detect the fault state, it is needed to use self-learning process, by the use of an appropriate self-learning algorithm.

Keywords: electronic fuel injector, diagnostics, measurement, testing device

Procedia PDF Downloads 553