Search results for: textbook costs assessment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7869

Search results for: textbook costs assessment

5769 Life Cycle Assessment to Study the Acidification and Eutrophication Impacts of Sweet Cherry Production

Authors: G. Bravo, D. Lopez, A. Iriarte

Abstract:

Several organizations and governments have created a demand for information about the environmental impacts of agricultural products. Today, the export oriented fruit sector in Chile is being challenged to quantify and reduce their environmental impacts. Chile is the largest southern hemisphere producer and exporter of sweet cherry fruit. Chilean sweet cherry production reached a volume of 80,000 tons in 2012. The main destination market for the Chilean cherry in 2012 was Asia (including Hong Kong and China), taking in 69% of exported volume. Another important market was the United States with 16% participation, followed by Latin America (7%) and Europe (6%). Concerning geographical distribution, the Chilean conventional cherry production is focused in the center-south area, between the regions of Maule and O’Higgins; both regions represent 81% of the planted surface. The Life Cycle Assessment (LCA) is widely accepted as one of the major methodologies for assessing environmental impacts of products or services. The LCA identifies the material, energy, material, and waste flows of a product or service, and their impact on the environment. There are scant studies that examine the impacts of sweet cherry cultivation, such as acidification and eutrophication. Within this context, the main objective of this study is to evaluate, using the LCA, the acidification and eutrophication impacts of sweet cherry production in Chile. The additional objective is to identify the agricultural inputs that contributed significantly to the impacts of this fruit. The system under study included all the life cycle stages from the cradle to the farm gate (harvested sweet cherry). The data of sweet cherry production correspond to nationwide representative practices and are based on technical-economic studies and field information obtained in several face-to-face interviews. The study takes into account the following agricultural inputs: fertilizers, pesticides, diesel consumption for agricultural operations, machinery and electricity for irrigation. The results indicated that the mineral fertilizers are the most important contributors to the acidification and eutrophication impacts of the sheet cherry cultivation. Improvement options are suggested for the hotspot in order to reduce the environmental impacts. The results allow planning and promoting low impacts procedures across fruit companies, as well as policymakers, and other stakeholders on the subject. In this context, this study is one of the first assessments of the environmental impacts of sweet cherry production. New field data or evaluation of other life cycle stages could further improve the knowledge on the impacts of this fruit. This study may contribute to environmental information in other countries where there is similar agricultural production for sweet cherry.

Keywords: acidification, eutrophication, life cycle assessment, sweet cherry production

Procedia PDF Downloads 271
5768 Eco-Parcel As a Semi-Qualitative Approach to Support Environmental Impacts Assessments in Nature-Based Tourism Destinations

Authors: Halima Kilungu, Pantaleo, K. T. Munishi

Abstract:

Climate and land-cover change affect nature-based tourism (NBT) due to its attractions' close connection to natural environments and climate. Thus, knowledge of how each attraction reacts to the changing environments and devising simple yet science based approaches to respond to these changes from a tourism perspective in space and time is timely. Nevertheless, no specific approaches exist to address the knowledge gap. The eco-parcel approach is devised to address the gap and operationalized in Serengeti and Kilimanjaro National Parks: the most climate-sensitive NBT destinations in Africa. The approach is partly descriptive and has three simple steps: (1) to identify and define tourist attractions (i.e. biotic and abiotic attractions). This creates an important database of the most poorly kept information on attractions' types in NBT destinations. (2) To create a spatial and temporal link of each attraction and describe its characteristic environments (e.g. vegetation, soil, water and rock outcrops). This is the most limited attractions' information yet important as a proxy of changes in attractions. (3) To assess the importance of individual attractions for tourism based on tourists' preferences. This information enables an accurate assessment of the value of individual attractions for tourism. The importance of the eco-parcel approach is that it describes how each attraction emerges from and is connected to specific environments, which define its attractiveness in space and time. This information allows accurate assessment of the likely losses or gains of individual attractions when climate or environment changes in specific destinations and equips tourism stakeholders with informed responses.

Keywords: climate change, environmental change, nature-based tourism, Serengeti National Park, Kilimanjaro National Park

Procedia PDF Downloads 121
5767 Flexural Strength of Alkali Resistant Glass Textile Reinforced Concrete Beam with Prestressing

Authors: Jongho Park, Taekyun Kim, Jungbhin You, Sungnam Hong, Sun-Kyu Park

Abstract:

Due to the aging of bridges, increasing of maintenance costs and decreasing of structural safety is occurred. The steel corrosion of reinforced concrete bridge is the most common problem and this phenomenon is accelerating due to abnormal weather and increasing CO2 concentration due to climate change. To solve these problems, composite members using textile have been studied. A textile reinforced concrete can reduce carbon emissions by reduced concrete and without steel bars, so a lot of structural behavior studies are needed. Therefore, in this study, textile reinforced concrete beam was made and flexural test was performed. Also, the change of flexural strength according to the prestressing was conducted. As a result, flexural strength of TRC with prestressing was increased compared and flexural behavior was shown as reinforced concrete.

Keywords: AR-glass, flexural strength, prestressing, textile reinforced concrete

Procedia PDF Downloads 331
5766 Quality and Quantity in the Strategic Network of Higher Education Institutions

Authors: Juha Kettunen

Abstract:

This study analyzes the quality and the size of the strategic network of higher education institutions. The study analyses the concept of fitness for purpose in quality assurance. It also analyses the transaction costs of networking that have consequences on the number of members in the network. Empirical evidence is presented of the Consortium on Applied Research and Professional Education, which is a European strategic network of six higher education institutions. The results of the study support the argument that the number of members in the strategic network should be relatively small to provide high quality results. The practical importance is that networking has been able to promote international research and development projects. The results of this study are important for those who want to design and improve international networks in higher education.

Keywords: balanced scorecard, higher education, social networking, strategic planning

Procedia PDF Downloads 348
5765 Occupational Exposure to Polycyclic Aromatic Hydrocarbons (Pha) among Asphalt and Road Paving Workers

Authors: Boularas El Alia, H. Rezk-Allah, S. Chaoui, A. Chama, B. Rezk-Allah

Abstract:

Aims: To assess the current exposure to the PHA among various workers in the sector of asphalt and road paving. Methods: The assessment of the exposure to PHA has been performed on workers (n=14) belonging to two companies, allocated into several activities such as road paving, manufacturing of coated bituminous warm, manufacturing of asphalt cut-back, manufacturing of emulsion of asphalt. A group of control subjects (n=18) was associated. The internal exposure to PHA was investigated by measurement of the urinary excretion of 2-naphtol, urine metabolite of naphtalene, one of the biomarkers of total PHA exposure. Urine samples were collected from the exposed workers, at the beginning of the week, at the beginning of the work shift (BWBS) and at the end of the work shift, at the end of the week (ESEW). In the control subjects, single samples of urine were collected after the end of the work shift.Every subject was invited to answer a questionnaire for the collection of technical and medical data as well as smoking habits and food intake. The concentration of 2-naphtol in the hydrolysate of urine was determined spectrophotometrically, after its reaction with the Fast Blue BB salt (diazotized 4-benzoylamino-2,5-diethoxyaniline). Results: For all the workers included in the study, the 2-urinary naphtol concentrations were higher than those in the control subjects (Median=9,55 µg/g creatinine) whether it is at (BWBS) (Md=16,2 µg/g creatinine) or at (ESEW) (n=18,Median=32,22 µg/g creatinine). Considerable differences are observed according to the category of job. The concentrations are also higher among smokers. Conclusion:The results show a significant exposure, mainly during manual laying, reveals an important risk particularly for the respiratory system.Considering the current criteria, carcinogenic risk due to the PHA seems not insignificant.

Keywords: PHA, asphalt, assessment, occupational, exposure

Procedia PDF Downloads 478
5764 Using AI Based Software as an Assessment Aid for University Engineering Assignments

Authors: Waleed Al-Nuaimy, Luke Anastassiou, Manjinder Kainth

Abstract:

As the process of teaching has evolved with the advent of new technologies over the ages, so has the process of learning. Educators have perpetually found themselves on the lookout for new technology-enhanced methods of teaching in order to increase learning efficiency and decrease ever expanding workloads. Shortly after the invention of the internet, web-based learning started to pick up in the late 1990s and educators quickly found that the process of providing learning material and marking assignments could change thanks to the connectivity offered by the internet. With the creation of early web-based virtual learning environments (VLEs) such as SPIDER and Blackboard, it soon became apparent that VLEs resulted in higher reported computer self-efficacy among students, but at the cost of students being less satisfied with the learning process . It may be argued that the impersonal nature of VLEs, and their limited functionality may have been the leading factors contributing to this reported dissatisfaction. To this day, often faced with the prospects of assigning colossal engineering cohorts their homework and assessments, educators may frequently choose optimally curated assessment formats, such as multiple-choice quizzes and numerical answer input boxes, so that automated grading software embedded in the VLEs can save time and mark student submissions instantaneously. A crucial skill that is meant to be learnt during most science and engineering undergraduate degrees is gaining the confidence in using, solving and deriving mathematical equations. Equations underpin a significant portion of the topics taught in many STEM subjects, and it is in homework assignments and assessments that this understanding is tested. It is not hard to see that this can become challenging if the majority of assignment formats students are engaging with are multiple-choice questions, and educators end up with a reduced perspective of their students’ ability to manipulate equations. Artificial intelligence (AI) has in recent times been shown to be an important consideration for many technologies. In our paper, we explore the use of new AI based software designed to work in conjunction with current VLEs. Using our experience with the software, we discuss its potential to solve a selection of problems ranging from impersonality to the reduction of educator workloads by speeding up the marking process. We examine the software’s potential to increase learning efficiency through its features which claim to allow more customized and higher-quality feedback. We investigate the usability of features allowing students to input equation derivations in a range of different forms, and discuss relevant observations associated with these input methods. Furthermore, we make ethical considerations and discuss potential drawbacks to the software, including the extent to which optical character recognition (OCR) could play a part in the perpetuation of errors and create disagreements between student intent and their submitted assignment answers. It is the intention of the authors that this study will be useful as an example of the implementation of AI in a practical assessment scenario insofar as serving as a springboard for further considerations and studies that utilise AI in the setting and marking of science and engineering assignments.

Keywords: engineering education, assessment, artificial intelligence, optical character recognition (OCR)

Procedia PDF Downloads 123
5763 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 127
5762 A Project-Based Learning Approach in the Course of 'Engineering Skills' for Undergraduate Engineering Students

Authors: Armin Eilaghi, Ahmad Sedaghat, Hayder Abdurazzak, Fadi Alkhatib, Shiva Sadeghi, Martin Jaeger

Abstract:

A summary of experiences, recommendations, and lessons learnt in the application of PBL in the course of “Engineering Skills” in the School of Engineering at Australian College of Kuwait in Kuwait is presented. Four projects were introduced as part of the PBL course “Engineering Skills” to 24 students in School of Engineering. These students were grouped in 6 teams to develop their skills in 10 learning outcomes. The learning outcomes targeted skills such as drawing, design, modeling, manufacturing and analysis at a preliminary level; and also some life line learning and teamwork skills as these students were exposed for the first time to the PBL (project based learning). The students were assessed for 10 learning outcomes of the course and students’ feedback was collected using an anonymous survey at the end of the course. Analyzing the students’ feedbacks, it is observed that 67% of students preferred multiple smaller projects than a single big project because it provided them with more time and attention focus to improve their “soft skills” including project management, risk assessment, and failure analysis. Moreover, it is found that 63% of students preferred to work with different team members during the course to improve their professional communication skills. Among all, 62% of students believed that working with team members from other departments helped them to increase the innovative aspect of projects and improved their overall performance. However, 70% of students counted extra time needed to regenerate momentum with the new teams as the major challenge. Project based learning provided a suitable platform for introducing students to professional engineering practice and meeting the needs of students, employers and educators. It was found that students achieved their 10 learning outcomes and gained new skills developed in this PBL unit. This was reflected in their portfolios and assessment survey.

Keywords: project-based learning, engineering skills, undergraduate engineering, problem-based learning

Procedia PDF Downloads 166
5761 The Impact of Regulation on Corporate Social Responsibility Reporting Quality: UK Evidence

Authors: Ruba Hamed, Khaled Hussainey, Basiem Al-Shattarat, Wasim Al-Shattarat

Abstract:

This paper examines how the influence of mandating corporate social responsibility reporting (CSR) on subsequent financial performance through accounting-based measures and market-based measures. We provide evidence about the negative impact of reporting CSR voluntarily on the firm’s future performance due to the increased spending on and costs related to such activities. On the contrary, mandating CSR reporting enhances firms’ future performance by signalling to the market about the firm’s positive stance towards sustainability issues in the UK. Our findings are of interest to regulation setters and stakeholders with respect to mandatory CSR reporting and provide further insight and feedback into accounting and reporting practices.

Keywords: accounting-based performance, mandatory CSR, mandatory regulation, market-based performance

Procedia PDF Downloads 124
5760 About Some Results of the Determination of Alcohol in Moroccan Gasoline-Alcohol Mixtures

Authors: Mahacine Amrani

Abstract:

A simple and rapid method for the determination of alcohol in gasoline-alcohol mixtures using density measurements is described. The method can determine a minimum of 1% of alcohol by volume. The precision of the method is ± 3%.The method is more useful for field test in the quality assessment of alcohol blended fuels.

Keywords: gasoline-alcohol, mixture, alcohol determination, density, measurement, Morocco

Procedia PDF Downloads 322
5759 Weight Comparison of Oil and Dry Type Distribution Transformers

Authors: Murat Toren, Mehmet Çelebi

Abstract:

Reducing the weight of transformers while providing good performance, cost reduction and increased efficiency is important. Weight is one of the most significant factors in all electrical machines, and as such, many transformer design parameters are related to weight calculations. This study presents a comparison of the weight of oil type transformers and dry type transformer weight. Oil type transformers are mainly used in industry; however, dry type transformers are becoming more widespread in recent years. MATLAB is typically used for designing transformers and design parameters (rated voltages, core loss, etc.) along with design in ANSYS Maxwell. Similar to other studies, this study presented that the dry type transformer option is limited. Moreover, the commonly-used 50 kVA distribution transformers in the industry are oil type and dry type transformers are designed and considered in terms of weight. Currently, the preference for low-cost oil-type transformers would change if costs for dry-type transformer were more competitive. The aim of this study was to compare the weight of transformers, which is a substantial cost factor, and to provide an evaluation about increasing the use of dry type transformers.

Keywords: weight, optimization, oil-type transformers, dry-type transformers

Procedia PDF Downloads 354
5758 Ties of China and the United States Regarding to the Shanghai Cooperation Organization on the Basis of Soft Power Theory

Authors: Shabnam Dadparvar, Laijin Shen

Abstract:

After a period of conflict between Russia and the West, new signs of confrontation between the United States and China are observed. China, as the most populous country in the world with a high rate of economic growth, neither stands the hegemonic power of the United States nor has the intention of direct confrontation with it. By raising the costs of the United States’ leadership at the international level, China seeks to find a better status without direct confrontation with the US. Meanwhile, the Shanghai Cooperation Organization (SCO), as a soft balancing strategy against the hegemony of the United States is used as a tool to reach this goal. The authors by using a descriptive-analytical method try to explain the policies of China and the United States on Shanghai Cooperation Organization as well as confrontation between these two countries within the framework of 'balance of soft power theory'.

Keywords: balance of soft power, Central Asia, Shanghai cooperation organization, terrorism

Procedia PDF Downloads 371
5757 Developing VR-Based Neurorehabilitation Support Tools: A Step-by-Step Approach for Cognitive Rehabilitation and Pain Distraction during Invasive Techniques in Hospital Settings

Authors: Alba Prats-Bisbe, Jaume López-Carballo, David Leno-Colorado, Alberto García Molina, Alicia Romero Marquez, Elena Hernández Pena, Eloy Opisso Salleras, Raimon Jané Campos

Abstract:

Neurological disorders are a leading cause of disability and premature mortality worldwide. Neurorehabilitation (NRHB) is a clinical process aimed at reducing functional impairment, promoting societal participation, and improving the quality of life for affected individuals. Virtual reality (VR) technology is emerging as a promising NRHB support tool. Its immersive nature fosters a strong sense of agency and embodiment, motivating patients to engage in meaningful tasks and increasing adherence to therapy. However, the clinical benefits of VR interventions are challenging to determine due to the high heterogeneity among health applications. This study explores a stepwise development approach for creating VR-based tools to assist individuals with neurological disorders in medical practice, aiming to enhance reproducibility, facilitate comparison, and promote the generalization of findings. Building on previous research, the step-by-step methodology encompasses: Needs Identification– conducting cross-disciplinary meetings to brainstorm problems, solutions, and address barriers. Intervention Definition– target population, set goals, and conceptualize the VR system (equipment and environments). Material Selection and Placement– choose appropriate hardware and software, place the device within the hospital setting, and test equipment. Co-design– collaboratively create VR environments, user interfaces, and data management strategies. Prototyping– develop VR prototypes, conduct user testing, and make iterative redesigns. Usability and Feasibility Assessment– design protocols and conduct trials with stakeholders in the hospital setting. Efficacy Assessment– conduct clinical trials to evaluate outcomes and long-term effects. Cost-Effectiveness Validation– assess reproducibility, sustainability, and balance between costs and benefits. NRHB is complex due to the multifaceted needs of patients and the interdisciplinary healthcare architecture. VR has the potential to support various applications, such as motor skill training, cognitive tasks, pain management, unilateral spatial neglect (diagnosis and treatment), mirror therapy, and ecologically valid activities of daily living. Following this methodology was crucial for launching a VR-based system in a real hospital environment. Collaboration with neuropsychologists lead to develop A) a VR-based tool for cognitive rehabilitation in patients with acquired brain injury (ABI). The system comprises a head-mounted display (HTC Vive Pro Eye) and 7 tasks targeting attention, memory, and executive functions. A desktop application facilitates session configuration, while database records in-game variables. The VR tool's usability and feasibility were demonstrated in proof-of-concept trials with 20 patients, and effectiveness is being tested through a clinical protocol with 12 patients completing 24-session treatment. Another case involved collaboration with nurses and paediatric physiatrists to create B) a VR-based distraction tool during invasive techniques. The goal is to alleviate pain and anxiety associated with botulinum toxin (BTX) injections, blood tests, or intravenous placements. An all-in-one headset (HTC Vive Focus 3) deploys 360º videos to improve the experience for paediatric patients and their families. This study presents a framework for developing clinically relevant and technologically feasible VR-based support tools for hospital settings. Despite differences in patient type, intervention purpose, and VR system, the methodology demonstrates usability, viability, reproducibility and preliminary clinical benefits. It highlights the importance approach centred on clinician and patient needs for any aspect of NRHB within a real hospital setting.

Keywords: neurological disorders, neurorehabilitation, stepwise development approach, virtual reality

Procedia PDF Downloads 33
5756 Exploitation Pattern of Atlantic Bonito in West African Waters: Case Study of the Bonito Stock in Senegalese Waters

Authors: Ousmane Sarr

Abstract:

The Senegalese coasts have high productivity of fishery resources due to the frequency of intense up-welling system that occurs along its coast, caused by the maritime trade winds making its waters nutrients rich. Fishing plays a primordial role in Senegal's socioeconomic plans and food security. However, a global diagnosis of the Senegalese maritime fishing sector has highlighted the challenges this sector encounters. Among these concerns, some significant stocks, a priority target for artisanal fishing, need further assessment. If no efforts are made in this direction, most stock will be overexploited or even in decline. It is in this context that this research was initiated. This investigation aimed to apply a multi-modal approach (LBB, Catch-only-based CMSY model and its most recent version (CMSY++); JABBA, and JABBA-Select) to assess the stock of Atlantic bonito, Sarda sarda (Bloch, 1793) in the Senegalese Exclusive Economic Zone (SEEZ). Available catch, effort, and size data from Atlantic bonito over 15 years (2004-2018) were used to calculate the nominal and standardized CPUE, size-frequency distribution, and length at retentions (50 % and 95 % selectivity) of the species. These relevant results were employed as input parameters for stock assessment models mentioned above to define the stock status of this species in this region of the Atlantic Ocean. The LBB model indicated an Atlantic bonito healthy stock status with B/BMSY values ranging from 1.3 to 1.6 and B/B0 values varying from 0.47 to 0.61 of the main scenarios performed (BON_AFG_CL, BON_GN_Length, and BON_PS_Length). The results estimated by LBB are consistent with those obtained by CMSY. The CMSY model results demonstrate that the SEEZ Atlantic bonito stock is in a sound condition in the final year of the main scenarios analyzed (BON, BON-bt, BON-GN-bt, and BON-PS-bt) with sustainable relative stock biomass (B2018/BMSY = 1.13 to 1.3) and fishing pressure levels (F2018/FMSY= 0.52 to 1.43). The B/BMSY and F/FMSY results for the JABBA model ranged between 2.01 to 2.14 and 0.47 to 0.33, respectively. In contrast, The estimated B/BMSY and F/FMSY for JABBA-Select ranged from 1.91 to 1.92 and 0.52 to 0.54. The Kobe plots results of the base case scenarios ranged from 75% to 89% probability in the green area, indicating sustainable fishing pressure and an Atlantic bonito healthy stock size capable of producing high yields close to the MSY. Based on the stock assessment results, this study highlighted scientific advice for temporary management measures. This study suggests an improvement of the selectivity parameters of longlines and purse seines and a temporary prohibition of the use of sleeping nets in the fishery for the Atlantic bonito stock in the SEEZ based on the results of the length-base models. Although these actions are temporary, they can be essential to reduce or avoid intense pressure on the Atlantic bonito stock in the SEEZ. However, it is necessary to establish harvest control rules to provide coherent and solid scientific information that leads to appropriate decision-making for rational and sustainable exploitation of Atlantic bonito in the SEEZ and the Eastern Atlantic Ocean.

Keywords: multi-model approach, stock assessment, atlantic bonito, SEEZ

Procedia PDF Downloads 62
5755 Mining in Peru and Local Governance: Assessing the Contribution of CRS Projects

Authors: Sandra Carrillo Hoyos

Abstract:

Mining activities in South America have significantly grown during the last decades, given the abundance of natural resources, the implemented governmental policies to incentivize foreign investment as well as the boom in international prices for metals and oil between 2002 and 2008. While this context allowed the region to occupy a leading position between the top producers of minerals around the world, it has also meant an increase in socio-environmental conflicts which have generated costs and negative impacts not only for the companies but especially for the governments and local communities.During the latest decade, the mining sector in Peru has faced with the social resistance of a large number of communities, which began organizing actions against the implementation of high investing projects. The dissatisfaction has derived in the prevalence of socio-environmental conflicts associated with mining activities, some of them never solved into an agreement. In order to prevent those socio-environmental conflicts and obtain the social license from local communities, most of the mining companies have developed diverse initiatives within the framework of policies and practices of corporate social responsibility (CSR). This paper has assessed the mining sector’s contribution toward the local development management along the last decade, as part of CSR strategies as well as the policies promoted by the Peruvian State. This assessment found that, in the beginning, these initiatives have been based on a philanthropic approach and were reacting to pressures from local stakeholders to maintain the consent to operate from the surrounding communities as well as to create, as a result, a harmonious atmosphere for operations. Due to the weak State presence, such practices have increased the expectations of communities related to the participation of mining companies in solving structural development problems, especially those related to primary needs, infrastructure, education, health, among others. In other words, this paper was focused on analyze in what extent these initiatives have promoted local empowerment for development planning and integrated management of natural resources from a territorial approach. From this perspective, the analysis demonstrates that, while the design and planning of social investment initiatives have improved due to the sector´s sustainability approach, many companies have developed actions beyond their competence during this process. In some cases, the referenced actions have generated dependency with communities, even though this relationship has not exempted the companies of conflict situations with unfortunate consequences. Furthermore, the social programs developed have not necessarily generated a significant impact in improving the quality of life of affected populations. In fact, it is possible to identify that those regions with high mining resources and investment are facing with a situation of poverty and high dependency on mining production. In spite of the revenues derived from mining industry, local governments have not been able to translate the royalties into sustainable development opportunities. For this reason, the proposed paper suggests some challenges for the mining sector contribution to local development based on the best practices and lessons learnt from a benchmarking for the leading mining companies.

Keywords: corporate social responsibility, local development, mining, socio-environmental conflict

Procedia PDF Downloads 405
5754 Albendazole Ameliorates Inflammatory Response in a Rat Model of Acute Mesenteric Ischemia Reperfusion Injury

Authors: Kamyar Moradi

Abstract:

Background: Acute mesenteric ischemia is known as a life-threatening condition. Re-establishment of blood flow in this condition can lead to mesenteric ischemia reperfusion (MIR) injury, which is accompanied by inflammatory response. Still, clear blueprint of inflammatory mechanism underlying MIR injury has not been provided. Interestingly, Albendazole has exhibited notable effects on inflammation and cytokine production. In this study, we aimed to evaluate outcomes of MIR injury following pretreatment with Albendazole with respect to assessment of mesenteric inflammation and ischemia threshold. Methods: Male rats were randomly divided into sham operated, vehicle treated, Albendazole 100 mg/kg, and Albendazole 200 mg/kg groups. MIR injury was induced by occlusion of superior mesenteric artery for 30 minutes followed by 120 minutes of reperfusion. Samples were utilized for assessment of epithelial survival and villous height. Immunohistochemistry study revealed intestinal expression of TNF-α and HIF-1-α. Gene expression of NF-κB/TLR4/TNF-α/IL-6 was measured using RTPCR. Also, protein levels of inflammatory cytokines in serum and intestine were assessed by ELISA method. Results: Histopathological study demonstrated that pretreatment with Albendazole could ameliorate decline in villous height and epithelial survival following MIR injury. Also, systemic inflammation was suppressed after administration of Albendazole. Analysis of possible participating inflammatory pathway could demonstrate that intestinal expression of NF-κB/TLR4/TNF-α/IL-6 is significantly attenuated in treated groups. Eventually, IHC study illustrated concordant decline in mesenteric expression of HIF-1-α/TNF-α. Conclusion: Single dose pretreatment with Albendazole could ameliorate inflammatory response and enhance ischemia threshold following induction of MIR injury. Still, more studies would clarify existing causality in this phenomenon.

Keywords: albendazole, ischemia reperfusion injury, inflammation, mesenteric ischemia

Procedia PDF Downloads 169
5753 Vulnerability and Risk Assessment, and Preparedness to Natural Disasters of Schools in Southern Leyte, Philippines

Authors: Lorifel Hinay

Abstract:

Natural disasters have increased in frequency and severity in the Philippines over the years resulting to detrimental impacts in school properties and lives of learners. The topography of the Province of Southern Leyte is a hotspot for inevitable natural disaster-causing hazards that could affect schools, cripple the educational system and cause environmental, cultural and social detrimental impacts making Disaster Risk Reduction and Management (DRRM) an indispensable platform to keep learners safe, secure and resilient. This study determined the schools’ vulnerability and risk assessment to earthquake, landslide, flood, storm surge and tsunami hazards, and its relationship to status in disaster preparedness. Descriptive-correlational research design was used where the respondents were School DRRM Coordinators/School Administrators and Municipal DRRM Officers. It was found that schools’ vulnerability and risk were high in landslide, medium in earthquake, and low in flood, storm surge and tsunami. Though schools were moderately prepared in disasters across all hazards, they were less accomplished in group organization and property security. Less planning preparation and less implementation of DRRM measures were observed in schools highly at risk of earthquake and landslide. Also, schools vulnerable to landslide and flood have very high property security. Topography and location greatly contributed to schools’ vulnerability to hazards, thus, a school-based disaster preparedness plan is hoped to help ensure that hazard-exposed schools can build a culture of safety, disaster resiliency and education continuity.

Keywords: disaster risk reduction and management, earthquake, flood, landslide, storm surge, tsunami

Procedia PDF Downloads 132
5752 Natural Language Processing; the Future of Clinical Record Management

Authors: Khaled M. Alhawiti

Abstract:

This paper investigates the future of medicine and the use of Natural language processing. The importance of having correct clinical information available online is remarkable; improving patient care at affordable costs could be achieved using automated applications to use the online clinical information. The major challenge towards the retrieval of such vital information is to have it appropriately coded. Majority of the online patient reports are not found to be coded and not accessible as its recorded in natural language text. The use of Natural Language processing provides a feasible solution by retrieving and organizing clinical information, available in text and transforming clinical data that is available for use. Systems used in NLP are rather complex to construct, as they entail considerable knowledge, however significant development has been made. Newly formed NLP systems have been tested and have established performance that is promising and considered as practical clinical applications.

Keywords: clinical information, information retrieval, natural language processing, automated applications

Procedia PDF Downloads 404
5751 Oakes Test and Proportionality Test: Balance between the Practical Costs of Limiting Rights and the Benefits Arising from the Law

Authors: Rafael Tedrus Bento

Abstract:

The analysis of proportionality as a test is raised as a basic foundation for the achievement of Fundamental Rights. We used legal dogmatics and empirical analysis to seek the expected results, from the reading of the RV Oakes trial by the Supreme Court of Canada. In cases involving freedom of expression, two tests are used to resolve disputes. The first examines whether, in fact, the case can be characterized as a violation of freedom of expression; the second assesses whether this violation can be justified by the reasonable limit clause. This test was defined in the RV Oakes trial by the Supreme Court of Canada, concluding with the Oakes Test, used worldwide as a proportionality test. Resulting is a proportionality between the effects of the limiting measure and the objective - the more serious the harmful effects of a measure, the more important the objective must be.

Keywords: Oakes, proportionality, fundamental rights, Supreme Court of Canada

Procedia PDF Downloads 146
5750 Performance Prediction Methodology of Slow Aging Assets

Authors: M. Ben Slimene, M.-S. Ouali

Abstract:

Asset management of urban infrastructures faces a multitude of challenges that need to be overcome to obtain a reliable measurement of performances. Predicting the performance of slowly aging systems is one of those challenges, which helps the asset manager to investigate specific failure modes and to undertake the appropriate maintenance and rehabilitation interventions to avoid catastrophic failures as well as to optimize the maintenance costs. This article presents a methodology for modeling the deterioration of slowly degrading assets based on an operating history. It consists of extracting degradation profiles by grouping together assets that exhibit similar degradation sequences using an unsupervised classification technique derived from artificial intelligence. The obtained clusters are used to build the performance prediction models. This methodology is applied to a sample of a stormwater drainage culvert dataset.

Keywords: artificial Intelligence, clustering, culvert, regression model, slow degradation

Procedia PDF Downloads 112
5749 Assessment of Heavy Metal Bioaccumulation by Tissues of Ipomoea Batatas and Manihot Esculenta Irrigated with Water from Muhammad Ayuba Dam, Kazaure, Jigawa State, Nigeria

Authors: Sa’idu A. Abdullah, Jafar Lawan, A. U. Adamu, Fowotade, S. A., Hamisu Abdu

Abstract:

Scarcity of quality water in many communities compels inhabitants to use any available water resources for domestic, recreational, industrial and agricultural purposes. Global concern on the potential health hazards of anthropogenic inputs into our ecosystems imposes the need for constant monitoring of levels of pollutants in order to ensure compliance with internationally acceptable criteria. In this research, assessment of bioaccumulation of Cd, Co, Cu, Pb and Zn was carried out using tissues of Ipomoea batatas (sweet potato) and Manihot esculenta (cassava) irrigated with water from Muhammad Ayuba Dam in Kazaure, Jigawa State. The metal concentrations were determined using Flame Atomic Absorption Spectrophotometer (FAAS). The result of the analysis revealed the presence of the metals in varying concentrations. Cd and Co showed higher concentrations in the tubers of Manihot esculenta but all the other investigated metals were more concentrated in the leaves of the plant. Cd and Cu on the other hand showed higher concentration in the root of Ipomoea batatas while the remaining investigated metals were concentrated more in the leaves of the plant. The result of analysis of water samples from five sampling stations in the Dam showed the presence of the metals as follows: Cd, (0.063±0.02 mg/L), Co (0.086±0.03 mg/L), Cu (0.167±0.08 mg/L), Pb (0.22±0.01 mg/L) and Zn (0.047±0.01 mg/L) respectively. The results of bioaccumulation studies using the Bioaccumulation Factors (BAF) index indicated Ipomoea batatas to have higher bioaccumulation potential for Cd, Co and Cu while Pb and Zn were more accumulated in Manihot esculenta. The levels of the metals in both the water samples and plant tissues were all below the WHO permissible limit. This is indicative that the inhabitants of the community under investigation are not at any health risk.

Keywords: agriculture, bioaccumulation, heavy metal, plant tissues

Procedia PDF Downloads 385
5748 Integration of EEG and Motion Tracking Sensors for Objective Measure of Attention-Deficit Hyperactivity Disorder in Pre-Schoolers

Authors: Neha Bhattacharyya, Soumendra Singh, Amrita Banerjee, Ria Ghosh, Oindrila Sinha, Nairit Das, Rajkumar Gayen, Somya Subhra Pal, Sahely Ganguly, Tanmoy Dasgupta, Tanusree Dasgupta, Pulak Mondal, Aniruddha Adhikari, Sharmila Sarkar, Debasish Bhattacharyya, Asim Kumar Mallick, Om Prakash Singh, Samir Kumar Pal

Abstract:

Background: We aim to develop an integrated device comprised of single-probe EEG and CCD-based motion sensors for a more objective measure of Attention-deficit Hyperactivity Disorder (ADHD). While the integrated device (MAHD) relies on the EEG signal (spectral density of beta wave) for the assessment of attention during a given structured task (painting three segments of a circle using three different colors, namely red, green and blue), the CCD sensor depicts movement pattern of the subjects engaged in a continuous performance task (CPT). A statistical analysis of the attention and movement patterns was performed, and the accuracy of the completed tasks was analysed using indigenously developed software. The device with the embedded software, called MAHD, is intended to improve certainty with criterion E (i.e. whether symptoms are better explained by another condition). Methods: We have used the EEG signal from a single-channel dry sensor placed on the frontal lobe of the head of the subjects (3-5 years old pre-schoolers). During the painting of three segments of a circle using three distinct colors (red, green, and blue), absolute power for delta and beta EEG waves from the subjects are found to be correlated with relaxation and attention/cognitive load conditions. While the relaxation condition of the subject hints at hyperactivity, a more direct CCD-based motion sensor is used to track the physical movement of the subject engaged in a continuous performance task (CPT) i.e., separation of the various colored balls from one table to another. We have used our indigenously developed software for the statistical analysis to derive a scale for the objective assessment of ADHD. We have also compared our scale with clinical ADHD evaluation. Results: In a limited clinical trial with preliminary statistical analysis, we have found a significant correlation between the objective assessment of the ADHD subjects with that of the clinician’s conventional evaluation. Conclusion: MAHD, the integrated device, is supposed to be an auxiliary tool to improve the accuracy of ADHD diagnosis by supporting greater criterion E certainty.

Keywords: ADHD, CPT, EEG signal, motion sensor, psychometric test

Procedia PDF Downloads 99
5747 Assessment of a Coupled Geothermal-Solar Thermal Based Hydrogen Production System

Authors: Maryam Hamlehdar, Guillermo A. Narsilio

Abstract:

To enhance the feasibility of utilising geothermal hot sedimentary aquifers (HSAs) for clean hydrogen production, one approach is the implementation of solar-integrated geothermal energy systems. This detailed modelling study conducts a thermo-economic assessment of an advanced Organic Rankine Cycle (ORC)-based hydrogen production system that uses low-temperature geothermal reservoirs, with a specific focus on hot sedimentary aquifers (HSAs) over a 30-year period. In the proposed hybrid system, solar-thermal energy is used to raise the water temperature extracted from the geothermal production well. This temperature increase leads to a higher steam output, powering the turbine and subsequently enhancing the electricity output for running the electrolyser. Thermodynamic modeling of a parabolic trough solar (PTS) collector is developed and integrated with modeling for a geothermal-based configuration. This configuration includes a closed regenerator cycle (CRC), proton exchange membrane (PEM) electrolyser, and thermoelectric generator (TEG). Following this, the study investigates the impact of solar energy use on the temperature enhancement of the geothermal reservoir. It assesses the resulting consequences on the lifecycle performance of the hydrogen production system in comparison with a standalone geothermal system. The results indicate that, with the appropriate solar collector area, a combined solar-geothermal hydrogen production system outperforms a standalone geothermal system in both cost and rate of production. These findings underscore a solar-assisted geothermal hybrid system holds the potential to generate lower-cost hydrogen with enhanced efficiency, thereby boosting the appeal of numerous low to medium-temperature geothermal sources for hydrogen production.

Keywords: clean hydrogen production, integrated solar-geothermal, low-temperature geothermal energy, numerical modelling

Procedia PDF Downloads 69
5746 Environmental Sanitation Parameters Recording in Refugee-Migrants Camps in Greece, 2017

Authors: Crysovaladou Kefaloudi, Kassiani Mellou, Eirini Saranti-Papasaranti, Athanasios Koustenis, Chrysoula Botsi, Agapios Terzidis

Abstract:

Recent migration crisis led to a vast migrant – refugees movement to Greece which created an urgent need for hosting settlements. Taken into account the protection of public health from possible pathogens related to water and food supply as well as waste and sewage accumulation, a 'Living Conditions Recording Form' was created in the context of 'PHILOS' European Program funded by the Asylum Migration and Integration Fund (AMIF) of EU’s DG Migration and Home Affairs, in order to assess a number of environmental sanitation parameters, in refugees – migrants camps in mainland. The assessment will be completed until the end of July. From March to June 2017, mobile unit teams comprised of health inspectors of sub-action 2 of “PHILOS” proceeded with the assessment of living conditions in twenty-two out of thirty-one camps and 'Stata' was used for the statistical analysis of obtained information. Variables were grouped into the following categories: 1) Camp administration, 2) hosted population number, 3) accommodation, 4) heating installations, 5) personal hygiene, 6) sewage collection and disposal, 7) water supply, 8) waste collection and management, 9) pest control, 10) fire safety, 11) food handling and safety. Preliminary analysis of the results showed that camp administration was performed in 90% of the camps by a public authority with the coordination of various NGOs. The median number of hosted population was 222 ranging from 62 to 3200, and the median value of hosted population per accommodation type was 4 in 19 camps. Heating facilities were provided in 86.1% of camps. In 18.2 % of the camps, one personal hygiene facility was available per 6 people ranging in the rest of the camps from 1 per 3 to 1 per 20 hosted refugees-migrants. Waste and sewage collection was performed depending on populations demand in an adequate way in all recorded camps. In 90% of camps, water was supplied through the central water supply system. In 85% of camps quantity and quality of water supply inside camps was regularly monitored for microbial and chemical indices. Pest control was implemented in 86.4% of the camps as well as fire safety measures. Food was supplied by catering companies in 50% of the camps, and the quality and quantity food was monitored at a regular basis. In 77% of camps, food was prepared by the hosted population with the availability of proper storage conditions. Furthermore, in all camps, hosted population was provided with personal hygiene items and health sanitary educational programs were implemented in 77.3% of camps. In conclusion, in the majority of the camps, environmental sanitation parameters were satisfactory. However, waste and sewage accumulation, as well as inadequate pest control measures were recorded in some camps. The obtained data have led to a number of recommendations for the improvement of sanitary conditions, disseminated to all relevant stakeholders. Special emphasis was given to hygiene measures implementation during food handling by migrants – refugees, as well as to waste and sewage accumulation taking in to account the population’s cultural background.

Keywords: environmental sanitation parameters, food borne diseases risk assessment, refugee – migrants camps, water borne diseases risk assessment

Procedia PDF Downloads 230
5745 A Performance Analysis Study for Cloud Based ERP Systems

Authors: Burak Erkayman

Abstract:

The manufacturing and service organizations are in the need of using ERP systems to integrate many functions from purchasing to storage, production planning to calculation of costs. Using ERP systems by the integration in the level of information provides companies remarkable advantages in terms of profitability, productivity and efficiency in processes. Cloud computing is one of the most significant changes in information and communication technology. The developments in Cloud Computing attract business world to take advantage of this field. Cloud Computing means much more storage area, more cost saving and faster data transfer rate. In addition to these, it presents new business models, new field of study and practicable solutions for anyone’s use. These developments make inevitable the implementation of ERP systems to cloud environment. In this study, the performance of ERP systems in cloud environment is analyzed through various performance criteria and a comparison between traditional and cloud-ERP systems is presented. At the end of study the transformation and the future of ERP systems is discussed.

Keywords: cloud-ERP, ERP system performance, information system transformation

Procedia PDF Downloads 529
5744 Development and Psychometric Properties of the Dutch Contextual Assessment of Social Skills: A Blinded Observational Outcome Measure of Social Skills for Adolescents with Autism Spectrum Disorder

Authors: Sakinah Idris, Femke Ten Hoeve, Kirstin Greaves-Lord

Abstract:

Background: Social skills interventions are considered to be efficacious if social skills are improved as a result of an intervention. Nevertheless, the objective assessment of social skills is hindered by a lack of sensitive and validated measures. To measure the change in social skills after an intervention, questionnaires reported by parents, clinicians and/or teachers are commonly used. Observations are the most ecologically valid method of assessing improvements in social skills after an intervention. For this purpose, The Program for the Educational and Enrichment of Relational Skills (PEERS) was developed for adolescents, in order to teach them the age-appropriate skills needed to participate in society. It is an evidence-based intervention for adolescents with ASD that taught ecologically valid social skills techniques. Objectives: The current study aims to describe the development and psychometric evaluation of the Dutch Contextual Assessment of Social Skills (CASS), an observational outcome measure of social skills for adolescents with Autism Spectrum Disorder (ASD). Methods: 64 adolescents (M = 14.68, SD = 1.41, 71% boys) with ASD performed the CASS before and after a social skills intervention (i.e. PEERS or the active control condition). Each adolescent completed a 3-minute conversation with a confederate. The conversation was prompt as a natural introduction between two-unfamiliar, similar ages, opposite-sex peers who meet for the first time. The adolescent and the confederate completed a brief questionnaire about the conversation (Conversation Rating Scale). Results: Results indicated sufficient psychometric properties. The Dutch CASS has a high level of internal consistency (Cronbach's α coefficients = 0.84). Data supported the convergent validity (i.e., significant correlated with the Social Skills Improvement System (SSiS). The Dutch CASS did not significantly correlate with the autistic mannerism subscale from Social Responsiveness Scale (SRS), thus proved the divergent validity. Based on scorings made by raters who were kept blind to the time points, reliable change index was computed to assess the change in social skills. With regard to the content validity, only the learning objectives of the first two meetings of PEERS about conversational skills relatively matched with rating domains of the CASS. Due to this underrepresentation, we found an existing observational measure (TOPICC) that covers some of the other learning objectives of PEERS. TOPICC covers 22% of the learning objectives of PEERS about conversational skills, meanwhile, CASS is 45%. Unfortunately, 33% of the learning objectives of PEERS was not covered by CASS or TOPICC. Conclusion: Recommendations are made to improve the psychometric properties and content validity of the Dutch CASS.

Keywords: autism spectrum disorder, observational, PEERS, social skills

Procedia PDF Downloads 155
5743 Risk Assessment of Flood Defences by Utilising Condition Grade Based Probabilistic Approach

Authors: M. Bahari Mehrabani, Hua-Peng Chen

Abstract:

Management and maintenance of coastal defence structures during the expected life cycle have become a real challenge for decision makers and engineers. Accurate evaluation of the current condition and future performance of flood defence structures is essential for effective practical maintenance strategies on the basis of available field inspection data. Moreover, as coastal defence structures age, it becomes more challenging to implement maintenance and management plans to avoid structural failure. Therefore, condition inspection data are essential for assessing damage and forecasting deterioration of ageing flood defence structures in order to keep the structures in an acceptable condition. The inspection data for flood defence structures are often collected using discrete visual condition rating schemes. In order to evaluate future condition of the structure, a probabilistic deterioration model needs to be utilised. However, existing deterioration models may not provide a reliable prediction of performance deterioration for a long period due to uncertainties. To tackle the limitation, a time-dependent condition-based model associated with a transition probability needs to be developed on the basis of condition grade scheme for flood defences. This paper presents a probabilistic method for predicting future performance deterioration of coastal flood defence structures based on condition grading inspection data and deterioration curves estimated by expert judgement. In condition-based deterioration modelling, the main task is to estimate transition probability matrices. The deterioration process of the structure related to the transition states is modelled according to Markov chain process, and a reliability-based approach is used to estimate the probability of structural failure. Visual inspection data according to the United Kingdom Condition Assessment Manual are used to obtain the initial condition grade curve of the coastal flood defences. The initial curves then modified in order to develop transition probabilities through non-linear regression based optimisation algorithms. The Monte Carlo simulations are then used to evaluate the future performance of the structure on the basis of the estimated transition probabilities. Finally, a case study is given to demonstrate the applicability of the proposed method under no-maintenance and medium-maintenance scenarios. Results show that the proposed method can provide an effective predictive model for various situations in terms of available condition grading data. The proposed model also provides useful information on time-dependent probability of failure in coastal flood defences.

Keywords: condition grading, flood defense, performance assessment, stochastic deterioration modelling

Procedia PDF Downloads 234
5742 Investor Beware - Significance of Investor Conduct under the Fair and Equitable Treatment Standard

Authors: Damayanti Sen

Abstract:

The Fair and Equitable Treatment standard has emerged as a core tenet of a formulated legal structure aimed at encouraging investment through the granting of a secure and stable environment for the investor in the Host State. As an absolute, non-contingent standard, it constitutes an independent and reliable system for the protection of the investor and is frequently invoked and applied in investor-state dispute settlement under bilateral and multilateral investment treaties. Thus far, the standard has been examined principally as a measure for determining the responsibility of host countries towards investors and investments. The conduct of investor in applying the Fair and Equitable Treatment Standard is relatively unexplored. Such an assessment may be necessary in light of the development of new defenses to demands of host governments to confine the application of the standard in order to ensure a proper balance between the protection of investors and the inherent right of a State to regulate economic conduct within its borders. This paper explores the implications of including considerations of investor conduct in the determination of whether an act of the host country’s administrative and/or judicial authorities has breached the fair and equitable treatment principle. The need for such defenses are of special concern for governments of developing countries, whose limited resources can affect their ability to provide an effective evaluation of the nature of the proposed investment, and, subsequently, to ensure that the expected benefits are realized. On the basis of conceptual analysis, and emerging international judicial and arbitral case law, this paper suggests that investor duties such as, the avoidance of unconscionable conduct, the reasonable assessment of investment risk in the host country, and a duty to operate an investment reasonably are leading to a new limit upon the fair and equitable treatment standard- one that can be succinctly captured in the phrase “Caveat Investor”.

Keywords: BITs, FET Standard, investor behavior, arbitral case law

Procedia PDF Downloads 313
5741 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases

Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar

Abstract:

Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.

Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning

Procedia PDF Downloads 120
5740 Sustainability in Retaining Wall Construction with Geosynthetics

Authors: Sateesh Kumar Pisini, Swetha Priya Darshini, Sanjay Kumar Shukla

Abstract:

This paper seeks to present a research study on sustainability in construction of retaining wall using geosynthetics. Sustainable construction is a way for the building and infrastructure industry to move towards achieving sustainable development, taking into account environmental, socioeconomic and cultural issues. Geotechnical engineering, being very resource intensive, warrants an environmental sustainability study, but a quantitative framework for assessing the sustainability of geotechnical practices, particularly at the planning and design stages, does not exist. In geotechnical projects, major economic issues to be addressed are in the design and construction of stable slopes and retaining structures within space constraints. In this paper, quantitative indicators for assessing the environmental sustainability of retaining wall with geosynthetics are compared with conventional concrete retaining wall through life cycle assessment (LCA). Geosynthetics can make a real difference in sustainable construction techniques and contribute to development in developing countries in particular. Their imaginative application can result in considerable cost savings over the use of conventional designs and materials. The acceptance of geosynthetics in reinforced retaining wall construction has been triggered by a number of factors, including aesthetics, reliability, simple construction techniques, good seismic performance, and the ability to tolerate large deformations without structural distress. Reinforced retaining wall with geosynthetics is the best cost-effective and eco-friendly solution as compared with traditional concrete retaining wall construction. This paper presents an analysis of the theme of sustainability applied to the design and construction of traditional concrete retaining wall and presenting a cost-effective and environmental solution using geosynthetics.

Keywords: sustainability, retaining wall, geosynthetics, life cycle assessment

Procedia PDF Downloads 2060