Search results for: network diagnostic tool
8149 Green Ports: Innovation Adopters or Innovation Developers
Authors: Marco Ferretti, Marcello Risitano, Maria Cristina Pietronudo, Lina Ozturk
Abstract:
A green port is the result of a sustainable long-term strategy adopted by an entire port infrastructure, therefore by the set of actors involved in port activities. The strategy aims to realise the development of sustainable port infrastructure focused on the reduction of negative environmental impacts without jeopardising economic growth. Green technology represents the core tool to implement sustainable solutions, however, they are not a magic bullet. Ports have always been integrated in the local territory affecting the environment in which they operate, therefore, the sustainable strategy should fit with the entire local systems. Therefore, adopting a sustainable strategy means to know how to involve and engage a wide stakeholders’ network (industries, production, markets, citizens, and public authority). The existing research on the topic has not well integrated this perspective with those of sustainability. Research on green ports have mixed the sustainability aspects with those on the maritime industry, neglecting dynamics that lead to the development of the green port phenomenon. We propose an analysis of green ports adopting the lens of ecosystem studies in the field of management. The ecosystem approach provides a way to model relations that enable green solutions and green practices in a port ecosystem. However, due to the local dimension of a port and the port trend on innovation, i.e., sustainable innovation, we draw to a specific concept of ecosystem, those on local innovation systems. More precisely, we explore if a green port is a local innovation system engaged in developing sustainable innovation with a large impact on the territory or merely an innovation adopter. To address this issue, we adopt a comparative case study selecting two innovative ports in Europe: Rotterdam and Genova. The case study is a research method focused on understanding the dynamics in a specific situation and can be used to provide a description of real circumstances. Preliminary results show two different approaches in supporting sustainable innovation: one represented by Rotterdam, a pioneer in competitiveness and sustainability, and the second one represented by Genoa, an example of technology adopter. The paper intends to provide a better understanding of how sustainable innovations are developed and in which manner a network of port and local stakeholder support this process. Furthermore, it proposes a taxonomy of green ports as developers and adopters of sustainable innovation, suggesting also best practices to model relationships that enable the port ecosystem in applying a sustainable strategy.Keywords: green port, innovation, sustainability, local innovation systems
Procedia PDF Downloads 1208148 Transformative Concept of Logic to Islamic Science: Reflections on Al-Ghazālī's Influence
Authors: Umar Sheikh Tahir
Abstract:
Before al-Ghazālī, Islamic scholars perceived logic as an intrusive knowledge. The knowledge therefore, did not receive ample attention among scholars on how it should be adapted into Islamic sciences. General scholarship in that period rejects logic as an instrumental knowledge. This attitude became unquestionable to the scholars from different perspectives with diversification of suggestions in the pre-al-Ghazālī’s period. However, al-Ghazālī proclaimed with new perspective that transform Logic from ‘intrusive knowledge’ to a useful tool for Islamic sciences. This study explores the contributions of al-Ghazālī to epistemology regarding the use and the relevance of Logic. The study applies qualitative research methodology dealing strictly with secondary data from medieval age and contemporary sources. The study concludes that al-Ghazālī’s contributions which supported the transformation of Logic to useful tool in the Muslim world were drawn from his experience within Islamic tradition. He succeeded in reconciling Islamic tradition with the wisdom of Greek sciences.Keywords: Al-Ghazālī, classical logic, epistemology, Islamdom and Islamic sciences
Procedia PDF Downloads 2508147 Possibility of Creating Polygon Layers from Raster Layers Obtained by using Classic Image Processing Software: Case of Geological Map of Rwanda
Authors: Louis Nahimana
Abstract:
Most maps are in a raster or pdf format and it is not easy to get vector layers of published maps. Faced to the production of geological simplified map of the northern Lake Tanganyika countries without geological information in vector format, I tried a method of obtaining vector layers from raster layers created from geological maps of Rwanda and DR Congo in pdf and jpg format. The procedure was as follows: The original raster maps were georeferenced using ArcGIS10.2. Under Adobe Photoshop, map areas with the same color corresponding to a lithostratigraphic unit were selected all over the map and saved in a specific raster layer. Using the same image processing software Adobe Photoshop, each RGB raster layer was converted in grayscale type and improved before importation in ArcGIS10. After georeferencing, each lithostratigraphic raster layer was transformed into a multitude of polygons with the tool "Raster to Polygon (Conversion)". Thereafter, tool "Aggregate Polygons (Cartography)" allowed obtaining a single polygon layer. Repeating the same steps for each color corresponding to a homogeneous rock unit, it was possible to reconstruct the simplified geological constitution of Rwanda and the Democratic Republic of Congo in vector format. By using the tool «Append (Management)», vector layers obtained were combined with those from Burundi to achieve vector layers of the geology of the « Northern Lake Tanganyika countries ».Keywords: creating raster layer under image processing software, raster to polygon, aggregate polygons, adobe photoshop
Procedia PDF Downloads 4428146 Reducing Support Structures in Design for Additive Manufacturing: A Neural Networks Approach
Authors: Olivia Borgue, Massimo Panarotto, Ola Isaksson
Abstract:
This article presents a neural networks-based strategy for reducing the need for support structures when designing for additive manufacturing (AM). Additive manufacturing is a relatively new and immature industrial technology, and the information to make confident decisions when designing for AM is limited. This lack of information impacts especially the early stages of engineering design, for instance, it is difficult to actively consider the support structures needed for manufacturing a part. This difficulty is related to the challenge of designing a product geometry accounting for customer requirements, manufacturing constraints and minimization of support structure. The approach presented in this article proposes an automatized geometry modification technique for reducing the use of the support structures while designing for AM. This strategy starts with a neural network-based strategy for shape recognition to achieve product classification, using an STL file of the product as input. Based on the classification, an automatic part geometry modification based on MATLAB© is implemented. At the end of the process, the strategy presents different geometry modification alternatives depending on the type of product to be designed. The geometry alternatives are then evaluated adopting a QFD-like decision support tool.Keywords: additive manufacturing, engineering design, geometry modification optimization, neural networks
Procedia PDF Downloads 2538145 Analysis and Identification of Different Factors Affecting Students’ Performance Using a Correlation-Based Network Approach
Authors: Jeff Chak-Fu Wong, Tony Chun Yin Yip
Abstract:
The transition from secondary school to university seems exciting for many first-year students but can be more challenging than expected. Enabling instructors to know students’ learning habits and styles enhances their understanding of the students’ learning backgrounds, allows teachers to provide better support for their students, and has therefore high potential to improve teaching quality and learning, especially in any mathematics-related courses. The aim of this research is to collect students’ data using online surveys, to analyze students’ factors using learning analytics and educational data mining and to discover the characteristics of the students at risk of falling behind in their studies based on students’ previous academic backgrounds and collected data. In this paper, we use correlation-based distance methods and mutual information for measuring student factor relationships. We then develop a factor network using the Minimum Spanning Tree method and consider further study for analyzing the topological properties of these networks using social network analysis tools. Under the framework of mutual information, two graph-based feature filtering methods, i.e., unsupervised and supervised infinite feature selection algorithms, are used to analyze the results for students’ data to rank and select the appropriate subsets of features and yield effective results in identifying the factors affecting students at risk of failing. This discovered knowledge may help students as well as instructors enhance educational quality by finding out possible under-performers at the beginning of the first semester and applying more special attention to them in order to help in their learning process and improve their learning outcomes.Keywords: students' academic performance, correlation-based distance method, social network analysis, feature selection, graph-based feature filtering method
Procedia PDF Downloads 1298144 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models
Authors: Keyi Wang
Abstract:
Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.Keywords: deep learning, hand gesture recognition, computer vision, image processing
Procedia PDF Downloads 1398143 Femtocell Stationed Flawless Handover in High Agility Trains
Authors: S. Dhivya, M. Abirami, M. Farjana Parveen, M. Keerthiga
Abstract:
The development of high-speed railway makes people’s lives more and more convenient; meanwhile, handover is the major problem on high-speed railway communication services. In order to overcome that drawback the architecture of Long-Term Evolution (LTE) femtocell networks is used to improve network performance, and the deployment of a femtocell is a key for bandwidth limitation and coverage issues in conventional mobile network system. To increase the handover performance this paper proposed a multiple input multiple output (MIMO) assisted handoff (MAHO) algorithm. It is a technique used in mobile telecom to transfer a mobile phone to a new radio channel with stronger signal strength and improved channel quality.Keywords: flawless handover, high-speed train, home evolved Node B, LTE, mobile femtocell, RSS
Procedia PDF Downloads 4738142 Application of Recycled Tungsten Carbide Powder for Fabrication of Iron Based Powder Metallurgy Alloy
Authors: Yukinori Taniguchi, Kazuyoshi Kurita, Kohei Mizuta, Keigo Nishitani, Ryuichi Fukuda
Abstract:
Tungsten carbide is widely used as a tool material in metal manufacturing process. Since tungsten is typical rare metal, establishment of recycle process of tungsten carbide tools and restore into cemented carbide material bring great impact to metal manufacturing industry. Recently, recycle process of tungsten carbide has been developed and established gradually. However, the demands for quality of cemented carbide tool are quite severe because hardness, toughness, anti-wear ability, heat resistance, fatigue strength and so on should be guaranteed for precision machining and tool life. Currently, it is hard to restore the recycled tungsten carbide powder entirely as raw material for new processed cemented carbide tool. In this study, to suggest positive use of recycled tungsten carbide powder, we have tried to fabricate a carbon based sintered steel which shows reinforced mechanical properties with recycled tungsten carbide powder. We have made set of newly designed sintered steels. Compression test of sintered specimen in density ratio of 0.85 (which means 15% porosity inside) has been conducted. As results, at least 1.7 times higher in nominal strength in the amount of 7.0 wt.% was shown in recycled WC powder. The strength reached to over 600 MPa for the Fe-WC-Co-Cu sintered alloy. Wear test has been conducted by using ball-on-disk type friction tester using 5 mm diameter ball with normal force of 2 N in the dry conditions. Wear amount after 1,000 m running distance shows that about 1.5 times longer life was shown in designed sintered alloy. Since results of tensile test showed that same tendency in previous testing, it is concluded that designed sintered alloy can be used for several mechanical parts with special strength and anti-wear ability in relatively low cost due to recycled tungsten carbide powder.Keywords: tungsten carbide, recycle process, compression test, powder metallurgy, anti-wear ability
Procedia PDF Downloads 2508141 Economized Sensor Data Processing with Vehicle Platooning
Authors: Henry Hexmoor, Kailash Yelasani
Abstract:
We present vehicular platooning as a special case of crowd-sensing framework where sharing sensory information among a crowd is used for their collective benefit. After offering an abstract policy that governs processes involving a vehicular platoon, we review several common scenarios and components surrounding vehicular platooning. We then present a simulated prototype that illustrates efficiency of road usage and vehicle travel time derived from platooning. We have argued that one of the paramount benefits of platooning that is overlooked elsewhere, is the substantial computational savings (i.e., economizing benefits) in acquisition and processing of sensory data among vehicles sharing the road. The most capable vehicle can share data gathered from its sensors with nearby vehicles grouped into a platoon.Keywords: cloud network, collaboration, internet of things, social network
Procedia PDF Downloads 1948140 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.Keywords: building energy prediction, data mining, demand response, electricity market
Procedia PDF Downloads 3168139 An Audit of the Diagnosis of Asthma in Children in Primary Care and the Emergency Department
Authors: Abhishek Oswal
Abstract:
Background: Inconsistencies between the guidelines for childhood asthma can pose a diagnostic challenge to clinicians. NICE guidelines are the most commonly followed guidelines in primary care in the UK; they state that to be diagnosed with asthma, a child must be more than 5 years old and must have objective evidence of the disease. When diagnoses are coded in general practice (GP), these guidelines may be superseded by communications from secondary care. Hence it is imperative that diagnoses are correct, as per up to date guidelines and evidence, as this affects follow up and management both in primary and secondary care. Methods: A snapshot audit at a general practice surgery was undertaken of children (less than 16 years old) with a coded diagnosis of 'asthma', to review the age at diagnosis and whether any objective evidence of asthma was documented at diagnosis. 50 cases of asthma in children presenting to the emergency department (ED) were then audited to review the age at presentation, whether there was evidence of previous asthma diagnosis and whether the patient was discharged from ED. A repeat audit is planned in ED this winter. Results: In a GP surgery, there were 83 coded cases of asthma in children. 51 children (61%) were diagnosed under 5, with 9 children (11%) who had objective evidence of asthma documented at diagnosis. In ED, 50 cases were collected, of which 4 were excluded as they were referred to the other services, or for incorrect coding. Of the 46 remaining, 27 diagnoses confirmed to NICE guidelines (59%). 33 children (72%) were discharged from ED. Discussion: The most likely reason for the apparent low rate of a correct diagnosis is the significant challenge of obtaining objective evidence of asthma in children. There were a number of patients who were diagnosed from secondary care services and then coded as 'asthma' in GP, without having objective documented evidence. The electronic patient record (EPR) system used in our emergency department (ED) did not allow coding of 'suspected diagnosis' or of 'viral induced wheeze'. This may have led to incorrect diagnoses coded in primary care, of children who had no confirmed diagnosis of asthma. We look forward to the re-audit, as the EPR system has been updated to allow suspected diagnoses. In contrast to the NICE guidelines used here, British Thoracic Society (BTS) guidelines allow for a trial of treatment and subsequent confirmation of diagnosis without objective evidence. It is possible that some of the cases which have been classified as incorrect in this audit may still meet other guidelines. Conclusion: The diagnosis of asthma in children is challenging. Incorrect diagnoses may be related to clinical pressures and the provision of services to allow compliance with NICE guidelines. Consensus statements between the various groups would also aid the decision-making process and diagnostic dilemmas that clinicians face, to allow more consistent care of the patient.Keywords: asthma, diagnosis, primary care, emergency department, guidelines, audit
Procedia PDF Downloads 1448138 Modified RSA in Mobile Communication
Authors: Nagaratna Rajur, J. D. Mallapur, Y. B. Kirankumar
Abstract:
The security in mobile communication is very different from the internet or telecommunication, because of its poor user interface and limited processing capacity, as well as combination of complex network protocols. Hence, it poses a challenge for less memory usage and low computation speed based security system. Security involves all the activities that are undertaken to protect the value and on-going usability of assets and the integrity and continuity of operations. An effective network security strategies requires identifying threats and then choosing the most effective set of tools to combat them. Cryptography is a simple and efficient way to provide security in communication. RSA is an asymmetric key approach that is highly reliable and widely used in internet communication. However, it has not been efficiently implemented in mobile communication due its computational complexity and large memory utilization. The proposed algorithm modifies the current RSA to be useful in mobile communication by reducing its computational complexity and memory utilization.Keywords: M-RSA, sensor networks, sensor applications, security
Procedia PDF Downloads 3428137 Digital Forensics Showdown: Encase and FTK Head-to-Head
Authors: Rida Nasir, Waseem Iqbal
Abstract:
Due to the constant revolution in technology and the increase in anti-forensic techniques used by attackers to remove their traces, professionals often struggle to choose the best tool to be used in digital forensic investigations. This paper compares two of the most well-known and widely used licensed commercial tools, i.e., Encase & FTK. The comparison was drawn on various parameters and features to provide an authentic evaluation of licensed versions of these well-known commercial tools against various real-world scenarios. In order to discover the popularity of these tools within the digital forensic community, a survey was conducted publicly to determine the preferred choice. The dataset used is the Computer Forensics Reference Dataset (CFReDS). A total of 70 features were selected from various categories. Upon comparison, both FTK and EnCase produce remarkable results. However, each tool has some limitations, and none of the tools is declared best. The comparison drawn is completely unbiased, based on factual data.Keywords: digital forensics, commercial tools, investigation, forensic evaluation
Procedia PDF Downloads 198136 Timing and Noise Data Mining Algorithm and Software Tool in Very Large Scale Integration (VLSI) Design
Authors: Qing K. Zhu
Abstract:
Very Large Scale Integration (VLSI) design becomes very complex due to the continuous integration of millions of gates in one chip based on Moore’s law. Designers have encountered numerous report files during design iterations using timing and noise analysis tools. This paper presented our work using data mining techniques combined with HTML tables to extract and represent critical timing/noise data. When we apply this data-mining tool in real applications, the running speed is important. The software employs table look-up techniques in the programming for the reasonable running speed based on performance testing results. We added several advanced features for the application in one industry chip design.Keywords: VLSI design, data mining, big data, HTML forms, web, VLSI, EDA, timing, noise
Procedia PDF Downloads 2548135 Energy Efficient Heterogeneous System for Wireless Sensor Networks (WSN)
Authors: José Anderson Rodrigues de Souza, Teles de Sales Bezerra, Saulo Aislan da Silva Eleuterio, Jeronimo Silva Rocha
Abstract:
Mobile devices are increasingly occupying sectors of society and one of its most important features is mobility. However, the use of mobile devices is subject to the lifetime of the batteries. Thus, the use of energy batteries has become an important issue in the study of wireless network technologies. In this context, new solutions that enable aggregate energy efficiency not only through energy saving, and principally they are evaluated from a more realistic model of energy discharge, if easy adaptation to existing protocols. This paper presents a study on the energy needed and the lifetime for Wireless Sensor Networks (WSN) using a heterogeneous network and applying the LEACH protocol.Keywords: wireless sensor networks, energy efficiency, heterogeneous, LEACH protocol
Procedia PDF Downloads 5808134 Design, Development by Functional Analysis in UML and Static Test of a Multimedia Voice and Video Communication Platform on IP for a Use Adapted to the Context of Local Businesses in Lubumbashi
Authors: Blaise Fyama, Elie Museng, Grace Mukoma
Abstract:
In this article we present a java implementation of video telephony using the SIP protocol (Session Initiation Protocol). After a functional analysis of the SIP protocol, we relied on the work of Italian researchers of University of Parma-Italy to acquire adequate libraries for the development of our own communication tool. In order to optimize the code and improve the prototype, we used, in an incremental approach, test techniques based on a static analysis based on the evaluation of the complexity of the software with the application of metrics and the number cyclomatic of Mccabe. The objective is to promote the emergence of local start-ups producing IP video in a well understood local context. We have arrived at the creation of a video telephony tool whose code is optimized.Keywords: static analysis, coding complexity metric mccabe, Sip, uml
Procedia PDF Downloads 1198133 Application of ANN for Estimation of Power Demand of Villages in Sulaymaniyah Governorate
Abstract:
Before designing an electrical system, the estimation of load is necessary for unit sizing and demand-generation balancing. The system could be a stand-alone system for a village or grid connected or integrated renewable energy to grid connection, especially as there are non–electrified villages in developing countries. In the classical model, the energy demand was found by estimating the household appliances multiplied with the amount of their rating and the duration of their operation, but in this paper, information exists for electrified villages could be used to predict the demand, as villages almost have the same life style. This paper describes a method used to predict the average energy consumed in each two months for every consumer living in a village by Artificial Neural Network (ANN). The input data are collected using a regional survey for samples of consumers representing typical types of different living, household appliances and energy consumption by a list of information, and the output data are collected from administration office of Piramagrun for each corresponding consumer. The result of this study shows that the average demand for different consumers from four villages in different months throughout the year is approximately 12 kWh/day, this model estimates the average demand/day for every consumer with a mean absolute percent error of 11.8%, and MathWorks software package MATLAB version 7.6.0 that contains and facilitate Neural Network Toolbox was used.Keywords: artificial neural network, load estimation, regional survey, rural electrification
Procedia PDF Downloads 1238132 The Use of Budgeting as an Effective Management Tool for Small, Medium and Micro Enterprises during COVID-19 Pandemic: A Perspective from South Africa
Authors: Abongile Zweni, Grate Moyo, Ricardo Peters, Bingwen Yan
Abstract:
Budgets are one of the most important tools that organisations, big or small, need to use as management tools. When organisations, particularly Small, Medium and Micro Enterprises (SMMEs), do not use budgets, they are bound to fail in their infancy stage. The aim of this study was to assess whether or not SMMEs in South Africa used budgets as an effective management tool during the COVID-19 pandemic. For the purposes of this study, data was collected using an online questionnaire (survey). This study used the quantitative research approach. The study used descriptive statistics to analyse the research question. The study found that most SMMEs did not use budgets during the COVID-19 pandemic; one of the reasons, amongst others, was that most of them had to close down during the lockdown, and some of them did not even qualify for government bailout or government grants.Keywords: budget management, SMMEs, COVID-19, South Africa
Procedia PDF Downloads 1928131 Nine-Level Shunt Active Power Filter Associated with a Photovoltaic Array Coupled to the Electrical Distribution Network
Authors: Zahzouh Zoubir, Bouzaouit Azzeddine, Gahgah Mounir
Abstract:
The use of more and more electronic power switches with a nonlinear behavior generates non-sinusoidal currents in distribution networks, which causes damage to domestic and industrial equipment. The multi-level shunt power active filter is subsequently shown to be an adequate solution to the problem raised. Nevertheless, the difficulty of adjusting the active filter DC supply voltage requires another technology to ensure it. In this article, a photovoltaic generator is associated with the DC bus power terminals of the active filter. The proposed system consists of a field of solar panels, three multi-level voltage inverters connected to the power grid and a non-linear load consisting of a six-diode rectifier bridge supplying a resistive-inductive load. Current control techniques of active and reactive power are used to compensate for both harmonic currents and reactive power as well as to inject active solar power into the distribution network. An algorithm of the search method of the maximum power point of type Perturb and observe is applied. Simulation results of the system proposed under the MATLAB/Simulink environment shows that the performance of control commands that reassure the solar power injection in the network, harmonic current compensation and power factor correction.Keywords: Actif power filter, MPPT, pertub&observe algorithm, PV array, PWM-control
Procedia PDF Downloads 3398130 Novel p22-Monoclonal Antibody Based Blocking ELISA for the Detection of African Swine Fever Virus Antibodies in Serum
Authors: Ghebremedhin Tsegay, Weldu Tesfagaber, Yuanmao Zhu, Xijun He, Wan Wang, Zhenjiang Zhang, Encheng Sun, Jinya Zhang, Yuntao Guan, Fang Li, Renqiang Liu, Zhigao Bu, Dongming Zhao*
Abstract:
African swine fever (ASF) is a highly infectious viral disease of pigs, resulting in significant economic loss worldwide. As there is no approved vaccines and treatments, the control of ASF entirely depends on early diagnosis and culling of infected pigs. Thus, highly specific and sensitive diagnostic assays are required for accurate and early diagnosis of ASF virus (ASFV). Currently, only a few recombinant proteins have been tested and validated for use as reagents in ASF diagnostic assays. The most promising ones for ASFV antibody detection were p72, p30, p54, and pp62. So far, three ELISA kits based on these recombinant proteins have been commercialized. Due to the complex nature of the virus and variety forms of the disease, robust serodiagnostic assays are still required. ASFV p22 protein, encoded by KP177R gene, is located in the inner membrane of viral particle and appeared transiently in the plasma membrane early after virus infection. The p22 protein interacts with numerous cellular proteins, involved in processes of phagocytosis and endocytosis through different cellular pathways. However, p22 does not seem to be involved in virus replication or swine pathogenicity. In this study, E.coli expressed recombinant p22 protein was used to generate a monoclonal antibody (mAb), and its potential use for the development of blocking ELISA (bELISA) was evaluated. A total of 806 pig serum samples were tested to evaluate the bELISA. Acording the ROC (Reciever operating chracteristic) analysis, 100% sensitivity and 98.10% of specificity was recorded when the PI cut-off value was set at 47%. The novel assay was able to detect the antibodies as early as 9 days post infection. Finaly, a highly sensitive, specific and rapid novel p22-mAb based bELISA assay was developed, and optimized for detection of antibodies against genotype I and II ASFVs. It is a promising candidate for an early and acurate detection of the antibodies and is highly expected to have a valuable role in the containment and prevention of ASF.Keywords: ASFV, blocking ELISA, diagnosis, monoclonal antibodies, sensitivity, specificity
Procedia PDF Downloads 778129 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour
Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.Keywords: artificial neural network, back-propagation, tide data, training algorithm
Procedia PDF Downloads 4838128 Optimising GIS in Cushioning the Environmental Impact of Infrastructural Projects
Authors: Akerele Akintunde Hareef
Abstract:
GIS is an integrating tool for storing, retrieving, manipulating, and analyzing spatial data. It is a tool which defines an area with respect to features and other relevant thematic delineations. On the other hand, Environmental Impact Assessment in short is both positive and negative impact of an infrastructure on an environment. Impact of infrastructural projects on the environment is an aspect of development that barely get extensive portion of pre-project execution phase and when they do, the effects are most times not implemented to cushion the impact they have on human and the environment. In this research, infrastructural projects like road constructions, water reticulation projects, building constructions, bridge etc. have immense impact on the environment and the people that reside in location of construction. Hence, the need for this research tends to portray the relevance of Environmental Impact assessment in calculating the vulnerability of human and the environment to imbalance necessitated by this infrastructural development and how the use of GIS application can be optimally applied to annul or minimize the effect.Keywords: environmental impact assessment (EIA), geographic information system (GIS), infrastructural projects, environment
Procedia PDF Downloads 5528127 A Comparative Study: Comparison of Two Different Fluorescent Stains -Auramine and Rhodamine- with Ehrlich-Ziehl-Neelsen, Kinyoun Staining, and Culture in the Determination of Acid Resistant Bacilli
Authors: Recep Keşli, Hayriye Tokay, Cengiz Demir, İsmail Ceyhan
Abstract:
Objective: In many countries, tuberculosis (TB) is still one of the most important diseases. Tuberculosis is among top 10 causes of death worldwide. The early diagnosis of active tuberculosis still depends on the presence of acid resistant bacilli (ARB) in stained smears. In this study, we aimed to investigate the diagnostic performances of Erlich Ziehl Neelsen (EZN), Kinyoun and two different fluorescent stains. Methods: The specimens were obtained from the patients who applied to Chest Diseases Departments of Ankara Atatürk Chest Diseases and Thoracic Surgery Training and Research Hospital, and Afyon Kocatepe University, ANS Research and Practice Hospital. The study was carried out in the Medical Microbiology Laboratory, School of Medicine, Afyon Kocatepe University. All the non-sterile specimens were homogenized and decontaminated according to the EUCAST instructions. Samples were inoculated onto the Löwenstein-Jensen agars (bio-Merieux Marcy l'Etoile, France) and then incubated at 37˚C, for 40 days. Four smears were prepared from each specimen. Slides were stained with commercial EZN (BD, Sparks, USA), Kinyoun (SALUBRIS Istanbul, Turkey), Auramine (SALUBRIS Istanbul, Turkey) and Rhodamine (SALUBRIS Istanbul, Turkey) kit. While EZN and Kinyoun stainings were examined by light microscope, Auramine and Rhodamine slides were examined by fluorescence microscopy. Results: A total of 158 respiratory system samples (sputum, broncho alveolar lavage fluid…etc) were enrolled into the study. A hundred and two of the samples that processed were found as culture positive. The sensitivity, specificity, positive predictive, and negative predictive values were detected as 100%, 67.5%, 73.5%, and 100% for EZN, 100%, 70.9%, 77.4%, and 100% for Kinyoun, 100%,77.8%, 84.3%, 100% for Auramine, and 100%, 80% , 86.3%, and 100% for Rhodamine respectively. Conclusions: According to our study auramine and rhodamine staining methods showed the best diagnostic performance among the four investigated staining methods. In conclusion, the fluorochrome staining method may be accepted as the most reliable, rapid and useful method for diagnosis of the mycobacterial infections truly.Keywords: acid resistant bacilli (ARB), auramine, Ehrlich-Ziehl-Neelsen (EZN), Kinyoun, Rhodamine
Procedia PDF Downloads 2768126 A Long Range Wide Area Network-Based Smart Pest Monitoring System
Authors: Yun-Chung Yu, Yan-Wen Wang, Min-Sheng Liao, Joe-Air Jiang, Yuen-Chung Lee
Abstract:
This paper proposes to use a Long Range Wide Area Network (LoRaWAN) for a smart pest monitoring system which aims at the oriental fruit fly (Bactrocera dorsalis) to improve the communication efficiency of the system. The oriental fruit fly is one of the main pests in Southeast Asia and the Pacific Rim. Different smart pest monitoring systems based on the Internet of Things (IoT) architecture have been developed to solve problems of employing manual measurement. These systems often use Octopus II, a communication module following the 2.4GHz IEEE 802.15.4 ZigBee specification, as sensor nodes. The Octopus II is commonly used in low-power and short-distance communication. However, the energy consumption increase as the logical topology becomes more complicate to have enough coverage in the large area. By comparison, LoRaWAN follows the Low Power Wide Area Network (LPWAN) specification, which targets the key requirements of the IoT technology, such as secure bi-directional communication, mobility, and localization services. The LoRaWAN network has advantages of long range communication, high stability, and low energy consumption. The 433MHz LoRaWAN model has two superiorities over the 2.4GHz ZigBee model: greater diffraction and less interference. In this paper, The Octopus II module is replaced by a LoRa model to increase the coverage of the monitoring system, improve the communication performance, and prolong the network lifetime. The performance of the LoRa-based system is compared with a ZigBee-based system using three indexes: the packet receiving rate, delay time, and energy consumption, and the experiments are done in different settings (e.g. distances and environmental conditions). In the distance experiment, a pest monitoring system using the two communication specifications is deployed in an area with various obstacles, such as buildings and living creatures, and the performance of employing the two communication specifications is examined. The experiment results show that the packet receiving the rate of the LoRa-based system is 96% , which is much higher than that of the ZigBee system when the distance between any two modules is about 500m. These results indicate the capability of a LoRaWAN-based monitoring system in long range transmission and ensure the stability of the system.Keywords: LoRaWan, oriental fruit fly, IoT, Octopus II
Procedia PDF Downloads 3528125 Voice over IP Quality of Service Evaluation for Mobile Ad Hoc Network in an Indoor Environment for Different Voice Codecs
Authors: Lina Abou Haibeh, Nadir Hakem, Ousama Abu Safia
Abstract:
In this paper, the performance and quality of Voice over IP (VoIP) calls carried over a Mobile Ad Hoc Network (MANET) which has a number of SIP nodes registered on a SIP Proxy are analyzed. The testing campaigns are carried out in an indoor corridor structure having a well-defined channel’s characteristics and model for the different voice codecs, G.711, G.727 and G.723.1. These voice codecs are commonly used in VoIP technology. The calls’ quality are evaluated using four Quality of Service (QoS) metrics, namely, mean opinion score (MOS), jitter, delay, and packet loss. The relationship between the wireless channel’s parameters and the optimum codec is well-established. According to the experimental results, the voice codec G.711 has the best performance for the proposed MANET topologyKeywords: wireless channel modelling, Voip, MANET, session initiation protocol (SIP), QoS
Procedia PDF Downloads 2288124 Federated Learning in Healthcare
Authors: Ananya Gangavarapu
Abstract:
Convolutional Neural Networks (CNN) based models are providing diagnostic capabilities on par with the medical specialists in many specialty areas. However, collecting the medical data for training purposes is very challenging because of the increased regulations around data collections and privacy concerns around personal health data. The gathering of the data becomes even more difficult if the capture devices are edge-based mobile devices (like smartphones) with feeble wireless connectivity in rural/remote areas. In this paper, I would like to highlight Federated Learning approach to mitigate data privacy and security issues.Keywords: deep learning in healthcare, data privacy, federated learning, training in distributed environment
Procedia PDF Downloads 1418123 Random Subspace Ensemble of CMAC Classifiers
Authors: Somaiyeh Dehghan, Mohammad Reza Kheirkhahan Haghighi
Abstract:
The rapid growth of domains that have data with a large number of features, while the number of samples is limited has caused difficulty in constructing strong classifiers. To reduce the dimensionality of the feature space becomes an essential step in classification task. Random subspace method (or attribute bagging) is an ensemble classifier that consists of several classifiers that each base learner in ensemble has subset of features. In the present paper, we introduce Random Subspace Ensemble of CMAC neural network (RSE-CMAC), each of which has training with subset of features. Then we use this model for classification task. For evaluation performance of our model, we compare it with bagging algorithm on 36 UCI datasets. The results reveal that the new model has better performance.Keywords: classification, random subspace, ensemble, CMAC neural network
Procedia PDF Downloads 3298122 Projective Lag Synchronization in Drive-Response Dynamical Networks via Hybrid Feedback Control
Authors: Mohd Salmi Md Noorani, Ghada Al-Mahbashi, Sakhinah Abu Bakar
Abstract:
This paper investigates projective lag synchronization (PLS) behavior in drive response dynamical networks (DRDNs) model with identical nodes. A hybrid feedback control method is designed to achieve the PLS with mismatch and without mismatch terms. The stability of the error dynamics is proven theoretically using the Lyapunov stability theory. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Moreover, the numerical simulations results demonstrate the validity of the proposed method.Keywords: drive-response dynamical network, projective lag synchronization, hybrid feedback control, stability theory
Procedia PDF Downloads 3918121 Multi Agent Based Pre-Hospital Emergency Management Architecture
Authors: Jaleh Shoshtarian Malak, Niloofar Mohamadzadeh
Abstract:
Managing pre-hospital emergency patients requires real-time practices and efficient resource utilization. Since we are facing a distributed Network of healthcare providers, services and applications choosing the right resources and treatment protocol considering patient situation is a critical task. Delivering care to emergency patients at right time and with the suitable treatment settings can save ones live and prevent further complication. In recent years Multi Agent Systems (MAS) introduced great solutions to deal with real-time, distributed and complicated problems. In this paper we propose a multi agent based pre-hospital emergency management architecture in order to manage coordination, collaboration, treatment protocol and healthcare provider selection between different parties in pre-hospital emergency in a self-organizing manner. We used AnyLogic Agent Based Modeling (ABM) tool in order to simulate our proposed architecture. We have analyzed and described the functionality of EMS center, Ambulance, Consultation Center, EHR Repository and Quality of Care Monitoring as main collaborating agents. Future work includes implementation of the proposed architecture and evaluation of its impact on patient quality of care improvement.Keywords: multi agent systems, pre-hospital emergency, simulation, software architecture
Procedia PDF Downloads 4268120 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network
Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang
Abstract:
‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.Keywords: deep learning network, smart metering, water end use, water-energy data
Procedia PDF Downloads 306