Search results for: parameter linear programming
3834 Using of the Fractal Dimensions for the Analysis of Hyperkinetic Movements in the Parkinson's Disease
Authors: Sadegh Marzban, Mohamad Sobhan Sheikh Andalibi, Farnaz Ghassemi, Farzad Towhidkhah
Abstract:
Parkinson's disease (PD), which is characterized by the tremor at rest, rigidity, akinesia or bradykinesia and postural instability, affects the quality of life of involved individuals. The concept of a fractal is most often associated with irregular geometric objects that display self-similarity. Fractal dimension (FD) can be used to quantify the complexity and the self-similarity of an object such as tremor. In this work, we are aimed to propose a new method for evaluating hyperkinetic movements such as tremor, by using the FD and other correlated parameters in patients who are suffered from PD. In this study, we used 'the tremor data of Physionet'. The database consists of fourteen participants, diagnosed with PD including six patients with high amplitude tremor and eight patients with low amplitude. We tried to extract features from data, which can distinguish between patients before and after medication. We have selected fractal dimensions, including correlation dimension, box dimension, and information dimension. Lilliefors test has been used for normality test. Paired t-test or Wilcoxon signed rank test were also done to find differences between patients before and after medication, depending on whether the normality is detected or not. In addition, two-way ANOVA was used to investigate the possible association between the therapeutic effects and features extracted from the tremor. Just one of the extracted features showed significant differences between patients before and after medication. According to the results, correlation dimension was significantly different before and after the patient's medication (p=0.009). Also, two-way ANOVA demonstrates significant differences just in medication effect (p=0.033), and no significant differences were found between subject's differences (p=0.34) and interaction (p=0.97). The most striking result emerged from the data is that correlation dimension could quantify medication treatment based on tremor. This study has provided a technique to evaluate a non-linear measure for quantifying medication, nominally the correlation dimension. Furthermore, this study supports the idea that fractal dimension analysis yields additional information compared with conventional spectral measures in the detection of poor prognosis patients.Keywords: correlation dimension, non-linear measure, Parkinson’s disease, tremor
Procedia PDF Downloads 2443833 Transformer Design Optimization Using Artificial Intelligence Techniques
Authors: Zakir Husain
Abstract:
Main objective of a power transformer design optimization problem requires minimizing the total overall cost and/or mass of the winding and core material by satisfying all possible constraints obligatory by the standards and transformer user requirement. The constraints include appropriate limits on winding fill factor, temperature rise, efficiency, no-load current and voltage regulation. The design optimizations tasks are a constrained minimum cost and/or mass solution by optimally setting the parameters, geometry and require magnetic properties of the transformer. In this paper, present the above design problems have been formulated by using genetic algorithm (GA) and simulated annealing (SA) on the MATLAB platform. The importance of the presented approach is stems for two main features. First, proposed technique provides reliable and efficient solution for the problem of design optimization with several variables. Second, it guaranteed to obtained solution is global optimum. This paper includes a demonstration of the application of the genetic programming GP technique to transformer design.Keywords: optimization, power transformer, genetic algorithm (GA), simulated annealing technique (SA)
Procedia PDF Downloads 5833832 Modeling and Simulation Frameworks for Cloud Computing Environment: A Critical Evaluation
Authors: Abul Bashar
Abstract:
The recent surge in the adoption of cloud computing systems by various organizations has brought forth the challenge of evaluating their performance. One of the major issues faced by the cloud service providers and customers is to assess the ability of cloud computing systems to provide the desired services in accordance to the QoS and SLA constraints. To this end, an opportunity exists to develop means to ensure that the desired performance levels of such systems are met under simulated environments. This will eventually minimize the service disruptions and performance degradation issues during the commissioning and operational phase of cloud computing infrastructure. However, it is observed that several simulators and modelers are available for simulating the cloud computing systems. Therefore, this paper presents a critical evaluation of the state-of-the-art modeling and simulation frameworks applicable to cloud computing systems. It compares the prominent simulation frameworks in terms of the API features, programming flexibility, operating system requirements, supported services, licensing needs and popularity. Subsequently, it provides recommendations regarding the choice of the most appropriate framework for researchers, administrators and managers of cloud computing systems.Keywords: cloud computing, modeling framework, performance evaluation, simulation tools
Procedia PDF Downloads 5023831 Generative AI: A Comparison of Conditional Tabular Generative Adversarial Networks and Conditional Tabular Generative Adversarial Networks with Gaussian Copula in Generating Synthetic Data with Synthetic Data Vault
Authors: Lakshmi Prayaga, Chandra Prayaga. Aaron Wade, Gopi Shankar Mallu, Harsha Satya Pola
Abstract:
Synthetic data generated by Generative Adversarial Networks and Autoencoders is becoming more common to combat the problem of insufficient data for research purposes. However, generating synthetic data is a tedious task requiring extensive mathematical and programming background. Open-source platforms such as the Synthetic Data Vault (SDV) and Mostly AI have offered a platform that is user-friendly and accessible to non-technical professionals to generate synthetic data to augment existing data for further analysis. The SDV also provides for additions to the generic GAN, such as the Gaussian copula. We present the results from two synthetic data sets (CTGAN data and CTGAN with Gaussian Copula) generated by the SDV and report the findings. The results indicate that the ROC and AUC curves for the data generated by adding the layer of Gaussian copula are much higher than the data generated by the CTGAN.Keywords: synthetic data generation, generative adversarial networks, conditional tabular GAN, Gaussian copula
Procedia PDF Downloads 823830 Chemometric Regression Analysis of Radical Scavenging Ability of Kombucha Fermented Kefir-Like Products
Authors: Strahinja Kovacevic, Milica Karadzic Banjac, Jasmina Vitas, Stefan Vukmanovic, Radomir Malbasa, Lidija Jevric, Sanja Podunavac-Kuzmanovic
Abstract:
The present study deals with chemometric regression analysis of quality parameters and the radical scavenging ability of kombucha fermented kefir-like products obtained with winter savory (WS), peppermint (P), stinging nettle (SN) and wild thyme tea (WT) kombucha inoculums. Each analyzed sample was described by milk fat content (MF, %), total unsaturated fatty acids content (TUFA, %), monounsaturated fatty acids content (MUFA, %), polyunsaturated fatty acids content (PUFA, %), the ability of free radicals scavenging (RSA Dₚₚₕ, % and RSA.ₒₕ, %) and pH values measured after each hour from the start until the end of fermentation. The aim of the conducted regression analysis was to establish chemometric models which can predict the radical scavenging ability (RSA Dₚₚₕ, % and RSA.ₒₕ, %) of the samples by correlating it with the MF, TUFA, MUFA, PUFA and the pH value at the beginning, in the middle and at the end of fermentation process which lasted between 11 and 17 hours, until pH value of 4.5 was reached. The analysis was carried out applying univariate linear (ULR) and multiple linear regression (MLR) methods on the raw data and the data standardized by the min-max normalization method. The obtained models were characterized by very limited prediction power (poor cross-validation parameters) and weak statistical characteristics. Based on the conducted analysis it can be concluded that the resulting radical scavenging ability cannot be precisely predicted only on the basis of MF, TUFA, MUFA, PUFA content, and pH values, however, other quality parameters should be considered and included in the further modeling. This study is based upon work from project: Kombucha beverages production using alternative substrates from the territory of the Autonomous Province of Vojvodina, 142-451-2400/2019-03, supported by Provincial Secretariat for Higher Education and Scientific Research of AP Vojvodina.Keywords: chemometrics, regression analysis, kombucha, quality control
Procedia PDF Downloads 1423829 Simultaneous Determination of Methotrexate and Aspirin Using Fourier Transform Convolution Emission Data under Non-Parametric Linear Regression Method
Authors: Marwa A. A. Ragab, Hadir M. Maher, Eman I. El-Kimary
Abstract:
Co-administration of methotrexate (MTX) and aspirin (ASP) can cause a pharmacokinetic interaction and a subsequent increase in blood MTX concentrations which may increase the risk of MTX toxicity. Therefore, it is important to develop a sensitive, selective, accurate and precise method for their simultaneous determination in urine. A new hybrid chemometric method has been applied to the emission response data of the two drugs. Spectrofluorimetric method for determination of MTX through measurement of its acid-degradation product, 4-amino-4-deoxy-10-methylpteroic acid (4-AMP), was developed. Moreover, the acid-catalyzed degradation reaction enables the spectrofluorimetric determination of ASP through the formation of its active metabolite salicylic acid (SA). The proposed chemometric method deals with convolution of emission data using 8-points sin xi polynomials (discrete Fourier functions) after the derivative treatment of these emission data. The first and second derivative curves (D1 & D2) were obtained first then convolution of these curves was done to obtain first and second derivative under Fourier functions curves (D1/FF) and (D2/FF). This new application was used for the resolution of the overlapped emission bands of the degradation products of both drugs to allow their simultaneous indirect determination in human urine. Not only this chemometric approach was applied to the emission data but also the obtained data were subjected to non-parametric linear regression analysis (Theil’s method). The proposed method was fully validated according to the ICH guidelines and it yielded linearity ranges as follows: 0.05-0.75 and 0.5-2.5 µg mL-1 for MTX and ASP respectively. It was found that the non-parametric method was superior over the parametric one in the simultaneous determination of MTX and ASP after the chemometric treatment of the emission spectra of their degradation products. The work combines the advantages of derivative and convolution using discrete Fourier function together with the reliability and efficacy of the non-parametric analysis of data. The achieved sensitivity along with the low values of LOD (0.01 and 0.06 µg mL-1) and LOQ (0.04 and 0.2 µg mL-1) for MTX and ASP respectively, by the second derivative under Fourier functions (D2/FF) were promising and guarantee its application for monitoring the two drugs in patients’ urine samples.Keywords: chemometrics, emission curves, derivative, convolution, Fourier transform, human urine, non-parametric regression, Theil’s method
Procedia PDF Downloads 4303828 Analysis of Energy Flows as An Approach for The Formation of Monitoring System in the Sustainable Regional Development
Authors: Inese Trusina, Elita Jermolajeva
Abstract:
Global challenges require a transition from the existing linear economic model to a model that will consider nature as a life support system for the developmenton the way to social well-being in the frame of the ecological economics paradigm. The article presentsbasic definitions for the development of formalized description of sustainabledevelopment monitoring. It provides examples of calculating the parameters of monitoring for the Baltic Sea region countries and their primary interpretation.Keywords: sustainability, development, power, ecological economics, regional economic, monitoring
Procedia PDF Downloads 1203827 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models
Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti
Abstract:
In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics
Procedia PDF Downloads 533826 Planning Railway Assets Renewal with a Multiobjective Approach
Authors: João Coutinho-Rodrigues, Nuno Sousa, Luís Alçada-Almeida
Abstract:
Transportation infrastructure systems are fundamental in modern society and economy. However, they need modernizing, maintaining, and reinforcing interventions which require large investments. In many countries, accumulated intervention delays arise from aging and intense use, being magnified by financial constraints of the past. The decision problem of managing the renewal of large backlogs is common to several types of important transportation infrastructures (e.g., railways, roads). This problem requires considering financial aspects as well as operational constraints under a multidimensional framework. The present research introduces a linear programming multiobjective model for managing railway infrastructure asset renewal. The model aims at minimizing three objectives: (i) yearly investment peak, by evenly spreading investment throughout multiple years; (ii) total cost, which includes extra maintenance costs incurred from renewal backlogs; (iii) priority delays related to work start postponements on the higher priority railway sections. Operational constraints ensure that passenger and freight services are not excessively delayed from having railway line sections under intervention. Achieving a balanced annual investment plan, without compromising the total financial effort or excessively postponing the execution of the priority works, was the motivation for pursuing the research which is now presented. The methodology, inspired by a real case study and tested with real data, reflects aspects of the practice of an infrastructure management company and is generalizable to different types of infrastructure (e.g., railways, highways). It was conceived for treating renewal interventions in infrastructure assets, which is a railway network may be rails, ballasts, sleepers, etc.; while a section is under intervention, trains must run at reduced speed, causing delays in services. The model cannot, therefore, allow for an accumulation of works on the same line, which may cause excessively large delays. Similarly, the lines do not all have the same socio-economic importance or service intensity, making it is necessary to prioritize the sections to be renewed. The model takes these issues into account, and its output is an optimized works schedule for the renewal project translatable in Gantt charts The infrastructure management company provided all the data for the first test case study and validated the parameterization. This case consists of several sections to be renewed, over 5 years and belonging to 17 lines. A large instance was also generated, reflecting a problem of a size similar to the USA railway network (considered the largest one in the world), so it is not expected that considerably larger problems appear in real life; an average of 25 years backlog and ten years of project horizon was considered. Despite the very large increase in the number of decision variables (200 times as large), the computational time cost did not increase very significantly. It is thus expectable that just about any real-life problem can be treated in a modern computer, regardless of size. The trade-off analysis shows that if the decision maker allows some increase in max yearly investment (i.e., degradation of objective ii), solutions improve considerably in the remaining two objectives.Keywords: transport infrastructure, asset renewal, railway maintenance, multiobjective modeling
Procedia PDF Downloads 1463825 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage
Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng
Abstract:
Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning
Procedia PDF Downloads 733824 A Parallel Implementation of Artificial Bee Colony Algorithm within CUDA Architecture
Authors: Selcuk Aslan, Dervis Karaboga, Celal Ozturk
Abstract:
Artificial Bee Colony (ABC) algorithm is one of the most successful swarm intelligence based metaheuristics. It has been applied to a number of constrained or unconstrained numerical and combinatorial optimization problems. In this paper, we presented a parallelized version of ABC algorithm by adapting employed and onlooker bee phases to the Compute Unified Device Architecture (CUDA) platform which is a graphical processing unit (GPU) programming environment by NVIDIA. The execution speed and obtained results of the proposed approach and sequential version of ABC algorithm are compared on functions that are typically used as benchmarks for optimization algorithms. Tests on standard benchmark functions with different colony size and number of parameters showed that proposed parallelization approach for ABC algorithm decreases the execution time consumed by the employed and onlooker bee phases in total and achieved similar or better quality of the results compared to the standard sequential implementation of the ABC algorithm.Keywords: Artificial Bee Colony algorithm, GPU computing, swarm intelligence, parallelization
Procedia PDF Downloads 3783823 Kernel-Based Double Nearest Proportion Feature Extraction for Hyperspectral Image Classification
Authors: Hung-Sheng Lin, Cheng-Hsuan Li
Abstract:
Over the past few years, kernel-based algorithms have been widely used to extend some linear feature extraction methods such as principal component analysis (PCA), linear discriminate analysis (LDA), and nonparametric weighted feature extraction (NWFE) to their nonlinear versions, kernel principal component analysis (KPCA), generalized discriminate analysis (GDA), and kernel nonparametric weighted feature extraction (KNWFE), respectively. These nonlinear feature extraction methods can detect nonlinear directions with the largest nonlinear variance or the largest class separability based on the given kernel function. Moreover, they have been applied to improve the target detection or the image classification of hyperspectral images. The double nearest proportion feature extraction (DNP) can effectively reduce the overlap effect and have good performance in hyperspectral image classification. The DNP structure is an extension of the k-nearest neighbor technique. For each sample, there are two corresponding nearest proportions of samples, the self-class nearest proportion and the other-class nearest proportion. The term “nearest proportion” used here consider both the local information and other more global information. With these settings, the effect of the overlap between the sample distributions can be reduced. Usually, the maximum likelihood estimator and the related unbiased estimator are not ideal estimators in high dimensional inference problems, particularly in small data-size situation. Hence, an improved estimator by shrinkage estimation (regularization) is proposed. Based on the DNP structure, LDA is included as a special case. In this paper, the kernel method is applied to extend DNP to kernel-based DNP (KDNP). In addition to the advantages of DNP, KDNP surpasses DNP in the experimental results. According to the experiments on the real hyperspectral image data sets, the classification performance of KDNP is better than that of PCA, LDA, NWFE, and their kernel versions, KPCA, GDA, and KNWFE.Keywords: feature extraction, kernel method, double nearest proportion feature extraction, kernel double nearest feature extraction
Procedia PDF Downloads 3443822 The Messy and Irregular Experience of Entrepreneurial Life
Authors: Hannah Dean
Abstract:
The growth ideology, and its association with progress, is an important construct in the narrative of modernity. This ideology is embedded in neoclassical economic growth theory which conceptualises growth as linear and predictable, and the entrepreneur as a rational economic manager. This conceptualisation has been critiqued for reinforcing the managerial discourse in entrepreneurship studies. Despite these critiques, both the neoclassical growth theory and its adjacent managerial discourse dominate entrepreneurship studies notably the literature on female entrepreneurs. The latter is the focus of this paper. Given this emphasis on growth, female entrepreneurs are portrayed as problematic because their growth lags behind their male counterparts. This image which ignores the complexity and diversity of female entrepreneurs’ experience persists in the literature due to the lack of studies that analyse the process and contextual factors surrounding female entrepreneurs’ experience. This study aims to address the subordination of female entrepreneurs by questioning the hegemonic logic of economic growth and the managerial discourse as a true representation for the entrepreneurial experience. This objective is achieved by drawing on Schumpeter’s theorising and narrative inquiry. This exploratory study undertakes in depth interviews to gain insights into female entrepreneurs’ experience and the impact of the economic growth model and the managerial discourse on their performance. The narratives challenge a number of assumptions about female entrepreneurs. The participants occupied senior positions in the corporate world before setting up their businesses. This is at odds with much writing which assumes that women underperform because they leave their career without gaining managerial experience to achieve work-life balance. In line with Schumpeter, who distinguishes the entrepreneur from the manager, the participants’ main function was innovation. They did not believe that the managerial paradigm governing their corporate careers was applicable to their entrepreneurial experience. Formal planning and managerial rationality can hinder their decision making process. The narratives point to the gap between the two worlds which makes stepping into entrepreneurship a scary move. Schumpeter argues that the entrepreneurial process is evolutionary and that failure is an integral part of it. The participants’ entrepreneurial process was in fact irregular. The performance of new combinations was not always predictable. They therefore relied on their initiative. The inhibition to deploy these traits had an adverse effect on business growth. The narratives also indicate that over-reliance on growth threaten the business survival as it faces competing pressures. The study offers theoretical and empirical contributions to (female) entrepreneurship studies by presenting Schumpeter’s theorising as an alternative theoretical framework to the neoclassical economic growth theory. The study also reduces entrepreneurs’ vulnerability by making them aware of the negative influence that the linear growth model and the managerial discourse hold upon their performance. The study has implications for policy makers as it generates new knowledge that incorporates the current social and economic changes in the context of entrepreneurs that can no longer be sustained by the linear growth models especially in the current economic climate.Keywords: economic growth, female entrepreneurs, managerial discourse, Schumpeter
Procedia PDF Downloads 2963821 Dual Solutions in Mixed Convection Boundary Layer Flow: A Stability Analysis
Authors: Anuar Ishak
Abstract:
The mixed convection stagnation point flow toward a vertical plate is investigated. The external flow impinges normal to the heated plate and the surface temperature is assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the mixed convection parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.Keywords: dual solutions, heat transfer, mixed convection, stability analysis
Procedia PDF Downloads 3913820 Influence of Slenderness Ratio on the Ductility of Reinforced Concrete Portal Structures
Authors: Kahil Amar, Nekmouche Aghiles, Titouche Billal, Hamizi Mohand, Hannachi Naceur Eddine
Abstract:
The ductility is an important parameter in the nonlinear behavior of portal structures reinforced concrete. It may be explained by the ability of the structure to deform in the plastic range, or the geometric characteristics in the map may influence the overall ductility. Our study is based on the influence of geometric slenderness (Lx / Ly) on the overall ductility of these structures, a study is made on a structure has 05 floors with varying the column section of 900 cm², 1600 cm² and 1225 cm². A slight variation in global ductility is noticed as (Lx/Ly) varies; however, column sections can control satisfactorily the plastic behavior of buildings.Keywords: ductility, nonlinear behavior, pushover analysis, geometric slenderness, structural behavior
Procedia PDF Downloads 3893819 The Influences of Nurses’ Satisfaction on the Patient Satisfaction with and Loyalty to Korean University Hospitals
Authors: Sung Hee Ahn, Ju Rang Han
Abstract:
Background: With increasing importance in healthcare organization on patient satisfaction and nurses’ job satisfaction, many studies have been conducted. But no research has been administered how nurses’ satisfaction with healthcare organization influence patient satisfaction and loyalty. Purpose: This study aims to conceptualize nurses‘ satisfaction, patient satisfaction with and patient loyalty to hospitals using a hypothetical linear structural equation model, and to identify the significance of path coefficients and goodness of fit index of the structural equation model as well. Method: A total of 2,079 nurses and 6,776 patients recruited from 5 university hospitals in South Korea participated in this study. The data on nurses, including ward nurses and outpatient nurses, were collected from June 24th to July 12th, at the 204 departments of the 5 hospitals through an on-line survey. The data on the patients, including both inpatients and outpatients, were collected from September 30th to October 24th, 2013 at the 5 hospitals using a structured questionnaire. The variable of nurses’ satisfaction was measured using a scale evaluating internal client satisfaction, which is used in SSM Health Care System in the US. Patient satisfaction with the hospital and nurses and patient loyalty were measured by assessing the patient’s intention to revisit and to recommending the hospital to others using a visual analogue scale. The data were analyzed using SPSS version 21.0 and AMOS version 21.0. Result: The hypothetical model was fairly good in terms of goodness of fit (χ2= 64.897 (df=24, p <. 001), GFI=. 906, AGFI=.823, CFI=.921, NFI=.951, NNFI=.952. RMSEA=.114). The significance of path coefficients includes followings 1)The nurses’ satisfaction has significant influence on the patient satisfaction with nurses. 2)The patient satisfaction with nurses has significant influence on the patient satisfaction with the hospital. 3)The patient satisfaction with the hospital has significant influence on the patients’ revisit intention. 4)The patient satisfaction with the hospital has significant influence on the patients’ intention to the recommendations of the hospital. Conclusion: These results provide several practical implications to hospital administrators, who should incorporate ways of improving nurses' and patients' satisfaction with the hospital into their health care marketing strategies.Keywords: linear structural equation model, loyalty, nurse, patient satisfaction
Procedia PDF Downloads 4413818 Parametric Study for Obtaining the Structural Response of Segmental Tunnels in Soft Soil by Using No-Linear Numerical Models
Authors: Arturo Galván, Jatziri Y. Moreno-Martínez, Israel Enrique Herrera Díaz, José Ramón Gasca Tirado
Abstract:
In recent years, one of the methods most used for the construction of tunnels in soft soil is the shield-driven tunneling. The advantage of this construction technique is that it allows excavating the tunnel while at the same time a primary lining is placed, which consists of precast segments. There are joints between segments, also called longitudinal joints, and joints between rings (called as circumferential joints). This is the reason because of this type of constructions cannot be considered as a continuous structure. The effect of these joints influences in the rigidity of the segmental lining and therefore in its structural response. A parametric study was performed to take into account the effect of different parameters in the structural response of typical segmental tunnels built in soft soil by using non-linear numerical models based on Finite Element Method by means of the software package ANSYS v. 11.0. In the first part of this study, two types of numerical models were performed. In the first one, the segments were modeled by using beam elements based on Timoshenko beam theory whilst the segment joints were modeled by using inelastic rotational springs considering the constitutive moment-rotation relation proposed by Gladwell. In this way, the mechanical behavior of longitudinal joints was simulated. On the other hand for simulating the mechanical behavior of circumferential joints elastic springs were considered. As well as, the stability given by the soil was modeled by means of elastic-linear springs. In the second type of models, the segments were modeled by means of three-dimensional solid elements and the joints with contact elements. In these models, the zone of the joints is modeled as a discontinuous (increasing the computational effort) therefore a discrete model is obtained. With these contact elements the mechanical behavior of joints is simulated considering that when the joint is closed, there is transmission of compressive and shear stresses but not of tensile stresses and when the joint is opened, there is no transmission of stresses. This type of models can detect changes in the geometry because of the relative movement of the elements that form the joints. A comparison between the numerical results with two types of models was carried out. In this way, the hypothesis considered in the simplified models were validated. In addition, the numerical models were calibrated with (Lab-based) experimental results obtained from the literature of a typical tunnel built in Europe. In the second part of this work, a parametric study was performed by using the simplified models due to less used computational effort compared to complex models. In the parametric study, the effect of material properties, the geometry of the tunnel, the arrangement of the longitudinal joints and the coupling of the rings were studied. Finally, it was concluded that the mechanical behavior of segment and ring joints and the arrangement of the segment joints affect the global behavior of the lining. As well as, the effect of the coupling between rings modifies the structural capacity of the lining.Keywords: numerical models, parametric study, segmental tunnels, structural response
Procedia PDF Downloads 2293817 Magnetic Properties of Layered Rare-Earth Oxy-Carbonates Ln2O2CO3 (Ln = Nd, Sm, and Dy)
Authors: U. Arjun, K. Brinda, M. Padmanabhan, R. Nath
Abstract:
Polycrystalline samples of rare-earth oxy-carbonates Ln2O2CO3 (Ln = Nd, Sm, and Dy) are synthesized, and their structural and magnetic properties are investigated. All of them crystallize in a hexagonal structure with space group P6_3/mmc. They form a double layered structure with frustrated triangular arrangement of rare-earth magnetic ions. An antiferromagnetic transition is observed at TN ≈ 1.25 K, 0.61 K, and 1.21 K for Nd2O2CO3, Sm2O2CO3, and Dy2O2CO3, respectively. From the analysis of magnetic susceptibility, the value of the Curie-Weiss temperature θ_CW is obtained to be ≈ 21.7 K, 18 K, and 10.6 K for Nd2O2CO3, Sm2O2CO3, and Dy2O2CO3, respectively. The magnetic frustration parameter f ( = |θ_CW|/T_N) is calculated to be ≈ 17.4, 31, and 8.8 for Nd2O2CO3, Sm2O2CO3, and Dy2O2CO3, respectively which indicates that Sm2O2CO3 is strongly frustrated compared to its Nd and Dy analogues.Keywords: chemical synthesis, exchange and superexchange, heat capacity, magnetically ordered materials
Procedia PDF Downloads 3553816 A Compact Wearable Slot Antenna for LTE and WLAN Applications
Authors: Haider K. Raad
Abstract:
In this paper, a compact wide-band, ultra-thin and flexible slot antenna intended for wearable applications is presented. The presented antenna is designed to provide Wireless Local Area Network (WLAN) and Long Term Evolution (LTE) connectivity. The presented design exhibits a relatively wide bandwidth (1600-3500 MHz below -6 dB impedance bandwidth limit). The antenna is positioned on a 33 mm x 30 mm flexible substrate with a thickness of 50 µm. Antenna properties, such as the far-field radiation patterns, scattering parameter S11 are provided. The presented compact, thin and flexible design along with excellent radiation characteristics are deemed suitable for integration into flexible and wearable devices.Keywords: wearable electronics, slot Antenna, LTE, WLAN
Procedia PDF Downloads 2343815 A New Realization of Multidimensional System for Grid Sensor Network
Authors: Yang Xiong, Hua Cheng
Abstract:
In this paper, for the basic problem of wireless sensor network topology control and deployment, the Roesser model in rectangular grid sensor networks is presented. In addition, a general constructive realization procedure will be proposed. The procedure enables a distributed implementation of linear systems on a sensor network. A non-trivial example is illustrated.Keywords: grid sensor networks, Roesser model, state-space realization, multidimensional systems
Procedia PDF Downloads 6553814 Thermodynamic Study of Homo-Pairs in Molten Cd-Me, (Me=Ga,in) Binary Systems
Authors: Yisau Adelaja Odusote, Olakanmi Felix Akinto
Abstract:
The associative tendency between like atoms in molten Cd-Ga and Cd-In alloy systems has been studied by using the Quasi-Chemical Approximation Model (QCAM). The concentration dependence of the microscopic functions (the concentration-concentration fluctuations in the long-wavelength limits, Scc(0), the chemical short-range order (CSRO) parameter α1 as well as the chemical diffusion) and the mixing properties as the free energy of mixing, GM, enthalpy of mixing and entropy of mixing of the two molten alloys have been determined. Thermodynamic properties of both systems deviate positively from Raoult's law, while the systems are characterized by positive interaction energy. The role of atomic size ratio on the alloying properties was discussed.Keywords: homo-pairs, interchange energy, enthalpy, entropy, Cd-Ga, Cd-In
Procedia PDF Downloads 4373813 The Tribological Behaviors of Vacuum Gas Nitriding Titanium and Steel Substrates at Different Process Temperatures
Authors: Hikmet Cicek
Abstract:
Metal nitrides show excellence tribological properties and they used for especially on machine parts. In this work, the vacuum gas nitriding proses were applied to the titanium, D2 and 52100 steel substrates at three different proses temperatures (500 °C, 600°C and 700 °C). Structural, mechanical and tribological properties of the samples were characterized. X-Ray diffractometer, scanning electron microscope and energy dispersive spectroscopy analyses were conducted to determine structural properties. Microhardness test and pin-on-disc wear test were made to observe tribological properties. Coefficient of friction, wear rate and wear traces were examined comparatively. According to the test results, the process temperature very effective parameter for the vacuum gas nitriding method.Keywords: gas nitriding, tribology, wear, coating
Procedia PDF Downloads 1993812 Examples of Parameterization of Stabilizing Controllers with One-Side Coprime Factorization
Authors: Kazuyoshi Mori
Abstract:
Examples of parameterization of stabilizing controllers that require only one of right-/left-coprime factorizations are presented. One parameterization method requires one side coprime factorization. The other requires no coprime factorization. The methods are based on the factorization approach so that a number of models can be applied the method we use in this paper.Keywords: parametrization, coprime factorization, factorization approach, linear systems
Procedia PDF Downloads 3733811 Effect of Viscous Dissipation on 3-D MHD Casson Flow in Presence of Chemical Reaction: A Numerical Study
Authors: Bandari Shanker, Alfunsa Prathiba
Abstract:
The influence of viscous dissipation on MHD Casson 3-D fluid flow in two perpendicular directions past a linearly stretching sheet in the presence of a chemical reaction is explored in this work. For exceptional circumstances, self-similar solutions are obtained and compared to the given data. The enhancement in the values Ecert number the temperature boundary layer increases. Further, the current findings are observed to be in great accord with the existing data. In both directions, non - dimensional velocities and stress distribution are achieved. The relevant data are graphed and explained quantitatively in relation to changes in the Casson fluid parameter as well as other fluid flow parameters.Keywords: viscous dissipation, 3-D Casson flow, chemical reaction, Ecert number
Procedia PDF Downloads 1933810 Exact Energy Spectrum and Expectation Values of the Inverse Square Root Potential Model
Authors: Benedict Ita, Peter Okoi
Abstract:
In this work, the concept of the extended Nikiforov-Uvarov technique is discussed and employed to obtain the exact bound state energy eigenvalues and the corresponding normalized eigenfunctions of the inverse square root potential. With expressions for the exact energy eigenvalues and corresponding eigenfunctions, the expressions for the expectation values of the inverse separation-squared, kinetic energy, and the momentum-squared of the potential are presented using the Hellmann Feynman theorem. For visualization, algorithms written and implemented in Python language are used to generate tables and plots for l-states of the energy eigenvalues and some expectation values. The results obtained here may find suitable applications in areas like atomic and molecular physics, chemical physics, nuclear physics, and solid-state physics.Keywords: Schrodinger equation, Nikoforov-Uvarov method, inverse square root potential, diatomic molecules, Python programming, Hellmann-Feynman theorem, second order differential equation, matrix algebra
Procedia PDF Downloads 193809 Principles for the Realistic Determination of the in-situ Concrete Compressive Strength under Consideration of Rearrangement Effects
Authors: Rabea Sefrin, Christian Glock, Juergen Schnell
Abstract:
The preservation of existing structures is of great economic interest because it contributes to higher sustainability and resource conservation. In the case of existing buildings, in addition to repair and maintenance, modernization or reconstruction works often take place in the course of adjustments or changes in use. Since the structural framework and the associated load level are usually changed in the course of the structural measures, the stability of the structure must be verified in accordance with the currently valid regulations. The concrete compressive strength of the existing structures concrete and the derived mechanical parameters are of central importance for the recalculation and verification. However, the compressive strength of the existing concrete is usually set comparatively low and thus underestimated. The reasons for this are too small numbers, and large scatter of material properties of the drill cores, which are used for the experimental determination of the design value of the compressive strength. Within a structural component, the load is usually transferred over the area with higher stiffness and consequently with higher compressive strength. Therefore, existing strength variations within a component only play a subordinate role due to rearrangement effects. This paper deals with the experimental and numerical determination of such rearrangement effects in order to calculate the concrete compressive strength of existing structures more realistic and economical. The influence of individual parameters such as the specimen geometry (prism or cylinder) or the coefficient of variation of the concrete compressive strength is analyzed in experimental small-part tests. The coefficients of variation commonly used in practice are adjusted by dividing the test specimens into several layers consisting of different concretes, which are monolithically connected to each other. From each combination, a sufficient number of the test specimen is produced and tested to enable evaluation on a statistical basis. Based on the experimental tests, FE simulations are carried out to validate the test results. In the frame of a subsequent parameter study, a large number of combinations is considered, which had not been investigated in the experimental tests yet. Thus, the influence of individual parameters on the size and characteristic of the rearrangement effect is determined and described more detailed. Based on the parameter study and the experimental results, a calculation model for a more realistic determination of the in situ concrete compressive strength is developed and presented. By considering rearrangement effects in concrete during recalculation, a higher number of existing structures can be maintained without structural measures. The preservation of existing structures is not only decisive from an economic, sustainable, and resource-saving point of view but also represents an added value for cultural and social aspects.Keywords: existing structures, in-situ concrete compressive strength, rearrangement effects, recalculation
Procedia PDF Downloads 1183808 Perspectives and Outcomes of a Long and Shorter Community Mental Health Program
Authors: Danielle Klassen, Reiko Yeap, Margo Schmitt-Boshnick, Scott Oddie
Abstract:
The development of the 7-week Alberta Happiness Basics program was initiated in 2010 in response to the need for community mental health programming. This provincial wide program aims to increase overall happiness and reduce negative thoughts and feelings through a positive psychology intervention. While the 7-week program has proven effective, a shortened 4-week program has additionally been developed to address client needs. In this study, participants were interviewed to determine if the 4- and 7-week programs had similar success of producing lasting behavior change at 3, 6, and 9 months post-program. A health quality of life (HQOL) measure was also used to compare the two programs and examine patient outcomes. Quantitative and qualitative analysis showed significant improvements in HQOL and sustainable behavior change for both programs. Findings indicate that the shorter, patient-centered program was effective in increasing happiness and reducing negative thoughts and feelings.Keywords: primary care, mental health, depression, short duration
Procedia PDF Downloads 2703807 A Multicriteria Model for Sustainable Management in Agriculture
Authors: Basil Manos, Thomas Bournaris, Christina Moulogianni
Abstract:
The European agricultural policy supports all member states to apply agricultural development plans for the development of their agricultural sectors. A specific measure of the agricultural development plans refers to young people in order to enter into the agricultural sector. This measure helps the participating young farmers in achieving maximum efficiency, using methods and environmentally friendly practices, by altering their farm plans. This study applies a Multicriteria Mathematical Programming (MCDA) model for the young farmers to find farm plans that achieve the maximum gross margin and the minimum environmental impacts (less use of fertilizers and irrigation water). The analysis was made in the region of Central Macedonia, Greece, among young farmers who have participated in the “Setting up Young Farmers” measure during 2007-2010. The analysis includes the implementation of the MCDA model for the farm plans optimization and the comparison of selected environmental indicators with those of the existent situation.Keywords: multicriteria, optimum farm plans, environmental impacts, sustainable management
Procedia PDF Downloads 3403806 X-Ray Diffraction and Mӧssbauer Studies of Nanostructured Ni45Al45Fe10 Powders Elaborated by Mechanical Alloying
Authors: N. Ammouchi
Abstract:
We have studied the effect of milling time on the structural and hyperfine properties of Ni45Al45Fe10 compound elaborated by mechanical alloying. The elaboration was performed by using the planetary ball mill at different milling times. The as milled powders were characterized by X-ray diffraction (XRD) and Mӧssbauer spectroscopy. From XRD diffraction spectra, we show that the β NiAl(Fe) was completely formed after 24 h of milling time. When the milling time increases, the lattice parameter increases, whereas the grain size decreases to a few nanometres and the mean level of microstrains increases. The analysis of Mӧssbauer spectra indicates that, in addition to a ferromagnetic phase, α-Fe, a paramagnetic disordered phase Ni Al (Fe) solid solution is observed after 2h and only this phase is present after 12h.Keywords: NiAlFe, nanostructured powders, X-ray diffraction, Mӧssbauer spectroscopy
Procedia PDF Downloads 3793805 Proficient Estimation Procedure for a Rare Sensitive Attribute Using Poisson Distribution
Authors: S. Suman, G. N. Singh
Abstract:
The present manuscript addresses the estimation procedure of population parameter using Poisson probability distribution when characteristic under study possesses a rare sensitive attribute. The generalized form of unrelated randomized response model is suggested in order to acquire the truthful responses from respondents. The resultant estimators have been proposed for two situations when the information on an unrelated rare non-sensitive characteristic is known as well as unknown. The properties of the proposed estimators are derived, and the measure of confidentiality of respondent is also suggested for respondents. Empirical studies are carried out in the support of discussed theory.Keywords: Poisson distribution, randomized response model, rare sensitive attribute, non-sensitive attribute
Procedia PDF Downloads 266