Search results for: single degree of freedom model
1478 Optimizing Foaming Agents by Air Compression to Unload a Liquid Loaded Gas Well
Authors: Mhenga Agneta, Li Zhaomin, Zhang Chao
Abstract:
When velocity is high enough, gas can entrain fluid and carry to the surface, but as time passes by, velocity drops to a critical point where fluids will start to hold up in the tubing and cause liquid loading which prevents gas production and may lead to the death of the well. Foam injection is widely used as one of the methods to unload liquid. Since wells have different characteristics, it is not guaranteed that foam can be applied in all of them and bring successful results. This research presents a technology to optimize the efficiency of foam to unload liquid by air compression. Two methods are used to explain optimization; (i) mathematical formulas are used to solve and explain the myth of how density and critical velocity could be minimized when air is compressed into foaming agents, then the relationship between flow rates and pressure increase which would boost up the bottom hole pressure and increase the velocity to lift liquid to the surface. (ii) Experiments to test foam carryover capacity and stability as a function of time and surfactant concentration whereby three surfactants anionic sodium dodecyl sulfate (SDS), nonionic Triton 100 and cationic hexadecyltrimethylammonium bromide (HDTAB) were probed. The best foaming agents were injected to lift liquid loaded in a created vertical well model of 2.5 cm diameter and 390 cm high steel tubing covered by a transparent glass casing of 5 cm diameter and 450 cm high. The results show that, after injecting foaming agents, liquid unloading was successful by 75%; however, the efficiency of foaming agents to unload liquid increased by 10% with an addition of compressed air at a ratio of 1:1. Measured values and calculated values were compared and brought about ± 3% difference which is a good number. The successful application of the technology indicates that engineers and stakeholders could bring water flooded gas wells back to production with optimized results by firstly paying attention to the type of surfactants (foaming agents) used, concentration of surfactants, flow rates of the injected surfactants then compressing air to the foaming agents at a proper ratio.Keywords: air compression, foaming agents, gas well, liquid loading
Procedia PDF Downloads 1381477 Determinants of Carbon-Certified Small-Scale Agroforestry Adoption In Rural Mount Kenyan
Authors: Emmanuel Benjamin, Matthias Blum
Abstract:
Purpose – We address smallholder farmers’ restricted possibilities to adopt sustainable technologies which have direct and indirect benefits. Smallholders often face little asset endowment due to small farm size und insecure property rights, therefore experiencing constraints in adopting agricultural innovation. A program involving payments for ecosystem services (PES) benefits poor smallholder farmers in developing countries in many ways and has been suggested as a means of easing smallholder farmers’ financial constraints. PES may also provide additional mainstay which can eventually result in more favorable credit contract terms due to the availability of collateral substitute. Results of this study may help to understand the barriers, motives and incentives for smallholders’ participation in PES and help in designing a strategy to foster participation in beneficial programs. Design/methodology/approach – This paper uses a random utility model and a logistic regression approach to investigate factors that influence agroforestry adoption. We investigate non-monetary factors, such as information spillover, that influence the decision to adopt such conservation strategies. We collected original data from non-government-run agroforestry mitigation programs with PES that have been implemented in the Mount Kenya region. Preliminary Findings – We find that spread of information, existing networks and peer involvement in such programs drive participation. Conversely, participation by smallholders does not seem to be influenced by education, land or asset endowment. Contrary to some existing literature, we found weak evidence for a positive correlation between the adoption of agroforestry with PES and age of smallholder, e.g., one increases with the other, in the Mount Kenyan region. Research implications – Poverty alleviation policies for developing countries should target social capital to increase the adoption rate of modern technologies amongst smallholders.Keywords: agriculture innovation, agroforestry adoption, smallholders, payment for ecosystem services, Sub-Saharan Africa
Procedia PDF Downloads 3851476 Career Guidance System Using Machine Learning
Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan
Abstract:
Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills
Procedia PDF Downloads 821475 Selling Skills to Effect Customer Satisfaction in Digital Era
Authors: Teerapong Lorchitamnuay, Thirarut Worapishet
Abstract:
In the present digital age, today's customers explore various channels before finalizing a purchase, with abundant options and information at their disposal. Despite this, there is a strong digital interconnectedness. With just a few mouse clicks, customers can gather comprehensive information about a product, free from the influence of a salesperson. Salespeople must embrace cutting-edge technology to truly redefine the essence of selling if they are to thrive in this digital era. The significance of customer-salesperson communication in companies is becoming increasingly evident. It prompts the inquiry of how companies can modify or reshape their sales teams' approaches to effectively respond to evolving customer preferences and effectively manage external shifts, all in pursuit of sustaining and expanding their enterprises. Research highlights that digital and intercultural skills are the latest competencies sought by customers from salespeople in today's fast-paced world prior to making purchases of products and services. This study seeks to examine the pivotal influences of these salesperson skills in achieving customer satisfaction. The research design encompasses the analysis of descriptive statistics and quantitative data through a regression model. Data were gathered from an online convenience survey involving 260 respondents who are customers of an air express service provider in Thailand and who engage with salespeople in a traditional manner. The findings underscore that intercultural skills have a substantial impact on customer satisfaction in the digital era, particularly concerning adaptability, foreign language proficiency, active listening, and empathy skills. Organizations should focus on nurturing beneficial habits among their salespeople; since it signifies this effort, it should extend beyond just the frontline but should extend to encompass backline units and high-level management, ensuring that everyone possesses the same customer-oriented skills. The conclusions drawn from this research provide valuable insights, affirming that digital and intercultural skills can empower organizations to optimize their workforce's competencies, thereby achieving customer satisfaction in the digital age.Keywords: customer behavior, customer satisfaction, digital era, digital skill, intercultural skill
Procedia PDF Downloads 871474 150 KVA Multifunction Laboratory Test Unit Based on Power-Frequency Converter
Authors: Bartosz Kedra, Robert Malkowski
Abstract:
This paper provides description and presentation of laboratory test unit built basing on 150 kVA power frequency converter and Simulink RealTime platform. Assumptions, based on criteria which load and generator types may be simulated using discussed device, are presented, as well as control algorithm structure. As laboratory setup contains transformer with thyristor controlled tap changer, a wider scope of setup capabilities is presented. Information about used communication interface, data maintenance, and storage solution as well as used Simulink real-time features is presented. List and description of all measurements are provided. Potential of laboratory setup modifications is evaluated. For purposes of Rapid Control Prototyping, a dedicated environment was used Simulink RealTime. Therefore, load model Functional Unit Controller is based on a PC computer with I/O cards and Simulink RealTime software. Simulink RealTime was used to create real-time applications directly from Simulink models. In the next step, applications were loaded on a target computer connected to physical devices that provided opportunity to perform Hardware in the Loop (HIL) tests, as well as the mentioned Rapid Control Prototyping process. With Simulink RealTime, Simulink models were extended with I/O cards driver blocks that made automatic generation of real-time applications and performing interactive or automated runs on a dedicated target computer equipped with a real-time kernel, multicore CPU, and I/O cards possible. Results of performed laboratory tests are presented. Different load configurations are described and experimental results are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area and arbitrary active and reactive power regulation basing on defined schedule.Keywords: MATLAB, power converter, Simulink Real-Time, thyristor-controlled tap changer
Procedia PDF Downloads 3271473 Measuring the Effect of Ventilation on Cooking in Indoor Air Quality by Low-Cost Air Sensors
Authors: Andres Gonzalez, Adam Boies, Jacob Swanson, David Kittelson
Abstract:
The concern of the indoor air quality (IAQ) has been increasing due to its risk to human health. The smoking, sweeping, and stove and stovetop use are the activities that have a major contribution to the indoor air pollution. Outdoor air pollution also affects IAQ. The most important factors over IAQ from cooking activities are the materials, fuels, foods, and ventilation. The low-cost, mobile air quality monitoring (LCMAQM) sensors, is reachable technology to assess the IAQ. This is because of the lower cost of LCMAQM compared to conventional instruments. The IAQ was assessed, using LCMAQM, during cooking activities in a University of Minnesota graduate-housing evaluating different ventilation systems. The gases measured are carbon monoxide (CO) and carbon dioxide (CO2). The particles measured are particle matter (PM) 2.5 micrometer (µm) and lung deposited surface area (LDSA). The measurements are being conducted during April 2019 in Como Student Community Cooperative (CSCC) that is a graduate housing at the University of Minnesota. The measurements are conducted using an electric stove for cooking. The amount and type of food and oil using for cooking are the same for each measurement. There are six measurements: two experiments measure air quality without any ventilation, two using an extractor as mechanical ventilation, and two using the extractor and windows open as mechanical and natural ventilation. 3The results of experiments show that natural ventilation is most efficient system to control particles and CO2. The natural ventilation reduces the concentration in 79% for LDSA and 55% for PM2.5, compared to the no ventilation. In the same way, CO2 reduces its concentration in 35%. A well-mixed vessel model was implemented to assess particle the formation and decay rates. Removal rates by the extractor were significantly higher for LDSA, which is dominated by smaller particles, than for PM2.5, but in both cases much lower compared to the natural ventilation. There was significant day to day variation in particle concentrations under nominally identical conditions. This may be related to the fat content of the food. Further research is needed to assess the impact of the fat in food on particle generations.Keywords: cooking, indoor air quality, low-cost sensor, ventilation
Procedia PDF Downloads 1171472 How Social Support, Interaction with Clients and Work-Family Conflict Contribute to Mental Well-Being for Employees in the Human Service System
Authors: Uwe C. Fischer
Abstract:
Mental health and well-being for employees working in the human service system are getting more and more important given the increasing rate of absenteeism at work. Besides individual capacities, social and community factors seem to be important in the working setting. Starting from a demand resource framework including the classical demand control aspects, social support systems, specific demands and resources of the client work, and work-family conflict were considered in the present study. We state hypothetically, that these factors have a meaningful association with the mental quality of life of employees working in the field of social, educational and health sectors. 1140 employees, working in human service organizations (education, youth care, nursing etc.) were asked for strains and resources at work (selected scales from Salutogenetic Subjective Work Assessment SALSA and own new scales for client work), work-family conflict, and mental quality of life from the German Short Form Health Survey. Considering the complex influences of the variables, we conducted a multiple hierarchical regression analysis. One third of the whole variance of the mental quality of life can be declared by the different variables of the model. When the variables concerning social influences were included in the hierarchical regression, the influence of work related control resource decreased. Excessive workload, work-family conflict, social support by supervisors, co-workers and other persons outside work, as well as strains and resources associated with client work had significant regression coefficients. Conclusions: Social support systems are crucial in the social, educational and health related service sector, regarding the influence on mental well-being. Especially the work-family conflict focuses on the importance of the work-life balance. Also the specific strains and resources of the client work, measured with new constructed scales, showed great impact on mental health. Therefore occupational health promotion should focus more on the social factors within and outside the working place.Keywords: client interaction, human service system, mental health, social support, work-family conflict
Procedia PDF Downloads 4431471 Indirect Intergranular Slip Transfer Modeling Through Continuum Dislocation Dynamics
Authors: A. Kalaei, A. H. W. Ngan
Abstract:
In this study, a mesoscopic continuum dislocation dynamics (CDD) approach is applied to simulate the intergranular slip transfer. The CDD scheme applies an efficient kinematics equation to model the evolution of the “all-dislocation density,” which is the line-length of dislocations of each character per unit volume. As the consideration of every dislocation line can be a limiter for the simulation of slip transfer in large scales with a large quantity of participating dislocations, a coarse-grained, extensive description of dislocations in terms of their density is utilized to resolve the effect of collective motion of dislocation lines. For dynamics closure, namely, to obtain the dislocation velocity from a velocity law involving the effective glide stress, mutual elastic interaction of dislocations is calculated using Mura’s equation after singularity removal at the core of dislocation lines. The developed scheme for slip transfer can therefore resolve the effects of the elastic interaction and pile-up of dislocations, which are important physics omitted in coarser models like crystal plasticity finite element methods (CPFEMs). Also, the length and timescales of the simulationareconsiderably larger than those in molecular dynamics (MD) and discrete dislocation dynamics (DDD) models. The present work successfully simulates that, as dislocation density piles up in front of a grain boundary, the elastic stress on the other side increases, leading to dislocation nucleation and stress relaxation when the local glide stress exceeds the operation stress of dislocation sources seeded on the other side of the grain boundary. More importantly, the simulation verifiesa phenomenological misorientation factor often used by experimentalists, namely, the ease of slip transfer increases with the product of the cosines of misorientation angles of slip-plane normals and slip directions on either side of the grain boundary. Furthermore, to investigate the effects of the critical stress-intensity factor of the grain boundary, dislocation density sources are seeded at different distances from the grain boundary, and the critical applied stress to make slip transfer happen is studied.Keywords: grain boundary, dislocation dynamics, slip transfer, elastic stress
Procedia PDF Downloads 1261470 Readiness of Iran’s Insurance Industry Salesforce to Accept Changing to Become Islamic Personal Financial Planners
Authors: Pedram Saadati, Zahra Nazari
Abstract:
Today, the role and importance of financial technology businesses in Iran have increased significantly. Although, in Iran, there is no Islamic or non-Islamic personal financial planning field of study in the universities or educational centers, the profession of personal financial planning is not defined, and there is no software introduced in this regard for advisors or consumers. The largest sales network of financial services in Iran belongs to the insurance industry, and there is an untapped market for international companies in Iran that can contribute to 130 thousand representatives in the insurance industry and 28 million families by providing training and personal financial advisory software. To the best of the author's knowledge, despite the lack of previous internal studies in this field, the present study investigates the level of readiness of the salesforce of the insurance industry to accept this career and its technology. The statistical population of the research is made up of managers, insurance sales representatives, assistants and heads of sales departments of insurance companies. An 18-minute video was prepared that introduced and taught the job of Islamic personal financial planning and explained its difference from its non-Islamic model. This video was provided to the respondents. The data collection tool was a research-made questionnaire. To investigate the factors affecting technology acceptance and job change, independent T descriptive statistics and Pearson correlation were used, and Friedman's test was used to rank the effective factors. The results indicate the mental perception and very positive attitude of the insurance industry activists towards the usefulness of this job and its technology, and the studied sample confirmed the intention of training in this knowledge. Based on research results, the change in the customer's attitude towards the insurance advisor and the possibility of increasing income are considered as the reasons for accepting. However, Restrictions on using investment opportunities due to Islamic financial services laws and the uncertainty of the position of the central insurance in this regard are considered as the most important obstacles.Keywords: fintech, insurance, personal financial planning, wealth management
Procedia PDF Downloads 511469 Career Guidance System Using Machine Learning
Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan
Abstract:
Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should evaluate properly their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, neural networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable of offering an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills
Procedia PDF Downloads 721468 Urinary Volatile Organic Compound Testing in Fast-Track Patients with Suspected Colorectal Cancer
Authors: Godwin Dennison, C. E. Boulind, O. Gould, B. de Lacy Costello, J. Allison, P. White, P. Ewings, A. Wicaksono, N. J. Curtis, A. Pullyblank, D. Jayne, J. A. Covington, N. Ratcliffe, N. K. Francis
Abstract:
Background: Colorectal symptoms are common but only infrequently represent serious pathology, including colorectal cancer (CRC). A large number of invasive tests are presently performed for reassurance. We investigated the feasibility of urinary volatile organic compound (VOC) testing as a potential triage tool in patients fast-tracked for assessment for possible CRC. Methods: A prospective, multi-centre, observational feasibility study was performed across three sites. Patients referred on NHS fast-track pathways for potential CRC provided a urine sample which underwent Gas Chromatography Mass Spectrometry (GC-MS), Field Asymmetric Ion Mobility Spectrometry (FAIMS) and Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) analysis. Patients underwent colonoscopy and/or CT colonography and were grouped as either CRC, adenomatous polyp(s), or controls to explore the diagnostic accuracy of VOC output data supported by an artificial neural network (ANN) model. Results: 558 patients participated with 23 (4.1%) CRC diagnosed. 59% of colonoscopies and 86% of CT colonographies showed no abnormalities. Urinary VOC testing was feasible, acceptable to patients, and applicable within the clinical fast track pathway. GC-MS showed the highest clinical utility for CRC and polyp detection vs. controls (sensitivity=0.878, specificity=0.882, AUROC=0.884). Conclusion: Urinary VOC testing and analysis are feasible within NHS fast-track CRC pathways. Clinically meaningful differences between patients with cancer, polyps, or no pathology were identified therefore suggesting VOC analysis may have future utility as a triage tool. Acknowledgment: Funding: NIHR Research for Patient Benefit grant (ref: PB-PG-0416-20022).Keywords: colorectal cancer, volatile organic compound, gas chromatography mass spectrometry, field asymmetric ion mobility spectrometry, selected ion flow tube mass spectrometry
Procedia PDF Downloads 971467 Evaluating the Impact of a Child Sponsorship Program on Paediatric Health and Development in Calauan, Philippines: A Retrospective Audit
Authors: Daniel Faraj, Arabella Raupach, Charlotte Hespe, Helen Wilcox, Kristie-Lee Anning
Abstract:
Aim: International child sponsorship programs comprise a considerable proportion of global aid accessible to the general population. Team Philippines (TP), a healthcare and welfare initiative run in association with the University of Notre Dame Sydney since 2013, leads a holistic sponsorship program for thirty children from Calauan, Philippines. To date, empirical research has not been performed on the overall success and impact of the TP child sponsorship program. As such, this study aims to evaluate its effectiveness in improving pediatric outcomes. Methods: Study cohorts comprised thirty sponsored and twenty-nine age- and gender-matched non-sponsored children. Data were extracted from the TP Medical Director database and lifestyle questionnaires for July-November 2019. Outcome measures included anthropometry, markers of medical health, dental health, exercise, and diet. Statistical analyses were performed in SPSS. Results: Sponsorship resulted in fewer medical diagnoses and prescription medications, superior dental health, and improved diet. Further, sponsored children may show a clinically significant trend toward improved physical health. Sponsorship did not affect growth and development metrics or levels of physical activity. Conclusions: The TP child sponsorship program significantly impacts positive pediatric health outcomes in the Calauan community. The strength of the program lies in its holistic, sustainable, and community-based model, which is enabled by effective international child sponsorship. This study further supports the relationship between supporting early livelihood and improved health in the pediatric population.Keywords: child health, public health, health status disparities, healthcare disparities, social determinants of health, morbidity, community health services, culturally competent care, medically underserved areas, population health management, Philippines
Procedia PDF Downloads 1161466 Neural Networks Models for Measuring Hotel Users Satisfaction
Authors: Asma Ameur, Dhafer Malouche
Abstract:
Nowadays, user comments on the Internet have an important impact on hotel bookings. This confirms that the e-reputation issue can influence the likelihood of customer loyalty to a hotel. In this way, e-reputation has become a real differentiator between hotels. For this reason, we have a unique opportunity in the opinion mining field to analyze the comments. In fact, this field provides the possibility of extracting information related to the polarity of user reviews. This sentimental study (Opinion Mining) represents a new line of research for analyzing the unstructured textual data. Knowing the score of e-reputation helps the hotelier to better manage his marketing strategy. The score we then obtain is translated into the image of hotels to differentiate between them. Therefore, this present research highlights the importance of hotel satisfaction ‘scoring. To calculate the satisfaction score, the sentimental analysis can be manipulated by several techniques of machine learning. In fact, this study treats the extracted textual data by using the Artificial Neural Networks Approach (ANNs). In this context, we adopt the aforementioned technique to extract information from the comments available in the ‘Trip Advisor’ website. This actual paper details the description and the modeling of the ANNs approach for the scoring of online hotel reviews. In summary, the validation of this used method provides a significant model for hotel sentiment analysis. So, it provides the possibility to determine precisely the polarity of the hotel users reviews. The empirical results show that the ANNs are an accurate approach for sentiment analysis. The obtained results show also that this proposed approach serves to the dimensionality reduction for textual data’ clustering. Thus, this study provides researchers with a useful exploration of this technique. Finally, we outline guidelines for future research in the hotel e-reputation field as comparing the ANNs with other technique.Keywords: clustering, consumer behavior, data mining, e-reputation, machine learning, neural network, online hotel ‘reviews, opinion mining, scoring
Procedia PDF Downloads 1371465 Women Entrepreneurship in Poland and Its Impact on the Country’s Economic Development
Authors: Sabina Klimek
Abstract:
In general, entrepreneurs are viewed as agents of change whose goal is to ensure that resources are efficiently utilized. They are very important in the global economy; they create wealth and provide jobs. At the same time, many policymakers say that women entrepreneurs are a ‘special group’ worthy of their own research and policies. The status of Polish women has been changing as well, even though, to a large extent, it is still defined by the double role that women are expected to fill according to the dominant stereotypical model of family life. However, in the past decade, Polish women’s economic activities have experienced rapid growth and today are at a high level. In the article, the author presents the results of a survey conducted among women entrepreneurs in Poland concerning the functioning of their enterprises, motivation in setting up a company, and barriers that hinder them in business. The questionnaire (300 questionnaires were provided) and case studies carried out by the author have proven that female entrepreneurs in Poland are characterized by commonalities. Mostly they run small or micro-enterprises, operate in larger cities, are well-educated, and run service companies. Their main motivation to run their own business is mostly indicated by their need for independence. However, one of their biggest barriers and hesitations is the apprehension of non-payment. Entrepreneurs want to develop their companies, go to foreign markets and implement new solutions. They are not afraid of the future; they are only trying to create it. Detailed hypothesis, which reads as follows. The author additionally conducted a macroeconomic analysis calculating what part of GDP in Poland is produced by female entrepreneurs. The results of the study presented in this article prove that female entrepreneurship in Poland has a stable impact on the economy of the country, and women entrepreneurs produce over 13% of the national GDP. After years of growth in the number of female entrepreneurs in Poland, there has been a period of stabilization. However, there has also been a reduction in the number of self-employed people as well as the number of women in total employment. In the article, the author analyses the reasons for decreasing number of self-employed women and the total employment of women in Poland and provides suggestions for steps and incentives that should be made in order to encourage female entrepreneurship to grow in the country.Keywords: women entrepreneurship, women in business, women entrepreneurship in Poland, Poland, GDP of Poland
Procedia PDF Downloads 831464 The Positive Effects of Social Distancing on Individual Work Outcomes in the Context of COVID-19
Authors: Fan Wei, Tang Yipeng
Abstract:
The outbreak of COVID-19 in early 2020 has been raging around the world, which has severely affected people's work and life. In today's post-pandemic era, although the pandemic has been effectively controlled, people still need to maintain social distancing at all times to prevent the further spread of the virus. Based on this, social distancing in the context of the pandemic has aroused widespread attention from scholars. At present, most studies exploring the influencing factors of social distancing are studying the negative impact of social distancing on the physical and mental state of special groups from the inter-individual level, and their more focus on the forced complete social distancing during the severe period of the pandemic. Few studies have focused on the impact of social distancing on working groups in the post-pandemic era from the within-individual level. In order to explore this problem, this paper constructs a cross-level moderating model based on resource conservation theory from the perspective of psychological resources. A total of 81 subjects were recruited to fill in the three-stage questionnaires each day for 10 working days, and 661valid questionnaires were finally obtained. Through the empirical tests, the following conclusions were finally obtained: (1) At the within-individual level, daily social distancing is positively correlated with the second day’s recovery, and the individual’s low sociability regulates the relationship between social distancing and recovery. The indirect effect of daily social distancing through recovery has positive relationship employees’ work engagement and work-goal progress only when the individual has low sociability. For individuals with high sociability, none of these paths are significant. (2) At the within-individual level, there is a significant relationship between individual's recovery and work engagement and work-goal progress, indicating that the recovery of resources can produce positive work outcomes. According to the results, this study believes that in the post-pandemic era, social distancing can not only effectively prevent and control the pandemic but also have positive impacts. Employees can use the time and energy originally saved for social activities through social distancing to invest in things that can provide resources and help them recover.Keywords: social distancing, recovery, work engagement, work goal progress, sociability
Procedia PDF Downloads 1361463 Simulations to Predict Solar Energy Potential by ERA5 Application at North Africa
Authors: U. Ali Rahoma, Nabil Esawy, Fawzia Ibrahim Moursy, A. H. Hassan, Samy A. Khalil, Ashraf S. Khamees
Abstract:
The design of any solar energy conversion system requires the knowledge of solar radiation data obtained over a long period. Satellite data has been widely used to estimate solar energy where no ground observation of solar radiation is available, yet there are limitations on the temporal coverage of satellite data. Reanalysis is a “retrospective analysis” of the atmosphere parameters generated by assimilating observation data from various sources, including ground observation, satellites, ships, and aircraft observation with the output of NWP (Numerical Weather Prediction) models, to develop an exhaustive record of weather and climate parameters. The evaluation of the performance of reanalysis datasets (ERA-5) for North Africa against high-quality surface measured data was performed using statistical analysis. The estimation of global solar radiation (GSR) distribution over six different selected locations in North Africa during ten years from the period time 2011 to 2020. The root means square error (RMSE), mean bias error (MBE) and mean absolute error (MAE) of reanalysis data of solar radiation range from 0.079 to 0.222, 0.0145 to 0.198, and 0.055 to 0.178, respectively. The seasonal statistical analysis was performed to study seasonal variation of performance of datasets, which reveals the significant variation of errors in different seasons—the performance of the dataset changes by changing the temporal resolution of the data used for comparison. The monthly mean values of data show better performance, but the accuracy of data is compromised. The solar radiation data of ERA-5 is used for preliminary solar resource assessment and power estimation. The correlation coefficient (R2) varies from 0.93 to 99% for the different selected sites in North Africa in the present research. The goal of this research is to give a good representation for global solar radiation to help in solar energy application in all fields, and this can be done by using gridded data from European Centre for Medium-Range Weather Forecasts ECMWF and producing a new model to give a good result.Keywords: solar energy, solar radiation, ERA-5, potential energy
Procedia PDF Downloads 2161462 Numerical Study of the Breakdown of Surface Divergence Based Models for Interfacial Gas Transfer Velocity at Large Contamination Levels
Authors: Yasemin Akar, Jan G. Wissink, Herlina Herlina
Abstract:
The effect of various levels of contamination on the interfacial air–water gas transfer velocity is studied by Direct Numerical Simulation (DNS). The interfacial gas transfer is driven by isotropic turbulence, introduced at the bottom of the computational domain, diffusing upwards. The isotropic turbulence is generated in a separate, concurrently running the large-eddy simulation (LES). The flow fields in the main DNS and the LES are solved using fourth-order discretisations of convection and diffusion. To solve the transport of dissolved gases in water, a fifth-order-accurate WENO scheme is used for scalar convection combined with a fourth-order central discretisation for scalar diffusion. The damping effect of the surfactant contamination on the near surface (horizontal) velocities in the DNS is modelled using horizontal gradients of the surfactant concentration. An important parameter in this model, which corresponds to the level of contamination, is ReMa⁄We, where Re is the Reynolds number, Ma is the Marangoni number, and We is the Weber number. It was previously found that even small levels of contamination (ReMa⁄We small) lead to a significant drop in the interfacial gas transfer velocity KL. It is known that KL depends on both the Schmidt number Sc (ratio of the kinematic viscosity and the gas diffusivity in water) and the surface divergence β, i.e. K_L∝√(β⁄Sc). Previously it has been shown that this relation works well for surfaces with low to moderate contamination. However, it will break down for β close to zero. To study the validity of this dependence in the presence of surface contamination, simulations were carried out for ReMa⁄We=0,0.12,0.6,1.2,6,30 and Sc = 2, 4, 8, 16, 32. First, it will be shown that the scaling of KL with Sc remains valid also for larger ReMa⁄We. This is an important result that indicates that - for various levels of contamination - the numerical results obtained at low Schmidt numbers are also valid for significantly higher and more realistic Sc. Subsequently, it will be shown that - with increasing levels of ReMa⁄We - the dependency of KL on β begins to break down as the increased damping of near surface fluctuations results in an increased damping of β. Especially for large levels of contamination, this damping is so severe that KL is found to be underestimated significantly.Keywords: contamination, gas transfer, surfactants, turbulence
Procedia PDF Downloads 3001461 Impact of Import Restriction on Rice Production in Nigeria
Authors: C. O. Igberi, M. U. Amadi
Abstract:
This research paper on the impact of import restriction on rice production in Nigeria is aimed at finding/proffering valid solutions to the age long problem of rice self-sufficiency, through a better understanding of policy measures used in the past, in this case, the effectiveness of rice import restriction of the early 90’s. It tries to answer the questions of; import restriction boosting domestic rice production and the macroeconomic determining factors of Gross Domestic Rice Product (GDRP). The research probe is investigated through literature and analytical frameworks, such that time series data on the GDRP, Gross Fixed Capital Formation (GFCF), average foreign rice producers’ prices(PPF), domestic producers’ prices (PPN) and the labour force (LABF) are collated for analysis (with an import restriction dummy variable, POL1). The research objectives/hypothesis are analysed using; Cointegration, Vector Error Correction Model (VECM), Impulse Response Function (IRF) and Granger Causality Test(GCT) methodologies. Results show that in the short-run error correction specification for GDRP, a percentage (1%) deviation away from the long-run equilibrium in a current quarter is only corrected by 0.14% in the subsequent quarter. Also, the rice import restriction policy had no significant effect on the GDRP at this time. Other findings show that the policy period has, in fact, had effects on the PPN and LABF. The choice variables used are valid macroeconomic factors that explain the GDRP of Nigeria, as adduced from the IRF and GCT, and in the long-run. Policy recommendations suggest that the import restriction is not disqualified as a veritable tool for improving domestic rice production, rather better enforcement procedures and strict adherence to the policy dictates is needed. Furthermore, accompanying policies which drive public and private capital investment and accumulation must be introduced. Also, employment rate and labour substitution in the agricultural sector should not be drastically changed, rather its welfare and efficiency be improved.Keywords: import restriction, gross domestic rice production, cointegration, VECM, Granger causality, impulse response function
Procedia PDF Downloads 2111460 Impact of Revenue Reform on Vulnerable Communities
Authors: Pauliasi Tony Fakahau
Abstract:
This paper provides an overview of the impact of the revenue reform programme on vulnerable communities in the Kingdom of Tonga. Economic turmoil and mismanagement during the late 1990s forced the government to seek technical and financial assistance from the Asian Development Bank to undertake a comprehensive Economic and Public Sector Reform (EPSR) programme. The EPSR is a Western model recommended by donor agencies as the solution to Tonga’s economic challenges. The EPSR programme included public sector reform, private sector growth, and revenue generation. Tax reform was the main tool for revenue generation, which set out to strengthen tax compliance and administration as well as implement a value-added consumption tax. The EPSR is based on Western values and ideology but failed to recognise that Tongan cultural values are important to the local community. Two participant groups were interviewed. Participant group one consisted of 51 people representing vulnerable communities. Participant group two consisted of six people from the government and business sector who were from the elite of Tongan society. The Kakala Research Methodology provided the framework for the research, and the Talanoa Research Method was used to conduct semi-structured interviews in the homes of the first group and in the workplaces of the second group. The research found a heavy burden of the consumption tax on the purchasing power of participant group one (vulnerable participants), having an impact on nearly every financial transaction they made. Participant group ones’ main financial priorities were kavenga fakalotu (obligations to the church), kavenga fakafāmili (obligations to the family) and kavenga fakafonua (obligations to cultural events for the village, nobility, and royalty). The findings identified inequalities of the revenue reform, especially from consumption tax, for vulnerable people and communities compared to the elite of society. The research concluded that government and donor agencies need ameliorating policies to reduce the burden of tax on vulnerable groups more susceptible to the impact of revenue reform.Keywords: tax reform, tonga vulnerable community revenue, revenue reform, public sector reform
Procedia PDF Downloads 1361459 The Cost of Healthcare among Malaysian Community-Dwelling Elderly with Dementia
Authors: Roshanim Koris, Norashidah Mohamed Nor, Sharifah Azizah Haron, Normaz Wana Ismail, Syed Mohamed Aljunid Syed Junid, Amrizal Muhammad Nur, Asrul Akmal Shafie, Suraya Yusuff, Namaitijiang Maimaiti
Abstract:
An ageing population has huge implications for virtually every aspect of Malaysian societies. The elderly consume a greater volume of healthcare facilities not because they are older, but because of they are sick. The chronic comorbidities and deterioration of cognitive ability would lead the elderly’s health to become worst. This study aims to provide a comprehensive estimate of the direct and indirect costs of health care used in a nationally representative sample of community-dwelling elderly with dementia and as well as the determinants of healthcare cost. A survey using multi-stage random sampling techniques recruited a final sample of 2274 elderly people (60 years and above) in the state of Johor, Perak, Selangor and Kelantan. Mini Mental State Examination (MMSE) score was used to measure the cognitive capability among the elderly. Only the elderly with a score less than 19 marks were selected for further analysis and were classified as dementia. By using a two-part model findings also indicate household income and education level are variables that strongly significantly influence the healthcare cost among elderly with dementia. A number of visits and admission are also significantly affect healthcare expenditure. The comorbidity that highly influences healthcare cost is cancer and seeking the treatment in private facilities is also significantly affected the healthcare cost among the demented elderly. The level of dementia severity is not significant in determining the cost. This study is expected to attract the government's attention and act as a wake-up call for them to be more concerned about the elderly who are at high risk of having chronic comorbidities and cognitive problems by providing more appropriate health and social care facilities. The comorbidities are one of the factor that could cause dementia among elderly. It is hoped that this study will promote the issues of dementia as a priority in public health and social care in Malaysia.Keywords: ageing population, dementia, elderly, healthcare cost, healthcare utiliztion
Procedia PDF Downloads 2101458 Dipeptide Functionalized Nanoporous Anodic Aluminium Oxide Membrane for Capturing Small Molecules
Authors: Abdul Mutalib Md Jani, Abdul Hadi Mahmud, Mohd Tajuddin Mohd Ali
Abstract:
The rapid growth of interest in surface modification of nanostructures materials that exhibit improved structural and functional properties is attracting more researchers. The unique properties of highly ordered nanoporous anodic aluminium oxide (NAAO) membrane have been proposed as a platform for biosensing applications. They exhibit excellent physical and chemical properties with high porosity, high surface area, tunable pore sizes and excellent chemical resistance. In this study, NAAO was functionalized with 3-aminopropyltriethoxysilane (APTES) to prepared silane-modified NAAO. Amine functional groups are formed on the surface of NAAO during silanization and were characterized using Fourier Transform Infrared spectroscopy (FTIR). The synthesis of multi segment of peptide on NAAO surfaces can be realized by changing the surface chemistry of the NAAO membrane via click chemistry. By click reactions, utilizing alkyne terminated with amino group, various peptides tagged on NAAO can be envisioned from chiral natural or unnatural amino acids using standard coupling methods (HOBt, EDCI and HBTU). This strategy seemly versatile since coupling strategy of dipeptide with another amino acids, leading to tripeptide, tetrapeptide or pentapeptide, can be synthesized without purification. When an appropriate terminus is selected, multiple segments of amino acids can be successfully synthesized on the surfaces. The immobilized NAAO should be easily separated from the reaction medium by conventional filtration, thus avoiding complicated purification methods. Herein, we proposed to synthesize multi fragment peptide as a model for capturing and attaching various small biomolecules on NAAO surfaces and can be also applied as biosensing device, drug delivery systems and biocatalyst.Keywords: nanoporous anodic aluminium oxide, silanization, peptide synthesise, click chemistry
Procedia PDF Downloads 2841457 Prevalence and Risk Factors Associated with Nutrition Related Non-Communicable Diseases in a Cohort of Males in the Central Province of Sri Lanka
Authors: N. W. I. A. Jayawardana, W. A. T. A. Jayalath, W. M. T. Madhujith, U. Ralapanawa, R. S. Jayasekera, S. A. S. B. Alagiyawanna, A. M. K. R. Bandara, N. S. Kalupahana
Abstract:
There is mounting evidence to the effect that dietary and lifestyle changes affect the incidence of non-communicable diseases (NCDs). This study was conducted to investigate the association of diet, physical activity, smoking, alcohol consumption and duration of sleep with overweight, obesity, hypertension and diabetes in a cohort of males from the Central Province of Sri Lanka. A total of 2694 individuals aged between 17 – 68 years (Mean = 31) were included in the study. Body Mass Index cutoff values for Asians were used to categorize the participants as normal, overweight and obese. The dietary data were collected using a food frequency questionnaire [FFQ] and data on the level of physical activity, smoking, alcohol consumption and sleeping hours were obtained using a self-administered validated questionnaire. Systolic and diastolic blood pressure, random blood glucose levels were measured to determine the incidence of hypertension and diabetes. Among the individuals, the prevalence of overweight and obesity were 34% and 16.4% respectively. Approximately 37% of the participants suffered from hypertension. Overweight and obesity were associated with older age men (P<0.0001), frequency of smoking (P=0.0434), alcohol consumption level (P=0.0287) and the quantity of lipid intake (P=0.0081). Consumption of fish (P=0.6983) and salty snacks (P=0.8327), sleeping hours (P=0.6847) and the level of physical activity were not significantly (P=0.3301) associated with the incidence of overweight and obesity. Based on the fitted model, only age was significantly associated with hypertension (P < 0.001). Further, age (P < 0.0001), sleeping hours (P=0.0953) and consumption of fatty foods (P=0.0930) were significantly associated with diabetes. Age was associated with higher odds of pre diabetes (OR:1.089;95% CI:1.053,1.127) and diabetes (OR:1.077;95% CI:1.055,1.1) whereas 7-8 hrs. of sleep per day was associated with lesser odds of diabetes (OR:0.403;95% CI:0.184,0.884). High prevalence of overweight, obesity and hypertension in working-age males is a threatening sign for this area. As this population ages in the future and urbanization continues, the prevalence of above risk factors will likely to escalate.Keywords: age, males, non-communicable diseases, obesity
Procedia PDF Downloads 3391456 Multiscale Analysis of Shale Heterogeneity in Silurian Longmaxi Formation from South China
Authors: Xianglu Tang, Zhenxue Jiang, Zhuo Li
Abstract:
Characterization of shale multi scale heterogeneity is an important part to evaluate size and space distribution of shale gas reservoirs in sedimentary basins. The origin of shale heterogeneity has always been a hot research topic for it determines shale micro characteristics description and macro quality reservoir prediction. Shale multi scale heterogeneity was discussed based on thin section observation, FIB-SEM, QEMSCAN, TOC, XRD, mercury intrusion porosimetry (MIP), and nitrogen adsorption analysis from 30 core samples in Silurian Longmaxi formation. Results show that shale heterogeneity can be characterized by pore structure and mineral composition. The heterogeneity of shale pore is showed by different size pores at nm-μm scale. Macropores (pore diameter > 50 nm) have a large percentage of pore volume than mesopores (pore diameter between 2~ 50 nm) and micropores (pore diameter < 2nm). However, they have a low specific surface area than mesopores and micropores. Fractal dimensions of the pores from nitrogen adsorption data are higher than 2.7, what are higher than 2.8 from MIP data, showing extremely complex pore structure. This complexity in pore structure is mainly due to the organic matter and clay minerals with complex pore network structures, and diagenesis makes it more complicated. The heterogeneity of shale minerals is showed by mineral grains, lamina, and different lithology at nm-km scale under the continuous changing horizon. Through analyzing the change of mineral composition at each scale, random arrangement of mineral equal proportion, seasonal climate changes, large changes of sedimentary environment, and provenance supply are considered to be the main reasons that cause shale minerals heterogeneity from microcosmic to macroscopic. Due to scale effect, the change of shale multi scale heterogeneity is a discontinuous process, and there is a transformation boundary between homogeneous and in homogeneous. Therefore, a shale multi scale heterogeneity changing model is established by defining four types of homogeneous unit at different scales, which can be used to guide the prediction of shale gas distribution from micro scale to macro scale.Keywords: heterogeneity, homogeneous unit, multiscale, shale
Procedia PDF Downloads 4571455 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2
Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk
Abstract:
Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.Keywords: ecosystem services, grassland management, machine learning, remote sensing
Procedia PDF Downloads 2211454 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption, and GDP for Turkey: Time Series Analysis, 1980-2010
Authors: Jinhoa Lee
Abstract:
The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of CO2 emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, electricity), carbon dioxide (CO2) emissions and gross domestic product (GDP) for Turkey using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Phillips–Perron (PP) test for stationarity, Johansen maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in the VECM suggests negative long-run causalities from consumption of petroleum products and the direct combustion of crude oil, coal and natural gas to GDP. Conversely, positive impacts of CO2 emissions and electricity consumption on GDP are found to be significant in Turkey during the period. There exists a short-run bidirectional relationship between electricity consumption and natural gas consumption. There exists a positive unidirectional causality running from electricity consumption to natural gas consumption, while there exists a negative unidirectional causality running from natural gas consumption to electricity consumption. Moreover, GDP has a negative effect on electricity consumption in Turkey in the short run. Overall, the results support arguments that there are relationships among environmental quality, energy use and economic output but the associations can to be differed by the sources of energy in the case of Turkey over of period 1980-2010.Keywords: CO2 emissions, energy consumption, GDP, Turkey, time series analysis
Procedia PDF Downloads 5131453 Synthesis of Fluorescent PET-Type “Turn-Off” Triazolyl Coumarin Based Chemosensors for the Sensitive and Selective Sensing of Fe⁺³ Ions in Aqueous Solutions
Authors: Aidan Battison, Neliswa Mama
Abstract:
Environmental pollution by ionic species has been identified as one of the biggest challenges to the sustainable development of communities. The widespread use of organic and inorganic chemical products and the release of toxic chemical species from industrial waste have resulted in a need for advanced monitoring technologies for environment protection, remediation and restoration. Some of the disadvantages of conventional sensing methods include expensive instrumentation, well-controlled experimental conditions, time-consuming procedures and sometimes complicated sample preparation. On the contrary, the development of fluorescent chemosensors for biological and environmental detection of metal ions has attracted a great deal of attention due to their simplicity, high selectivity, eidetic recognition, rapid response and real-life monitoring. Coumarin derivatives S1 and S2 (Scheme 1) containing 1,2,3-triazole moieties at position -3- have been designed and synthesized from azide and alkyne derivatives by CuAAC “click” reactions for the detection of metal ions. These compounds displayed a strong preference for Fe3+ ions with complexation resulting in fluorescent quenching through photo-induced electron transfer (PET) by the “sphere of action” static quenching model. The tested metal ions included Cd2+, Pb2+, Ag+, Na+, Ca2+, Cr3+, Fe3+, Al3+, Cd2+, Ba2+, Cu2+, Co2+, Hg2+, Zn2+ and Ni2+. The detection limits of S1 and S2 were determined to be 4.1 and 5.1 uM, respectively. Compound S1 displayed the greatest selectivity towards Fe3+ in the presence of competing for metal cations. S1 could also be used for the detection of Fe3+ in a mixture of CH3CN/H¬2¬O. Binding stoichiometry between S1 and Fe3+ was determined by using both Jobs-plot and Benesi-Hildebrand analysis. The binding was shown to occur in a 1:1 ratio between the sensor and a metal cation. Reversibility studies between S1 and Fe3+ were conducted by using EDTA. The binding site of Fe3+ to S1 was determined by using 13 C NMR and Molecular Modelling studies. Complexation was suggested to occur between the lone-pair of electrons from the coumarin-carbonyl and the triazole-carbon double bond.Keywords: chemosensor, "click" chemistry, coumarin, fluorescence, static quenching, triazole
Procedia PDF Downloads 1661452 Alternative Approach to the Machine Vision System Operating for Solving Industrial Control Issue
Authors: M. S. Nikitenko, S. A. Kizilov, D. Y. Khudonogov
Abstract:
The paper considers an approach to a machine vision operating system combined with using a grid of light markers. This approach is used to solve several scientific and technical problems, such as measuring the capability of an apron feeder delivering coal from a lining return port to a conveyor in the technology of mining high coal releasing to a conveyor and prototyping an autonomous vehicle obstacle detection system. Primary verification of a method of calculating bulk material volume using three-dimensional modeling and validation in laboratory conditions with relative errors calculation were carried out. A method of calculating the capability of an apron feeder based on a machine vision system and a simplifying technology of a three-dimensional modelled examined measuring area with machine vision was offered. The proposed method allows measuring the volume of rock mass moved by an apron feeder using machine vision. This approach solves the volume control issue of coal produced by a feeder while working off high coal by lava complexes with release to a conveyor with accuracy applied for practical application. The developed mathematical apparatus for measuring feeder productivity in kg/s uses only basic mathematical functions such as addition, subtraction, multiplication, and division. Thus, this fact simplifies software development, and this fact expands the variety of microcontrollers and microcomputers suitable for performing tasks of calculating feeder capability. A feature of an obstacle detection issue is to correct distortions of the laser grid, which simplifies their detection. The paper presents algorithms for video camera image processing and autonomous vehicle model control based on obstacle detection machine vision systems. A sample fragment of obstacle detection at the moment of distortion with the laser grid is demonstrated.Keywords: machine vision, machine vision operating system, light markers, measuring capability, obstacle detection system, autonomous transport
Procedia PDF Downloads 1181451 The Effect of Values on Social Innovativeness in Nursing and Medical Faculty Students
Authors: Betül sönmez, Fatma Azizoğlu, S. Bilge Hapçıoğlu, Aytolan Yıldırım
Abstract:
Background: Social innovativeness contains the procurement of a sustainable benefit for a number of problems from working conditions to education, social development, health, and from environmental control to climate change, as well as the development of new social productions and services. Objectives: This study was conducted to determine the correlation between the social innovation tendency of nursing and medical faculty students and value types. Methods and participants: The population of this correlational study consisted of third-year students studying at a medical faculty and a nursing faculty in a public university in Istanbul. Ethics committee approval and permission from the school administrations were obtained in order to conduct the study and voluntary participation of the students in the study was ensured. 524 questionnaires were obtained with a total return rate of 57.1% (65.0% in nurse student and 52.1% in physic students). The data of the study were collected by using the Portrait Values Questionnaire and a questionnaire containing the Social Innovativeness Scale. Results: The effect of the subscale scores of Portrait Values Questionnaire on the total score of Social Innovativeness Scale was 26.6%. In the model where a significance was determined (F=37.566; p<0.01), the highest effect was observed in the subscale of universalism. The effect of subscale scores obtained from the Portrait Values Questionnaire, as well as age, gender and number of siblings was 25% on the Social Innovativeness in nursing students and 30.8% in medical faculty students. In both models where a significance was determined (p<0.01), the nursing students had the values of power, universalism and kindness, whereas the medical faculty students had the values of self-direction, stimulation, hedonism and universalism showed the highest effect in both models. Conclusions: Universalism is the value with the highest effect upon the social innovativeness in both groups, which is an expected result by the nature of professions. The effect of the values of independent thinking and self-direction, as well as openness to change involving quest for innovation (stimulation), which are observed in medical faculty students, also supports the literature of innovative behavior. These results are thought to guide educators and administrators in terms of developing socially innovative behaviors.Keywords: social innovativeness, portrait values questionnaire, nursing students, medical faculty students
Procedia PDF Downloads 3251450 Generation of High-Quality Synthetic CT Images from Cone Beam CT Images Using A.I. Based Generative Networks
Authors: Heeba A. Gurku
Abstract:
Introduction: Cone Beam CT(CBCT) images play an integral part in proper patient positioning in cancer patients undergoing radiation therapy treatment. But these images are low in quality. The purpose of this study is to generate high-quality synthetic CT images from CBCT using generative models. Material and Methods: This study utilized two datasets from The Cancer Imaging Archive (TCIA) 1) Lung cancer dataset of 20 patients (with full view CBCT images) and 2) Pancreatic cancer dataset of 40 patients (only 27 patients having limited view images were included in the study). Cycle Generative Adversarial Networks (GAN) and its variant Attention Guided Generative Adversarial Networks (AGGAN) models were used to generate the synthetic CTs. Models were evaluated by visual evaluation and on four metrics, Structural Similarity Index Measure (SSIM), Peak Signal Noise Ratio (PSNR) Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), to compare the synthetic CT and original CT images. Results: For pancreatic dataset with limited view CBCT images, our study showed that in Cycle GAN model, MAE, RMSE, PSNR improved from 12.57to 8.49, 20.94 to 15.29 and 21.85 to 24.63, respectively but structural similarity only marginally increased from 0.78 to 0.79. Similar, results were achieved with AGGAN with no improvement over Cycle GAN. However, for lung dataset with full view CBCT images Cycle GAN was able to reduce MAE significantly from 89.44 to 15.11 and AGGAN was able to reduce it to 19.77. Similarly, RMSE was also decreased from 92.68 to 23.50 in Cycle GAN and to 29.02 in AGGAN. SSIM and PSNR also improved significantly from 0.17 to 0.59 and from 8.81 to 21.06 in Cycle GAN respectively while in AGGAN SSIM increased to 0.52 and PSNR increased to 19.31. In both datasets, GAN models were able to reduce artifacts, reduce noise, have better resolution, and better contrast enhancement. Conclusion and Recommendation: Both Cycle GAN and AGGAN were significantly able to reduce MAE, RMSE and PSNR in both datasets. However, full view lung dataset showed more improvement in SSIM and image quality than limited view pancreatic dataset.Keywords: CT images, CBCT images, cycle GAN, AGGAN
Procedia PDF Downloads 861449 Applying Unmanned Aerial Vehicle on Agricultural Damage: A Case Study of the Meteorological Disaster on Taiwan Paddy Rice
Authors: Chiling Chen, Chiaoying Chou, Siyang Wu
Abstract:
Taiwan locates at the west of Pacific Ocean and intersects between continental and marine climate. Typhoons frequently strike Taiwan and come with meteorological disasters, i.e., heavy flooding, landslides, loss of life and properties, etc. Global climate change brings more extremely meteorological disasters. So, develop techniques to improve disaster prevention and mitigation is needed, to improve rescue processes and rehabilitations is important as well. In this study, UAVs (Unmanned Aerial Vehicles) are applied to take instant images for improving the disaster investigation and rescue processes. Paddy rice fields in the central Taiwan are the study area. There have been attacked by heavy rain during the monsoon season in June 2016. UAV images provide the high ground resolution (3.5cm) with 3D Point Clouds to develop image discrimination techniques and digital surface model (DSM) on rice lodging. Firstly, image supervised classification with Maximum Likelihood Method (MLD) is used to delineate the area of rice lodging. Secondly, 3D point clouds generated by Pix4D Mapper are used to develop DSM for classifying the lodging levels of paddy rice. As results, discriminate accuracy of rice lodging is 85% by image supervised classification, and the classification accuracy of lodging level is 87% by DSM. Therefore, UAVs not only provide instant images of agricultural damage after the meteorological disaster, but the image discriminations on rice lodging also reach acceptable accuracy (>85%). In the future, technologies of UAVs and image discrimination will be applied to different crop fields. The results of image discrimination will be overlapped with administrative boundaries of paddy rice, to establish GIS-based assist system on agricultural damage discrimination. Therefore, the time and labor would be greatly reduced on damage detection and monitoring.Keywords: Monsoon, supervised classification, Pix4D, 3D point clouds, discriminate accuracy
Procedia PDF Downloads 303