Search results for: sign processing
1974 2D-Modeling with Lego Mindstorms
Authors: Miroslav Popelka, Jakub Nozicka
Abstract:
The whole work is based on possibility to use Lego Mindstorms robotics systems to reduce costs. Lego Mindstorms consists of a wide variety of hardware components necessary to simulate, programme and test of robotics systems in practice. To programme algorithm, which simulates space using the ultrasonic sensor, was used development environment supplied with kit. Software Matlab was used to render values afterwards they were measured by ultrasonic sensor. The algorithm created for this paper uses theoretical knowledge from area of signal processing. Data being processed by algorithm are collected by ultrasonic sensor that scans 2D space in front of it. Ultrasonic sensor is placed on moving arm of robot which provides horizontal moving of sensor. Vertical movement of sensor is provided by wheel drive. The robot follows map in order to get correct positioning of measured data. Based on discovered facts it is possible to consider Lego Mindstorm for low-cost and capable kit for real-time modelling.Keywords: LEGO Mindstorms, ultrasonic sensor, real-time modeling, 2D object, low-cost robotics systems, sensors, Matlab, EV3 Home Edition Software
Procedia PDF Downloads 4751973 Multi-Spectral Medical Images Enhancement Using a Weber’s law
Authors: Muna F. Al-Sammaraie
Abstract:
The aim of this research is to present a multi spectral image enhancement methods used to achieve highly real digital image populates only a small portion of the available range of digital values. Also, a quantitative measure of image enhancement is presented. This measure is related with concepts of the Webers Low of the human visual system. For decades, several image enhancement techniques have been proposed. Although most techniques require profuse amount of advance and critical steps, the result for the perceive image are not as satisfied. This study involves changing the original values so that more of the available range is used; then increases the contrast between features and their backgrounds. It consists of reading the binary image on the basis of pixels taking them byte-wise and displaying it, calculating the statistics of an image, automatically enhancing the color of the image based on statistics calculation using algorithms and working with RGB color bands. Finally, the enhanced image is displayed along with image histogram. A number of experimental results illustrated the performance of these algorithms. Particularly the quantitative measure has helped to select optimal processing parameters: the best parameters and transform.Keywords: image enhancement, multi-spectral, RGB, histogram
Procedia PDF Downloads 3321972 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping
Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa
Abstract:
The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.Keywords: neural network computing, continuous functions generating the input-output mapping, decreasing the training time, machines with big memories
Procedia PDF Downloads 2841971 A Corpus-Based Study on the Lexical, Syntactic and Sequential Features across Interpreting Types
Authors: Qianxi Lv, Junying Liang
Abstract:
Among the various modes of interpreting, simultaneous interpreting (SI) is regarded as a ‘complex’ and ‘extreme condition’ of cognitive tasks while consecutive interpreters (CI) do not have to share processing capacity between tasks. Given that SI exerts great cognitive demand, it makes sense to posit that the output of SI may be more compromised than that of CI in the linguistic features. The bulk of the research has stressed the varying cognitive demand and processes involved in different modes of interpreting; however, related empirical research is sparse. In keeping with our interest in investigating the quantitative linguistic factors discriminating between SI and CI, the current study seeks to examine the potential lexical simplification, syntactic complexity and sequential organization mechanism with a self-made inter-model corpus of transcribed simultaneous and consecutive interpretation, translated speech and original speech texts with a total running word of 321960. The lexical features are extracted in terms of the lexical density, list head coverage, hapax legomena, and type-token ratio, as well as core vocabulary percentage. Dependency distance, an index for syntactic complexity and reflective of processing demand is employed. Frequency motif is a non-grammatically-bound sequential unit and is also used to visualize the local function distribution of interpreting the output. While SI is generally regarded as multitasking with high cognitive load, our findings evidently show that CI may impose heavier or taxing cognitive resource differently and hence yields more lexically and syntactically simplified output. In addition, the sequential features manifest that SI and CI organize the sequences from the source text in different ways into the output, to minimize the cognitive load respectively. We reasoned the results in the framework that cognitive demand is exerted both on maintaining and coordinating component of Working Memory. On the one hand, the information maintained in CI is inherently larger in volume compared to SI. On the other hand, time constraints directly influence the sentence reformulation process. The temporal pressure from the input in SI makes the interpreters only keep a small chunk of information in the focus of attention. Thus, SI interpreters usually produce the output by largely retaining the source structure so as to relieve the information from the working memory immediately after formulated in the target language. Conversely, CI interpreters receive at least a few sentences before reformulation, when they are more self-paced. CI interpreters may thus tend to retain and generate the information in a way to lessen the demand. In other words, interpreters cope with the high demand in the reformulation phase of CI by generating output with densely distributed function words, more content words of higher frequency values and fewer variations, simpler structures and more frequently used language sequences. We consequently propose a revised effort model based on the result for a better illustration of cognitive demand during both interpreting types.Keywords: cognitive demand, corpus-based, dependency distance, frequency motif, interpreting types, lexical simplification, sequential units distribution, syntactic complexity
Procedia PDF Downloads 1841970 The Different Improvement of Numerical Magnitude and Spatial Representation of Numbers to Symbolic Approximate Arithmetic: A Training Study of Preschooler
Abstract:
Spatial representation of numbers and numerical magnitude are important for preschoolers’ mathematical ability. Mental number line, a typical index to measure numbers spatial representation, and numerical comparison are both related to arithmetic obviously. However, they seem to rely on different mechanisms and probably influence arithmetic through different mechanisms. In line with this idea, preschool children were trained with two tasks to investigate which one is more important for approximate arithmetic. The training of numerical processing and number line estimation were proved to be effective. They both improved the ability of approximate arithmetic. When the difficulty of approximate arithmetic was taken into account, the performance in number line training group was not significantly different among three levels. However, two harder levels achieved significance in numerical comparison training group. Thus, comparing spatial representation ability, symbolic approximation arithmetic relies more on numerical magnitude. Educational implications of the study were discussed.Keywords: approximate arithmetic, mental number line, numerical magnitude, preschooler
Procedia PDF Downloads 2561969 Intelligent Production Machine
Authors: A. Şahinoğlu, R. Gürbüz, A. Güllü, M. Karhan
Abstract:
This study in production machines, it is aimed that machine will automatically perceive cutting data and alter cutting parameters. The two most important parameters have to be checked in machine control unit are progress feed rate and speeds. These parameters are aimed to be controlled by sounds of machine. Optimum sound’s features introduced to computer. During process, real time data is received and converted by Matlab software. Data is converted into numerical values. According to them progress and speeds decreases/increases at a certain rate and thus optimum sound is acquired. Cutting process is made in respect of optimum cutting parameters. During chip remove progress, features of cutting tools, kind of cut material, cutting parameters and used machine; affects on various parameters. Instead of required parameters need to be measured such as temperature, vibration, and tool wear that emerged during cutting process; detailed analysis of the sound emerged during cutting process will provide detection of various data that included in the cutting process by the much more easy and economic way. The relation between cutting parameters and sound is being identified.Keywords: cutting process, sound processing, intelligent late, sound analysis
Procedia PDF Downloads 3361968 Spatially Referenced Checklist Model Dedicated to Professional Actors for a Good Evaluation and Management of Networks
Authors: Abdessalam Hijab, Hafida Boulekbache, Eric Henry
Abstract:
The objective of this article is to explain the use of geographic information system (GIS) and information and communication technologies (ICTs) in the real-time processing and analysis of data on the status of an urban sanitation network by integrating professional actors in sanitation for sustainable management in urban areas. Indeed, it is a smart geo-collaboration based on the complementarity of ICTs and GIS. This multi-actor reflection was built with the objective of contributing to the development of complementary solutions to the existing technologies to better protect the urban environment, with the help of a checklist with the spatial reference "E-Géo-LD" dedicated to the "professional/professional" actors in sanitation, for intelligent monitoring of liquid sanitation networks in urban areas. In addition, this research provides a good understanding and assimilation of liquid sanitation schemes in the "Lamkansa" sampling area of the city of Casablanca, and spatially evaluates these schemes. Downstream, it represents a guide to assess the environmental impacts of the liquid sanitation scheme.Keywords: ICT, GIS, spatial checklist, liquid sanitation, environment
Procedia PDF Downloads 2391967 Design and Implementation of a Hardened Cryptographic Coprocessor with 128-bit RISC-V Core
Authors: Yashas Bedre Raghavendra, Pim Vullers
Abstract:
This study presents the design and implementation of an abstract cryptographic coprocessor, leveraging AMBA(Advanced Microcontroller Bus Architecture) protocols - APB (Advanced Peripheral Bus) and AHB (Advanced High-performance Bus), to enable seamless integration with the main CPU(Central processing unit) and enhance the coprocessor’s algorithm flexibility. The primary objective is to create a versatile coprocessor that can execute various cryptographic algorithms, including ECC(Elliptic-curve cryptography), RSA(Rivest–Shamir–Adleman), and AES (Advanced Encryption Standard) while providing a robust and secure solution for modern secure embedded systems. To achieve this goal, the coprocessor is equipped with a tightly coupled memory (TCM) for rapid data access during cryptographic operations. The TCM is placed within the coprocessor, ensuring quick retrieval of critical data and optimizing overall performance. Additionally, the program memory is positioned outside the coprocessor, allowing for easy updates and reconfiguration, which enhances adaptability to future algorithm implementations. Direct links are employed instead of DMA(Direct memory access) for data transfer, ensuring faster communication and reducing complexity. The AMBA-based communication architecture facilitates seamless interaction between the coprocessor and the main CPU, streamlining data flow and ensuring efficient utilization of system resources. The abstract nature of the coprocessor allows for easy integration of new cryptographic algorithms in the future. As the security landscape continues to evolve, the coprocessor can adapt and incorporate emerging algorithms, making it a future-proof solution for cryptographic processing. Furthermore, this study explores the addition of custom instructions into RISC-V ISE (Instruction Set Extension) to enhance cryptographic operations. By incorporating custom instructions specifically tailored for cryptographic algorithms, the coprocessor achieves higher efficiency and reduced cycles per instruction (CPI) compared to traditional instruction sets. The adoption of RISC-V 128-bit architecture significantly reduces the total number of instructions required for complex cryptographic tasks, leading to faster execution times and improved overall performance. Comparisons are made with 32-bit and 64-bit architectures, highlighting the advantages of the 128-bit architecture in terms of reduced instruction count and CPI. In conclusion, the abstract cryptographic coprocessor presented in this study offers significant advantages in terms of algorithm flexibility, security, and integration with the main CPU. By leveraging AMBA protocols and employing direct links for data transfer, the coprocessor achieves high-performance cryptographic operations without compromising system efficiency. With its TCM and external program memory, the coprocessor is capable of securely executing a wide range of cryptographic algorithms. This versatility and adaptability, coupled with the benefits of custom instructions and the 128-bit architecture, make it an invaluable asset for secure embedded systems, meeting the demands of modern cryptographic applications.Keywords: abstract cryptographic coprocessor, AMBA protocols, ECC, RSA, AES, tightly coupled memory, secure embedded systems, RISC-V ISE, custom instructions, instruction count, cycles per instruction
Procedia PDF Downloads 731966 Applying Epistemology to Artificial Intelligence in the Social Arena: Exploring Fundamental Considerations
Authors: Gianni Jacucci
Abstract:
Epistemology traditionally finds its place within human research philosophies and methodologies. Artificial intelligence methods pose challenges, particularly given the unresolved relationship between AI and pivotal concepts in social arenas such as hermeneutics and accountability. We begin by examining the essential criteria governing scientific rigor in the human sciences. We revisit the three foundational philosophies underpinning qualitative research methods: empiricism, hermeneutics, and phenomenology. We elucidate the distinct attributes, merits, and vulnerabilities inherent in the methodologies they inspire. The integration of AI, e.g., deep learning algorithms, sparks an interest in evaluating these criteria against the diverse forms of AI architectures. For instance, Interpreted AI could be viewed as a hermeneutic approach, relying on a priori interpretations, while straight AI may be perceived as a descriptive phenomenological approach, processing original and uncontaminated data. This paper serves as groundwork for such explorations, offering preliminary reflections to lay the foundation and outline the initial landscape.Keywords: artificial intelligence, deep learning, epistemology, qualitative research, methodology, hermeneutics, accountability
Procedia PDF Downloads 431965 Integration GIS–SCADA Power Systems to Enclosure Air Dispersion Model
Authors: Ibrahim Shaker, Amr El Hossany, Moustafa Osman, Mohamed El Raey
Abstract:
This paper will explore integration model between GIS–SCADA system and enclosure quantification model to approach the impact of failure-safe event. There are real demands to identify spatial objects and improve control system performance. Nevertheless, the employed methodology is predicting electro-mechanic operations and corresponding time to environmental incident variations. Open processing, as object systems technology, is presented for integration enclosure database with minimal memory size and computation time via connectivity drivers such as ODBC:JDBC during main stages of GIS–SCADA connection. The function of Geographic Information System is manipulating power distribution in contrast to developing issues. In other ward, GIS-SCADA systems integration will require numerical objects of process to enable system model calibration and estimation demands, determine of past events for analysis and prediction of emergency situations for response training.Keywords: air dispersion model, environmental management, SCADA systems, GIS system, integration power system
Procedia PDF Downloads 3711964 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms
Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang
Abstract:
Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.Keywords: bioassay, machine learning, preprocessing, virtual screen
Procedia PDF Downloads 2761963 Comparative Study of Different Enhancement Techniques for Computed Tomography Images
Authors: C. G. Jinimole, A. Harsha
Abstract:
One of the key problems facing in the analysis of Computed Tomography (CT) images is the poor contrast of the images. Image enhancement can be used to improve the visual clarity and quality of the images or to provide a better transformation representation for further processing. Contrast enhancement of images is one of the acceptable methods used for image enhancement in various applications in the medical field. This will be helpful to visualize and extract details of brain infarctions, tumors, and cancers from the CT image. This paper presents a comparison study of five contrast enhancement techniques suitable for the contrast enhancement of CT images. The types of techniques include Power Law Transformation, Logarithmic Transformation, Histogram Equalization, Contrast Stretching, and Laplacian Transformation. All these techniques are compared with each other to find out which enhancement provides better contrast of CT image. For the comparison of the techniques, the parameters Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) are used. Logarithmic Transformation provided the clearer and best quality image compared to all other techniques studied and has got the highest value of PSNR. Comparison concludes with better approach for its future research especially for mapping abnormalities from CT images resulting from Brain Injuries.Keywords: computed tomography, enhancement techniques, increasing contrast, PSNR and MSE
Procedia PDF Downloads 3161962 Precious and Rare Metals in Overburden Carbonaceous Rocks: Methods of Extraction
Authors: Tatyana Alexandrova, Alexandr Alexandrov, Nadezhda Nikolaeva
Abstract:
A problem of complex mineral resources development is urgent and priority, it is aimed at realization of the processes of their ecologically safe development, one of its components is revealing the influence of the forms of element compounds in raw materials and in the processing products. In view of depletion of the precious metal reserves at the traditional deposits in the XXI century the large-size open cast deposits, localized in black shale strata begin to play the leading role. Carbonaceous (black) shales carry a heightened metallogenic potential. Black shales with high content of carbon are widely distributed within the scope of Bureinsky massif. According to academician Hanchuk`s data black shales of Sutirskaya series contain generally PGEs native form. The presence of high absorptive towards carbonaceous matter gold and PGEs compounds in crude ore results in decrease of valuable components extraction because of their sorption into dissipated carbonaceous matter.Keywords: сarbonaceous rocks, bitumens, precious metals, concentration, extraction
Procedia PDF Downloads 2471961 A Resource Optimization Strategy for CPU (Central Processing Unit) Intensive Applications
Authors: Junjie Peng, Jinbao Chen, Shuai Kong, Danxu Liu
Abstract:
On the basis of traditional resource allocation strategies, the usage of resources on physical servers in cloud data center is great uncertain. It will cause waste of resources if the assignment of tasks is not enough. On the contrary, it will cause overload if the assignment of tasks is too much. This is especially obvious when the applications are the same type because of its resource preferences. Considering CPU intensive application is one of the most common types of application in the cloud, we studied the optimization strategy for CPU intensive applications on the same server. We used resource preferences to analyze the case that multiple CPU intensive applications run simultaneously, and put forward a model which can predict the execution time for CPU intensive applications which run simultaneously. Based on the prediction model, we proposed the method to select the appropriate number of applications for a machine. Experiments show that the model can predict the execution time accurately for CPU intensive applications. To improve the execution efficiency of applications, we propose a scheduling model based on priority for CPU intensive applications. Extensive experiments verify the validity of the scheduling model.Keywords: cloud computing, CPU intensive applications, resource optimization, strategy
Procedia PDF Downloads 2821960 Simulation of the Reactive Rotational Molding Using Smoothed Particle Hydrodynamics
Authors: A. Hamidi, S. Khelladi, L. Illoul, A. Tcharkhtchi
Abstract:
Reactive rotational molding (RRM) is a process to manufacture hollow plastic parts with reactive material has several advantages compared to conventional roto molding of thermoplastic powders: process cycle time is shorter; raw material is less expensive because polymerization occurs during processing and high-performance polymers may be used such as thermosets, thermoplastics or blends. However, several phenomena occur during this process which makes the optimization of the process quite complex. In this study, we have used a mixture of isocyanate and polyol as a reactive system. The chemical transformation of this system to polyurethane has been studied by thermal analysis and rheology tests. Thanks to these results of the curing process and rheological measurements, the kinetic and rheokinetik of polyurethane was identified. Smoothed Particle Hydrodynamics, a Lagrangian meshless method, was chosen to simulate reactive fluid flow in 2 and 3D configurations of the polyurethane during the process taking into account the chemical, and chemiorehological results obtained experimentally in this study.Keywords: reactive rotational molding, simulation, smoothed particle hydrodynamics, surface tension, rheology, free surface flows, viscoelastic, interpolation
Procedia PDF Downloads 2921959 Architectural Engineering and Executive Design: Modelling Procedures, Scientific Tools, Simulation Processing
Authors: Massimiliano Nastri
Abstract:
The study is part of the scientific references on executive design in engineering and architecture, understood as an interdisciplinary field aimed at anticipating and simulating, planning and managing, guiding and instructing construction operations on site. On this basis, the study intends to provide an analysis of a theoretical, methodological, and guiding character aimed at constituting the disciplinary sphere of the executive design, often in the absence of supporting methodological and procedural guidelines in engineering and architecture. The basic methodologies of the study refer to the investigation of the theories and references that can contribute to constituting the scenario of the executive design as the practice of modelling, visualization, and simulation of the construction phases, through the practices of projection of the pragmatic issues of the building. This by proposing a series of references, interrelations, and openings intended to support (for intellectual, procedural, and applicative purposes) the executive definition of the project, aimed at activating the practices of cognitive acquisition and realization intervention within reality.Keywords: modelling and simulation technology, executive design, discretization of the construction, engineering design for building
Procedia PDF Downloads 821958 Natural Dyeing of Textile Cotton Fabric and Its Characterization
Authors: Rabia Almas
Abstract:
Today’s world is demanding natural and biological colorants on priority bases as an alternative to toxic and unsustainable synthetic dyes. Sustainable natural colors from plants and/or living organisms such as bacteria's and fungi attracted the world research scholars and textile industries recently due to the excitement and opportunities they covered. So, in the present study, natural colors from food waste, such as orange peels and peanuts, were extracted and applied to cotton fabric. The dyeing recipes were optimized in terms of dye concentration, processing temperature and time for higher color strength. The characterization of the dyes and fabric, such as Fourier transform infrared spectroscopy, Scanning Electron Microscopy, and fastness properties were measured for the identification of the chemical groups involved for a better understanding of the dyeing behavior. The results revealed that proper mordanting and concentration of dye on cotton fabric could give high color strength and good fastness to wash and light and these natural dyes can be used as an alternative to synthetic toxic colorants.Keywords: textile, textile dyes, natural dyes, bio colors
Procedia PDF Downloads 871957 Artificial Intelligent Methodology for Liquid Propellant Engine Design Optimization
Authors: Hassan Naseh, Javad Roozgard
Abstract:
This paper represents the methodology based on Artificial Intelligent (AI) applied to Liquid Propellant Engine (LPE) optimization. The AI methodology utilized from Adaptive neural Fuzzy Inference System (ANFIS). In this methodology, the optimum objective function means to achieve maximum performance (specific impulse). The independent design variables in ANFIS modeling are combustion chamber pressure and temperature and oxidizer to fuel ratio and output of this modeling are specific impulse that can be applied with other objective functions in LPE design optimization. To this end, the LPE’s parameter has been modeled in ANFIS methodology based on generating fuzzy inference system structure by using grid partitioning, subtractive clustering and Fuzzy C-Means (FCM) clustering for both inferences (Mamdani and Sugeno) and various types of membership functions. The final comparing optimization results shown accuracy and processing run time of the Gaussian ANFIS Methodology between all methods.Keywords: ANFIS methodology, artificial intelligent, liquid propellant engine, optimization
Procedia PDF Downloads 5931956 Analyzing the Significance of Religion in Economic Development in East and Southeast Asia: Case Study of the City of Wenzhou in China
Authors: Wenting Pan, Fang Chen
Abstract:
The aim is to increase understanding of the potential effects of religion and economy development in East and Southeast Asia. Religion developed in the east, and southeast Asia is connected with community intensively, especially the activities by women. It could facilitate spiritual awakening in the community and economic empowerment. The theories were assessed by using survey information for Wenzhou which is the legendary city of Chinese economic development, measuring attendance at formal religious services, religious beliefs, and self-identification as religious. Wenzhou’s chamber of commerce is all over the world. Apart from large and small processing factories, Wenzhou is dotted with temples and Taoist temples. In the survey four of the control variables (size of temples, profitability, multiple densities, type of industry and so on) were significant issues to find a relationship between local people and the culture of local religion. What’s more, women should be taken into account seriously. This study has social economy implications for Wenzhou as well as a number of other countries in the East and Southeast Asia.Keywords: East and Southeast Asia, economy development, Religion, Wenzhou
Procedia PDF Downloads 3221955 Analysis of Sediment Distribution around Karang Sela Coral Reef Using Multibeam Backscatter
Authors: Razak Zakariya, Fazliana Mustajap, Lenny Sharinee Sakai
Abstract:
A sediment map is quite important in the marine environment. The sediment itself contains thousands of information that can be used for other research. This study was conducted by using a multibeam echo sounder Reson T20 on 15 August 2020 at the Karang Sela (coral reef area) at Pulau Bidong. The study aims to identify the sediment type around the coral reef by using bathymetry and backscatter data. The sediment in the study area was collected as ground truthing data to verify the classification of the seabed. A dry sieving method was used to analyze the sediment sample by using a sieve shaker. PDS 2000 software was used for data acquisition, and Qimera QPS version 2.4.5 was used for processing the bathymetry data. Meanwhile, FMGT QPS version 7.10 processes the backscatter data. Then, backscatter data were analyzed by using the maximum likelihood classification tool in ArcGIS version 10.8 software. The result identified three types of sediments around the coral which were very coarse sand, coarse sand, and medium sand.Keywords: sediment type, MBES echo sounder, backscatter, ArcGIS
Procedia PDF Downloads 891954 An Authentication Protocol for Quantum Enabled Mobile Devices
Authors: Natarajan Venkatachalam, Subrahmanya V. R. K. Rao, Vijay Karthikeyan Dhandapani, Swaminathan Saravanavel
Abstract:
The quantum communication technology is an evolving design which connects multiple quantum enabled devices to internet for secret communication or sensitive information exchange. In future, the number of these compact quantum enabled devices will increase immensely making them an integral part of present communication systems. Therefore, safety and security of such devices is also a major concern for us. To ensure the customer sensitive information will not be eavesdropped or deciphered, we need a strong authentications and encryption mechanism. In this paper, we propose a mutual authentication scheme between these smart quantum devices and server based on the secure exchange of information through quantum channel which gives better solutions for symmetric key exchange issues. An important part of this work is to propose a secure mutual authentication protocol over the quantum channel. We show that our approach offers robust authentication protocol and further our solution is lightweight, scalable, cost-effective with optimized computational processing overheads.Keywords: quantum cryptography, quantum key distribution, wireless quantum communication, authentication protocol, quantum enabled device, trusted third party
Procedia PDF Downloads 1771953 Performance Degradation for the GLR Test-Statistics for Spatial Signal Detection
Authors: Olesya Bolkhovskaya, Alexander Maltsev
Abstract:
Antenna arrays are widely used in modern radio systems in sonar and communications. The solving of the detection problems of a useful signal on the background of noise is based on the GLRT method. There is a large number of problem which depends on the known a priori information. In this work, in contrast to the majority of already solved problems, it is used only difference spatial properties of the signal and noise for detection. We are analyzing the influence of the degree of non-coherence of signal and noise unhomogeneity on the performance characteristics of different GLRT statistics. The description of the signal and noise is carried out by means of the spatial covariance matrices C in the cases of different number of known information. The partially coherent signal is simulated as a plane wave with a random angle of incidence of the wave concerning a normal. Background noise is simulated as random process with uniform distribution function in each element. The results of investigation of degradation of performance characteristics for different cases are represented in this work.Keywords: GLRT, Neumann-Pearson’s criterion, Test-statistics, degradation, spatial processing, multielement antenna array
Procedia PDF Downloads 3861952 Initial Dip: An Early Indicator of Neural Activity in Functional Near Infrared Spectroscopy Waveform
Authors: Mannan Malik Muhammad Naeem, Jeong Myung Yung
Abstract:
Functional near infrared spectroscopy (fNIRS) has a favorable position in non-invasive brain imaging techniques. The concentration change of oxygenated hemoglobin and de-oxygenated hemoglobin during particular cognitive activity is the basis for this neuro-imaging modality. Two wavelengths of near-infrared light can be used with modified Beer-Lambert law to explain the indirect status of neuronal activity inside brain. The temporal resolution of fNIRS is very good for real-time brain computer-interface applications. The portability, low cost and an acceptable temporal resolution of fNIRS put it on a better position in neuro-imaging modalities. In this study, an optimization model for impulse response function has been used to estimate/predict initial dip using fNIRS data. In addition, the activity strength parameter related to motor based cognitive task has been analyzed. We found an initial dip that remains around 200-300 millisecond and better localize neural activity.Keywords: fNIRS, brain-computer interface, optimization algorithm, adaptive signal processing
Procedia PDF Downloads 2271951 A Multi Sensor Monochrome Video Fusion Using Image Quality Assessment
Authors: M. Prema Kumar, P. Rajesh Kumar
Abstract:
The increasing interest in image fusion (combining images of two or more modalities such as infrared and visible light radiation) has led to a need for accurate and reliable image assessment methods. This paper gives a novel approach of merging the information content from several videos taken from the same scene in order to rack up a combined video that contains the finest information coming from different source videos. This process is known as video fusion which helps in providing superior quality (The term quality, connote measurement on the particular application.) image than the source images. In this technique different sensors (whose redundant information can be reduced) are used for various cameras that are imperative for capturing the required images and also help in reducing. In this paper Image fusion technique based on multi-resolution singular value decomposition (MSVD) has been used. The image fusion by MSVD is almost similar to that of wavelets. The idea behind MSVD is to replace the FIR filters in wavelet transform with singular value decomposition (SVD). It is computationally very simple and is well suited for real time applications like in remote sensing and in astronomy.Keywords: multi sensor image fusion, MSVD, image processing, monochrome video
Procedia PDF Downloads 5771950 Closing the Gap: Efficient Voxelization with Equidistant Scanlines and Gap Detection
Authors: S. Delgado, C. Cerrada, R. S. Gómez
Abstract:
This research introduces an approach to voxelizing the surfaces of triangular meshes with efficiency and accuracy. Our method leverages parallel equidistant scan-lines and introduces a Gap Detection technique to address the limitations of existing approaches. We present a comprehensive study showcasing the method's effectiveness, scalability, and versatility in different scenarios. Voxelization is a fundamental process in computer graphics and simulations, playing a pivotal role in applications ranging from scientific visualization to virtual reality. Our algorithm focuses on enhancing the voxelization process, especially for complex models and high resolutions. One of the major challenges in voxelization in the Graphics Processing Unit (GPU) is the high cost of discovering the same voxels multiple times. These repeated voxels incur in costly memory operations with no useful information. Our scan-line-based method ensures that each voxel is detected exactly once when processing the triangle, enhancing performance without compromising the quality of the voxelization. The heart of our approach lies in the use of parallel, equidistant scan-lines to traverse the interiors of triangles. This minimizes redundant memory operations and avoids revisiting the same voxels, resulting in a significant performance boost. Moreover, our method's computational efficiency is complemented by its simplicity and portability. Written as a single compute shader in Graphics Library Shader Language (GLSL), it is highly adaptable to various rendering pipelines and hardware configurations. To validate our method, we conducted extensive experiments on a diverse set of models from the Stanford repository. Our results demonstrate not only the algorithm's efficiency, but also its ability to produce 26 tunnel free accurate voxelizations. The Gap Detection technique successfully identifies and addresses gaps, ensuring consistent and visually pleasing voxelized surfaces. Furthermore, we introduce the Slope Consistency Value metric, quantifying the alignment of each triangle with its primary axis. This metric provides insights into the impact of triangle orientation on scan-line based voxelization methods. It also aids in understanding how the Gap Detection technique effectively improves results by targeting specific areas where simple scan-line-based methods might fail. Our research contributes to the field of voxelization by offering a robust and efficient approach that overcomes the limitations of existing methods. The Gap Detection technique fills a critical gap in the voxelization process. By addressing these gaps, our algorithm enhances the visual quality and accuracy of voxelized models, making it valuable for a wide range of applications. In conclusion, "Closing the Gap: Efficient Voxelization with Equidistant Scan-lines and Gap Detection" presents an effective solution to the challenges of voxelization. Our research combines computational efficiency, accuracy, and innovative techniques to elevate the quality of voxelized surfaces. With its adaptable nature and valuable innovations, this technique could have a positive influence on computer graphics and visualization.Keywords: voxelization, GPU acceleration, computer graphics, compute shaders
Procedia PDF Downloads 751949 Research on the Aero-Heating Prediction Based on Hybrid Meshes and Hybrid Schemes
Authors: Qiming Zhang, Youda Ye, Qinxue Jiang
Abstract:
Accurate prediction of external flowfield and aero-heating at the wall of hypersonic vehicle is very crucial for the design of aircrafts. Unstructured/hybrid meshes have more powerful advantages than structured meshes in terms of pre-processing, parallel computing and mesh adaptation, so it is imperative to develop high-resolution numerical methods for the calculation of aerothermal environment on unstructured/hybrid meshes. The inviscid flux scheme is one of the most important factors affecting the accuracy of unstructured/ hybrid mesh heat flux calculation. Here, a new hybrid flux scheme is developed and the approach of interface type selection is proposed: i.e. 1) using the exact Riemann scheme solution to calculate the flux on the faces parallel to the wall; 2) employing Sterger-Warming (S-W) scheme to improve the stability of the numerical scheme in other interfaces. The results of the heat flux fit the one observed experimentally and have little dependence on grids, which show great application prospect in unstructured/ hybrid mesh.Keywords: aero-heating prediction, computational fluid dynamics, hybrid meshes, hybrid schemes
Procedia PDF Downloads 2551948 Quantifying Product Impacts on Biodiversity: The Product Biodiversity Footprint
Authors: Leveque Benjamin, Rabaud Suzanne, Anest Hugo, Catalan Caroline, Neveux Guillaume
Abstract:
Human products consumption is one of the main drivers of biodiversity loss. However, few pertinent ecological indicators regarding product life cycle impact on species and ecosystems have been built. Life cycle assessment (LCA) methodologies are well under way to conceive standardized methods to assess this impact, by taking already partially into account three of the Millennium Ecosystem Assessment pressures (land use, pollutions, climate change). Coupling LCA and ecological data and methods is an emerging challenge to develop a product biodiversity footprint. This approach was tested on three case studies from food processing, textile, and cosmetic industries. It allowed first to improve the environmental relevance of the Potential Disappeared Fraction of species, end-point indicator typically used in life cycle analysis methods, and second to introduce new indicators on overexploitation and invasive species. This type of footprint is a major step in helping companies to identify their impacts on biodiversity and to propose potential improvements.Keywords: biodiversity, companies, footprint, life cycle assessment, products
Procedia PDF Downloads 3291947 Organization of the Olfactory System and the Mushroom Body of the Weaver Ant, Oecophylla smaragdina
Authors: Rajashekhar K. Patil, Martin J. Babu
Abstract:
Weaver ants-Oecophylla smaragdina live in colonies that have polymorphic castes. The females which include the queen, major and minor workers are haploid. The individuals of castes are dependent on olfactory cues for carrying out caste-specific behaviour. In an effort to understand whether organizational differences exist to support these behavioural differences, we studied the olfactory system at the level of the sensilla on the antennae, olfactory glomeruli and the Kenyon cells in the mushroom bodies (MB). The MB differ in major and minor workers in terms of their size, with the major workers having relatively larger calyces and peduncle. The morphology of different types of Kenyon cells as revealed by Golgi-rapid staining was studied and the major workers had more dendritic arbors than minor workers. This suggests a greater degree of olfactory processing in major workers. Differences in caste-specific arrangement of sensilla, olfactory glomeruli and celluar architecture of MB indicate a developmental programme that forms basis of differential behaviour.Keywords: ant, oecophylla, caste, mushroom body
Procedia PDF Downloads 4721946 Conceptualizing IoT Based Framework for Enhancing Environmental Accounting By ERP Systems
Authors: Amin Ebrahimi Ghadi, Morteza Moalagh
Abstract:
This research is carried out to find how a perfect combination of IoT architecture (Internet of Things) and ERP system can strengthen environmental accounting to incorporate both economic and environmental information. IoT (e.g., sensors, software, and other technologies) can be used in the company’s value chain from raw material extraction through materials processing, manufacturing products, distribution, use, repair, maintenance, and disposal or recycling products (Cradle to Grave model). The desired ERP software then will have the capability to track both midpoint and endpoint environmental impacts on a green supply chain system for the whole life cycle of a product. All these enable environmental accounting to calculate, and real-time analyze the operation environmental impacts, control costs, prepare for environmental legislation and enhance the decision-making process. In this study, we have developed a model on how to use IoT devices in life cycle assessment (LCA) to gather emissions, energy consumption, hazards, and wastes information to be processed in different modules of ERP systems in an integrated way for using in environmental accounting to achieve sustainability.Keywords: ERP, environmental accounting, green supply chain, IOT, life cycle assessment, sustainability
Procedia PDF Downloads 1741945 Shock and Particle Velocity Determination from Microwave Interrogation
Authors: Benoit Rougier, Alexandre Lefrancois, Herve Aubert
Abstract:
Microwave interrogation in the range 10-100 GHz is identified as an advanced technique to investigate simultaneously shock and particle velocity measurements. However, it requires the understanding of electromagnetic wave propagation in a multi-layered moving media. The existing models limit their approach to wave guides or evaluate the velocities with a fitting method, restricting therefore the domain of validity and the precision of the results. Moreover, few data of permittivity on high explosives at these frequencies under dynamic compression have been reported. In this paper, shock and particle velocities are computed concurrently for steady and unsteady shocks for various inert and reactive materials, via a propagation model based on Doppler shifts and signal amplitude. Refractive index of the material under compression is also calculated. From experimental data processing, it is demonstrated that Hugoniot curve can be evaluated. The comparison with published results proves the accuracy of the proposed method. This microwave interrogation technique seems promising for shock and detonation waves studies.Keywords: electromagnetic propagation, experimental setup, Hugoniot measurement, shock propagation
Procedia PDF Downloads 215