Search results for: multivariate linear regression
4228 Variability of Metal Composition and Concentrations in Road Dust in the Urban Environment
Authors: Sandya Mummullage, Prasanna Egodawatta, Ashantha Goonetilleke, Godwin A. Ayoko
Abstract:
Urban road dust comprises of a range of potentially toxic metal elements and plays a critical role in degrading urban receiving water quality. Hence, assessing the metal composition and concentration in urban road dust is a high priority. This study investigated the variability of metal composition and concentrations in road dust in four different urban land uses in Gold Coast, Australia. Samples from 16 road sites were collected and tested for selected 12 metal species. The data set was analyzed using both univariate and multivariate techniques. Outcomes of the data analysis revealed that the metal concentrations inroad dust differs considerably within and between different land uses. Iron, aluminum, magnesium and zinc are the most abundant in urban land uses. It was also noted that metal species such as titanium, nickel, copper, and zinc have the highest concentrations in industrial land use. The study outcomes revealed that soil and traffic related sources as key sources of metals deposited on road surfaces.Keywords: metals build-up, pollutant accumulation, stormwater quality, urban road dust
Procedia PDF Downloads 2924227 Extent of Derivative Usage, Firm Value and Risk: An Empirical Study on Pakistan Non-Financial Firms
Authors: Atia Alam
Abstract:
Growing liberalisation and intense market competition increase firm’s risk exposure and induce corporations to use derivatives extensively as a risk management instrument, which results in decrease in firm’s risk, and increase in value. Present study contributes towards existing literature by providing an in-depth analysis regarding the effect of extent of derivative usage on firm’s risk and value by using panel data models and seemingly unrelated regression technique. New evidence is established in current literature by dividing the sample data based on firm’s Exchange Rate (ER) and Interest Rate (IR) exposure. Analysis is performed for the effect of extent of derivative usage on firm’s risk and value and its variation with respect to the ER and IR exposure. Sample data consists of 166 Pakistani firms listed on Pakistan stock exchange for the period of 2004-2010. Results show that extensive usage of derivative instruments significantly increases firm value and reduces firm’s risk. Furthermore, comprehensive analysis depicts that Pakistani corporations having higher exchange rate exposure, with respect to foreign sales, and higher interest rate exposure, on the basis of industry adjusted leverage, have higher firm value and lower risk. Findings from seemingly unrelated regression also provide robustness to results obtained through panel data analysis. Study also highlights the role of derivative usage as a risk management instrument in high and low ER and IR risk and helps practitioners in understanding how value increasing effect of extent of derivative usage varies with the intensity of firm’s risk exposure.Keywords: extent of derivative usage, firm value, risk, Pakistan, non-financial firms
Procedia PDF Downloads 3564226 Modeling and Simulation of Ship Structures Using Finite Element Method
Authors: Javid Iqbal, Zhu Shifan
Abstract:
The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.Keywords: dynamic analysis, finite element methods, ship structure, vibration analysis
Procedia PDF Downloads 1364225 Receptiveness of Market Segmentation Towards Online Shopping Attitude: A Quality Management Strategy for Online Passenger Car Market
Authors: Noor Hasmini Abdghani, Nik Kamariah Nikmat, Nor Hayati Ahmad
Abstract:
Rapid growth of the internet technology led to changes in the consumer lifestyles. This involved customer buying behaviour-based internet that create new kind of buying strategy. Hence, it has summoned many of world firms including Malaysia to generate new quality strategy in preparation to face new customer buying lifestyles. Particularly, this study focused on identifying online customer segment of automobile passenger car customers. Secondly, the objective is to understand online customer’s receptiveness towards internet technologies. This study distributed 700 questionnaires whereby 582 were returned representing 83% response rate. The data were analysed using factor and regression analyses. The result from the factor analysis precipitates four online passenger car segmentations in Malaysia, which are: Segment (1)- Automobile Online shopping Preferences, Segment (2)- Automobile Online Brand Comparison, Segment (3)- Automobile Online Information Seeking and Segment (4)- Automobile Offline Shopping Preferences. In understanding the online customer’s receptiveness towards internet, the regression result shows that there is significant relationship between each of four segments of online passenger car customer with attitude towards automobile online shopping. This implies that, for online customers to have receptiveness toward internet technologies, he or she must have preferences toward online shopping or at least prefer to browse any related information online even if the actual purchase is made at the traditional store. With this proposed segmentation strategy, the firms especially the automobile firms will be able to understand their online customer behavior. At least, the proposed segmentation strategy will help the firms to strategize quality management approach for their online customers’ buying decision making.Keywords: Automobile, Market Segmentation, Online Shopping Attitude, Quality Management Strategy
Procedia PDF Downloads 5404224 Effective Factors on Farmers' Attitude toward Multifunctional Agriculture
Authors: Mohammad Sadegh Allahyari, Sorush Marzban
Abstract:
The main aim of this study was to investigate the factors affecting farmers' attitude of the Shanderman District in Masal (Guilan Province in the north of Iran), towards the concepts of multifunctional agriculture. The statistical population consisted of all 4908 in Shanderman.The sample of the present study consisted of 209 subjects who were selected from the total population using the Bartlett et al. Table. Questionnaire as the main tool of data collection was divided in two parts. The first part of questionnaire consisted of farmers' profiles regarding individual, technical-agronomic, economic and social characteristics. The second part included items to identify the farmers’ attitudes regarding different aspects of multifunctional agriculture. The validity of the questionnaire was assessed by professors and experts. Cronbach's alpha was used to determine the reliability (α= 0.844), which is considered an acceptable reliability value. Overall, the average scores of attitudes towards multifunctional agriculture show a positive tendency towards multifunctional agriculture, considering farmers' attitudes of the Shanderman district (SD = 0.53, M = 3.81). Results also highlight a significant difference between farmers' income source levels (F = 0.049) and agricultural literature review (F = 0.022) toward farmers' attitudes considering multifunctional agriculture (p < 0.05). Pearson correlations also indicated that there is a positive relationship between positive attitudes and family size (r = 0.154), farmers' experience (r = 0.246), size of land under cultivation (r = 0.186), income (r = 0.227), and social contribution activities (r = 0.224). The results of multiple regression analyses showed that the variation in the dependent variable depended on the farmers' experience in agricultural activities and their social contribution activities. This means that the variables included in the regression analysis are estimated to explain 12 percent of the variation in the dependent variable.Keywords: multifunctional agriculture, attitude, effective factor, sustainable agriculture
Procedia PDF Downloads 2364223 Assessment of the Work-Related Stress and Associated Factors among Sanitation Workers in Public Hospitals during COVID-19, Addis Ababa, Ethiopia
Authors: Zerubabel Mihret
Abstract:
Background: Work-related stress is a pattern of reactions to work demands unmatched by worker’s knowledge, skills, or abilities. Healthcare institutions are considered high-risk and intensive work areas for work-related stress. However, there is the nonexistence of clear and strong data about the magnitude of work-related stress on sanitation workers in hospitals in Ethiopia. The aim of this study was to determine the magnitude of work-related stress among sanitation workers in public hospitals during COVID-19 in Addis Ababa, Ethiopia. Methods: Institution-based cross-sectional study was conducted from October 2021 to February 2022 among 494 sanitation workers who were selected from 4 hospitals. HSE (Health and Safety Executive of UK) standard data collection tool was used, and an interviewer-administered questionnaire was used to collect the data using KOBO collect application. The collected data were cleaned and analyzed using SPSS version 20.0. Both binary and multivariable logistic regression analyses were done to identify important factors having an association with work-related stress. Variables with p-value ≤ 0.25 in the bivariate analysis were entered into the multivariable logistic regression model. A statistically significant level was declared at a p-value ≤ 0.05. Results: This study revealed that the magnitude of work-related stress among sanitation workers was 49.2% (95% CI 45-54). Significant proportions (72.7%) of sanitation workers were dissatisfied with their current job. Sex, age, experience, and chewing khat were significantly associated with work-related stress. Conclusion: Work-related stress is significantly high among sanitation workers. Sex, age, experience, and chewing khat were identified as factors associated with work-related stress. Intervention program focusing on the prevention and control of stress is desired by hospitals.Keywords: work-related stress, sanitation workers, Likert scale, public hospitals, Ethiopia
Procedia PDF Downloads 834222 Fixed Point Iteration of a Damped and Unforced Duffing's Equation
Authors: Paschal A. Ochang, Emmanuel C. Oji
Abstract:
The Duffing’s Equation is a second order system that is very important because they are fundamental to the behaviour of higher order systems and they have applications in almost all fields of science and engineering. In the biological area, it is useful in plant stem dependence and natural frequency and model of the Brain Crash Analysis (BCA). In Engineering, it is useful in the study of Damping indoor construction and Traffic lights and to the meteorologist it is used in the prediction of weather conditions. However, most Problems in real life that occur are non-linear in nature and may not have analytical solutions except approximations or simulations, so trying to find an exact explicit solution may in general be complicated and sometimes impossible. Therefore we aim to find out if it is possible to obtain one analytical fixed point to the non-linear ordinary equation using fixed point analytical method. We started by exposing the scope of the Duffing’s equation and other related works on it. With a major focus on the fixed point and fixed point iterative scheme, we tried different iterative schemes on the Duffing’s Equation. We were able to identify that one can only see the fixed points to a Damped Duffing’s Equation and not to the Undamped Duffing’s Equation. This is because the cubic nonlinearity term is the determining factor to the Duffing’s Equation. We finally came to the results where we identified the stability of an equation that is damped, forced and second order in nature. Generally, in this research, we approximate the solution of Duffing’s Equation by converting it to a system of First and Second Order Ordinary Differential Equation and using Fixed Point Iterative approach. This approach shows that for different versions of Duffing’s Equations (damped), we find fixed points, therefore the order of computations and running time of applied software in all fields using the Duffing’s equation will be reduced.Keywords: damping, Duffing's equation, fixed point analysis, second order differential, stability analysis
Procedia PDF Downloads 2924221 A Five-Year Follow-up Survey Using Regression Analysis Finds Only Maternal Age to Be a Significant Medical Predictor for Infertility Treatment
Authors: Lea Stein, Sabine Rösner, Alessandra Lo Giudice, Beate Ditzen, Tewes Wischmann
Abstract:
For many couples bearing children is a consistent life goal; however, it cannot always be fulfilled. Undergoing infertility treatment does not guarantee pregnancies and live births. Couples have to deal with miscarriages and sometimes even discontinue infertility treatment. Significant medical predictors for the outcome of infertility treatment have yet to be fully identified. To further our understanding, a cross-sectional five-year follow-up survey was undertaken, in which 95 women and 82 men that have been treated at the Women’s Hospital of Heidelberg University participated. Binary logistic regressions, parametric and non-parametric methods were used for our sample to determine the relevance of biological (infertility diagnoses, maternal and paternal age) and lifestyle factors (smoking, drinking, over- and underweight) on the outcome of infertility treatment (clinical pregnancy, live birth, miscarriage, dropout rate). During infertility treatment, 72.6% of couples became pregnant and 69.5% were able to give birth. Suffering from miscarriages 27.5% of couples and 20.5% decided to discontinue an unsuccessful fertility treatment. The binary logistic regression models for clinical pregnancies, live births and dropouts were statistically significant for the maternal age, whereas the paternal age in addition to maternal and paternal BMI, smoking, infertility diagnoses and infections, showed no significant predicting effect on any of the outcome variables. The results confirm an effect of maternal age on infertility treatment, whereas the relevance of other medical predictors remains unclear. Further investigations should be considered to increase our knowledge of medical predictors.Keywords: advanced maternal age, assisted reproductive technology, female factor, male factor, medical predictors, infertility treatment, reproductive medicine
Procedia PDF Downloads 1104220 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification
Authors: Anita Kushwaha
Abstract:
We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining
Procedia PDF Downloads 2724219 Beyond Adoption: Econometric Analysis of Impacts of Farmer Innovation Systems and Improved Agricultural Technologies on Rice Yield in Ghana
Authors: Franklin N. Mabe, Samuel A. Donkoh, Seidu Al-Hassan
Abstract:
In order to increase and bridge the differences in rice yield, many farmers have resorted to adopting Farmer Innovation Systems (FISs) and Improved Agricultural Technologies (IATs). This study econometrically analysed the impacts of adoption of FISs and IATs on rice yield using multinomial endogenous switching regression (MESR). Nine-hundred and seven (907) rice farmers from Guinea Savannah Zone (GSZ), Forest Savannah Transition Zone (FSTZ) and Coastal Savannah Zone (CSZ) were used for the study. The study used both primary and secondary data. FBO advice, rice farming experience and distance from farming communities to input markets increase farmers’ adoption of only FISs. Factors that increase farmers’ probability of adopting only IATs are access to extension advice, credit, improved seeds and contract farming. Farmers located in CSZ have higher probability of adopting only IATs than their counterparts living in other agro-ecological zones. Age and access to input subsidy increase the probability of jointly adopting FISs and IATs. FISs and IATs have heterogeneous impact on rice yield with adoption of only IATs having the highest impact followed by joint adoption of FISs and IATs. It is important for stakeholders in rice subsector to champion the provision of improved rice seeds, the intensification of agricultural extension services and contract farming concept. Researchers should endeavour to researched into FISs.Keywords: farmer innovation systems, improved agricultural technologies, multinomial endogenous switching regression, treatment effect
Procedia PDF Downloads 4264218 Private Coded Computation of Matrix Multiplication
Authors: Malihe Aliasgari, Yousef Nejatbakhsh
Abstract:
The era of Big Data and the immensity of real-life datasets compels computation tasks to be performed in a distributed fashion, where the data is dispersed among many servers that operate in parallel. However, massive parallelization leads to computational bottlenecks due to faulty servers and stragglers. Stragglers refer to a few slow or delay-prone processors that can bottleneck the entire computation because one has to wait for all the parallel nodes to finish. The problem of straggling processors, has been well studied in the context of distributed computing. Recently, it has been pointed out that, for the important case of linear functions, it is possible to improve over repetition strategies in terms of the tradeoff between performance and latency by carrying out linear precoding of the data prior to processing. The key idea is that, by employing suitable linear codes operating over fractions of the original data, a function may be completed as soon as enough number of processors, depending on the minimum distance of the code, have completed their operations. The problem of matrix-matrix multiplication in the presence of practically big sized of data sets faced with computational and memory related difficulties, which makes such operations are carried out using distributed computing platforms. In this work, we study the problem of distributed matrix-matrix multiplication W = XY under storage constraints, i.e., when each server is allowed to store a fixed fraction of each of the matrices X and Y, which is a fundamental building of many science and engineering fields such as machine learning, image and signal processing, wireless communication, optimization. Non-secure and secure matrix multiplication are studied. We want to study the setup, in which the identity of the matrix of interest should be kept private from the workers and then obtain the recovery threshold of the colluding model, that is, the number of workers that need to complete their task before the master server can recover the product W. The problem of secure and private distributed matrix multiplication W = XY which the matrix X is confidential, while matrix Y is selected in a private manner from a library of public matrices. We present the best currently known trade-off between communication load and recovery threshold. On the other words, we design an achievable PSGPD scheme for any arbitrary privacy level by trivially concatenating a robust PIR scheme for arbitrary colluding workers and private databases and the proposed SGPD code that provides a smaller computational complexity at the workers.Keywords: coded distributed computation, private information retrieval, secret sharing, stragglers
Procedia PDF Downloads 1224217 Early Gastric Cancer Prediction from Diet and Epidemiological Data Using Machine Learning in Mizoram Population
Authors: Brindha Senthil Kumar, Payel Chakraborty, Senthil Kumar Nachimuthu, Arindam Maitra, Prem Nath
Abstract:
Gastric cancer is predominantly caused by demographic and diet factors as compared to other cancer types. The aim of the study is to predict Early Gastric Cancer (ECG) from diet and lifestyle factors using supervised machine learning algorithms. For this study, 160 healthy individual and 80 cases were selected who had been followed for 3 years (2016-2019), at Civil Hospital, Aizawl, Mizoram. A dataset containing 11 features that are core risk factors for the gastric cancer were extracted. Supervised machine algorithms: Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Multilayer perceptron, and Random Forest were used to analyze the dataset using Python Jupyter Notebook Version 3. The obtained classified results had been evaluated using metrics parameters: minimum_false_positives, brier_score, accuracy, precision, recall, F1_score, and Receiver Operating Characteristics (ROC) curve. Data analysis results showed Naive Bayes - 88, 0.11; Random Forest - 83, 0.16; SVM - 77, 0.22; Logistic Regression - 75, 0.25 and Multilayer perceptron - 72, 0.27 with respect to accuracy and brier_score in percent. Naive Bayes algorithm out performs with very low false positive rates as well as brier_score and good accuracy. Naive Bayes algorithm classification results in predicting ECG showed very satisfactory results using only diet cum lifestyle factors which will be very helpful for the physicians to educate the patients and public, thereby mortality of gastric cancer can be reduced/avoided with this knowledge mining work.Keywords: Early Gastric cancer, Machine Learning, Diet, Lifestyle Characteristics
Procedia PDF Downloads 1614216 Exploring Disruptive Innovation Capacity Effects on Firm Performance: An Investigation in Industries 4.0
Authors: Selma R. Oliveira, E. W. Cazarini
Abstract:
Recently, studies have referenced innovation as a key factor affecting the performance of firms. Companies make use of its innovative capacities to achieve sustainable competitive advantage. In this perspective, the objective of this paper is to contribute to innovation planning policies in industry 4.0. Thus, this paper examines the disruptive innovation capacity on firm performance in Europe. This procedure was prepared according to the following phases: Phase 1: Determination of the conceptual model; and Phase 2: Verification of the conceptual model. The research was initially conducted based on the specialized literature, which extracted the data regarding the constructs/structure and content in order to build the model. The research involved the intervention of experts knowledgeable on the object studied, selected by technical-scientific criteria. The data were extracted using an assessment matrix. To reduce subjectivity in the results achieved the following methods were used complementarily and in combination: multicriteria analysis, multivariate analysis, psychometric scaling and neurofuzzy technology. The data were extracted using an assessment matrix and the results were satisfactory, validating the modeling approach.Keywords: disruptive innovation, capacity, performance, Industry 4.0
Procedia PDF Downloads 1654215 Meta Model for Optimum Design Objective Function of Steel Frames Subjected to Seismic Loads
Authors: Salah R. Al Zaidee, Ali S. Mahdi
Abstract:
Except for simple problems of statically determinate structures, optimum design problems in structural engineering have implicit objective functions where structural analysis and design are essential within each searching loop. With these implicit functions, the structural engineer is usually enforced to write his/her own computer code for analysis, design, and searching for optimum design among many feasible candidates and cannot take advantage of available software for structural analysis, design, and searching for the optimum solution. The meta-model is a regression model used to transform an implicit objective function into objective one and leads in turn to decouple the structural analysis and design processes from the optimum searching process. With the meta-model, well-known software for structural analysis and design can be used in sequence with optimum searching software. In this paper, the meta-model has been used to develop an explicit objective function for plane steel frames subjected to dead, live, and seismic forces. Frame topology is assumed as predefined based on architectural and functional requirements. Columns and beams sections and different connections details are the main design variables in this study. Columns and beams are grouped to reduce the number of design variables and to make the problem similar to that adopted in engineering practice. Data for the implicit objective function have been generated based on analysis and assessment for many design proposals with CSI SAP software. These data have been used later in SPSS software to develop a pure quadratic nonlinear regression model for the explicit objective function. Good correlations with a coefficient, R2, in the range from 0.88 to 0.99 have been noted between the original implicit functions and the corresponding explicit functions generated with meta-model.Keywords: meta-modal, objective function, steel frames, seismic analysis, design
Procedia PDF Downloads 2434214 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data
Authors: S. Nickolas, Shobha K.
Abstract:
The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing
Procedia PDF Downloads 2744213 Study and Solving High Complex Non-Linear Differential Equations Applied in the Engineering Field by Analytical New Approach AGM
Authors: Mohammadreza Akbari, Sara Akbari, Davood Domiri Ganji, Pooya Solimani, Reza Khalili
Abstract:
In this paper, three complicated nonlinear differential equations(PDE,ODE) in the field of engineering and non-vibration have been analyzed and solved completely by new method that we have named it Akbari-Ganji's Method (AGM) . As regards the previous published papers, investigating this kind of equations is a very hard task to do and the obtained solution is not accurate and reliable. This issue will be emerged after comparing the achieved solutions by Numerical Method. Based on the comparisons which have been made between the gained solutions by AGM and Numerical Method (Runge-Kutta 4th), it is possible to indicate that AGM can be successfully applied for various differential equations particularly for difficult ones. Furthermore, It is necessary to mention that a summary of the excellence of this method in comparison with the other approaches can be considered as follows: It is noteworthy that these results have been indicated that this approach is very effective and easy therefore it can be applied for other kinds of nonlinear equations, And also the reasons of selecting the mentioned method for solving differential equations in a wide variety of fields not only in vibrations but also in different fields of sciences such as fluid mechanics, solid mechanics, chemical engineering, etc. Therefore, a solution with high precision will be acquired. With regard to the afore-mentioned explanations, the process of solving nonlinear equation(s) will be very easy and convenient in comparison with the other methods. And also one of the important position that is explored in this paper is: Trigonometric and exponential terms in the differential equation (the method AGM) , is no need to use Taylor series Expansion to enhance the precision of the result.Keywords: new method (AGM), complex non-linear partial differential equations, damping ratio, energy lost per cycle
Procedia PDF Downloads 4694212 Evaluation of the Photo Neutron Contamination inside and outside of Treatment Room for High Energy Elekta Synergy® Linear Accelerator
Authors: Sharib Ahmed, Mansoor Rafi, Kamran Ali Awan, Faraz Khaskhali, Amir Maqbool, Altaf Hashmi
Abstract:
Medical linear accelerators (LINAC’s) used in radiotherapy treatments produce undesired neutrons when they are operated at energies above 8 MeV, both in electron and photon configuration. Neutrons are produced by high-energy photons and electrons through electronuclear (e, n) a photonuclear giant dipole resonance (GDR) reactions. These reactions occurs when incoming photon or electron incident through the various materials of target, flattening filter, collimators, and other shielding components in LINAC’s structure. These neutrons may reach directly to the patient, or they may interact with the surrounding materials until they become thermalized. A work has been set up to study the effect of different parameter on the production of neutron around the room by photonuclear reactions induced by photons above ~8 MeV. One of the commercial available neutron detector (Ludlum Model 42-31H Neutron Detector) is used for the detection of thermal and fast neutrons (0.025 eV to approximately 12 MeV) inside and outside of the treatment room. Measurements were performed for different field sizes at 100 cm source to surface distance (SSD) of detector, at different distances from the isocenter and at the place of primary and secondary walls. Other measurements were performed at door and treatment console for the potential radiation safety concerns of the therapists who must walk in and out of the room for the treatments. Exposures have taken place from Elekta Synergy® linear accelerators for two different energies (10 MV and 18 MV) for a given 200 MU’s and dose rate of 600 MU per minute. Results indicates that neutron doses at 100 cm SSD depend on accelerator characteristics means jaw settings as jaws are made of high atomic number material so provides significant interaction of photons to produce neutrons, while doses at the place of larger distance from isocenter are strongly influenced by the treatment room geometry and backscattering from the walls cause a greater doses as compare to dose at 100 cm distance from isocenter. In the treatment room the ambient dose equivalent due to photons produced during decay of activation nuclei varies from 4.22 mSv.h−1 to 13.2 mSv.h−1 (at isocenter),6.21 mSv.h−1 to 29.2 mSv.h−1 (primary wall) and 8.73 mSv.h−1 to 37.2 mSv.h−1 (secondary wall) for 10 and 18 MV respectively. The ambient dose equivalent for neutrons at door is 5 μSv.h−1 to 2 μSv.h−1 while at treatment console room it is 2 μSv.h−1 to 0 μSv.h−1 for 10 and 18 MV respectively which shows that a 2 m thick and 5m longer concrete maze provides sufficient shielding for neutron at door as well as at treatment console for 10 and 18 MV photons.Keywords: equivalent doses, neutron contamination, neutron detector, photon energy
Procedia PDF Downloads 4494211 Generalized Linear Modeling of HCV Infection Among Medical Waste Handlers in Sidama Region, Ethiopia
Authors: Birhanu Betela Warssamo
Abstract:
Background: There is limited evidence on the prevalence and risk factors for hepatitis C virus (HCV) infection among waste handlers in the Sidama region, Ethiopia; however, this knowledge is necessary for the effective prevention of HCV infection in the region. Methods: A cross-sectional study was conducted among randomly selected waste collectors from October 2021 to 30 July 2022 in different public hospitals in the Sidama region of Ethiopia. Serum samples were collected from participants and screened for anti-HCV using a rapid immunochromatography assay. Socio-demographic and risk factor information of waste handlers was gathered by pretested and well-structured questionnaires. The generalized linear model (GLM) was conducted using R software, and P-value < 0.05 was declared statistically significant. Results: From a total of 282 participating waste handlers, 16 (5.7%) (95% CI, 4.2 – 8.7) were infected with the hepatitis C virus. The educational status of waste handlers was the significant demographic variable that was associated with the hepatitis C virus (AOR = 0.055; 95% CI = 0.012 – 0.248; P = 0.000). More married waste handlers, 12 (75%), were HCV positive than unmarried, 4 (25%) and married waste handlers were 2.051 times (OR = 2.051, 95%CI = 0.644 –6.527, P = 0.295) more prone to HCV infection, compared to unmarried, which was statistically insignificant. The GLM showed that exposure to blood (OR = 8.26; 95% CI = 1.878–10.925; P = 0.037), multiple sexual partners (AOR = 3.63; 95% CI = 2.751–5.808; P = 0.001), sharp injury (AOR = 2.77; 95% CI = 2.327–3.173; P = 0.036), not using PPE (AOR = 0.77; 95% CI = 0.032–0.937; P = 0.001), contact with jaundiced patient (AOR = 3.65; 95% CI = 1.093–4.368; P = 0 .0048) and unprotected sex (AOR = 11.91; 95% CI = 5.847–16.854; P = 0.001) remained statistically significantly associated with HCV positivity. Conclusions: The study revealed that there was a high prevalence of hepatitis C virus infection among waste handlers in the Sidama region, Ethiopia. This demonstrated that there is an urgent need to increase preventative efforts and strategic policy orientations to control the spread of the hepatitis C virus.Keywords: Hepatitis C virus, risk factors, waste handlers, prevalence, Sidama Ethiopia
Procedia PDF Downloads 144210 Timetabling for Interconnected LRT Lines: A Package Solution Based on a Real-world Case
Authors: Huazhen Lin, Ruihua Xu, Zhibin Jiang
Abstract:
In this real-world case, timetabling the LRT network as a whole is rather challenging for the operator: they are supposed to create a timetable to avoid various route conflicts manually while satisfying a given interval and the number of rolling stocks, but the outcome is not satisfying. Therefore, the operator adopts a computerised timetabling tool, the Train Plan Maker (TPM), to cope with this problem. However, with various constraints in the dual-line network, it is still difficult to find an adequate pairing of turnback time, interval and rolling stocks’ number, which requires extra manual intervention. Aiming at current problems, a one-off model for timetabling is presented in this paper to simplify the procedure of timetabling. Before the timetabling procedure starts, this paper presents how the dual-line system with a ring and several branches is turned into a simpler structure. Then, a non-linear programming model is presented in two stages. In the first stage, the model sets a series of constraints aiming to calculate a proper timing for coordinating two lines by adjusting the turnback time at termini. Then, based on the result of the first stage, the model introduces a series of inequality constraints to avoid various route conflicts. With this model, an analysis is conducted to reveal the relation between the ratio of trains in different directions and the possible minimum interval, observing that the more imbalance the ratio is, the less possible to provide frequent service under such strict constraints.Keywords: light rail transit (LRT), non-linear programming, railway timetabling, timetable coordination
Procedia PDF Downloads 874209 A Neurofeedback Learning Model Using Time-Frequency Analysis for Volleyball Performance Enhancement
Authors: Hamed Yousefi, Farnaz Mohammadi, Niloufar Mirian, Navid Amini
Abstract:
Investigating possible capacities of visual functions where adapted mechanisms can enhance the capability of sports trainees is a promising area of research, not only from the cognitive viewpoint but also in terms of unlimited applications in sports training. In this paper, the visual evoked potential (VEP) and event-related potential (ERP) signals of amateur and trained volleyball players in a pilot study were processed. Two groups of amateur and trained subjects are asked to imagine themselves in the state of receiving a ball while they are shown a simulated volleyball field. The proposed method is based on a set of time-frequency features using algorithms such as Gabor filter, continuous wavelet transform, and a multi-stage wavelet decomposition that are extracted from VEP signals that can be indicative of being amateur or trained. The linear discriminant classifier achieves the accuracy, sensitivity, and specificity of 100% when the average of the repetitions of the signal corresponding to the task is used. The main purpose of this study is to investigate the feasibility of a fast, robust, and reliable feature/model determination as a neurofeedback parameter to be utilized for improving the volleyball players’ performance. The proposed measure has potential applications in brain-computer interface technology where a real-time biomarker is needed.Keywords: visual evoked potential, time-frequency feature extraction, short-time Fourier transform, event-related spectrum potential classification, linear discriminant analysis
Procedia PDF Downloads 1384208 Comparing Double-Stranded RNA Uptake Mechanisms in Dipteran and Lepidopteran Cell Lines
Authors: Nazanin Amanat, Alison Tayler, Steve Whyard
Abstract:
While chemical insecticides effectively control many insect pests, they also harm many non-target species. Double-stranded RNA (dsRNA) pesticides, in contrast, can be designed to target unique gene sequences and thus act in a species-specific manner. DsRNA insecticides do not, however, work equally well for all insects, and for some species that are considered refractory to dsRNA, a primary factor affecting efficacy is the relative ease by which dsRNA can enter a target cell’s cytoplasm. In this study, we are examining how different structured dsRNAs (linear, hairpin, and paperclip) can enter mosquito and lepidopteran cells, as they represent dsRNA-sensitive and refractory species, respectively. To determine how the dsRNAs enter the cells, we are using chemical inhibitors and RNA interference (RNAi)-mediated knockdown of key proteins associated with different endocytosis processes. Understanding how different dsRNAs enter cells will ultimately help in the design of molecules that overcome refractoriness to RNAi or develop resistance to dsRNA-based insecticides. To date, we have conducted chemical inhibitor experiments on both cell lines and have evidence that linear dsRNAs enter the cells using clathrin-mediated endocytosis, while the paperclip dsRNAs (pcRNAs) can enter both species’ cells in a clathrin-independent manner to induce RNAi. An alternative uptake mechanism for the pcRNAs has been tentatively identified, and the outcomes of our RNAi-mediated knockdown experiments, which should provide corroborative evidence of our initial findings, will be discussed.Keywords: dsRNA, RNAi, uptake, insecticides, dipteran, lepidopteran
Procedia PDF Downloads 734207 Cr (VI) Adsorption on Ce0.25Zr0.75O2.nH2O-Kinetics and Thermodynamics
Authors: Carlos Alberto Rivera-corredor, Angie Dayana Vargas-Ceballos, Edison Gilpavas, Izabela Dobrosz-Gómez, Miguel Ángel Gómez-García
Abstract:
Hexavalent chromium, Cr (VI) is present in the effluents from different industries such as electroplating, mining, leather tanning, etc. This compound is of great academic and industrial concern because of its toxic and carcinogenic behavior. Its dumping to both environmental and public health for animals and humans causes serious problems in water sources. The amount of Cr (VI) in industrial wastewaters ranges from 0.5 to 270,000 mgL-1. According to the Colombian standard for water quality (NTC-813-2010), the maximum allowed concentration for the Cr (VI) in drinking water is 0.05 mg L-1. To comply with this limit, it is essential that industries treat their effluent to reduce the Cr (VI) to acceptable levels. Numerous methods have been reported for the treatment removing metal ions from aqueous solutions such as: reduction, ion exchange, electrodialysis, etc. Adsorption has become a promising method for the purification of metal ions in water, since its application corresponds with an economic and efficient technology. The absorbent selection and the kinetic and thermodynamic study of the adsorption conditions are key to the development of a suitable adsorption technology. The Ce0.25Zr0.75O2.nH2O presents higher adsorption capacity between a series of hydrated mixed oxides Ce1-xZrxO2 (x = 0, 0.25, 0.5, 0.75, 1). This work presents the kinetic and thermodynamic study of Cr (VI) adsorption on Ce0.25Zr0.75O2.nH2O. Experiments were performed under the following experimental conditions: initial Cr (VI) concentration = 25, 50 and 100 mgL-1, pH = 2, adsorbent charge = 4 gL-1, stirring time = 60 min, temperature=20, 28 and 40 °C. The Cr (VI) concentration was spectrophotometrically estimated by the method of difenilcarbazide with monitoring the absorbance at 540 nm. The Cr (VI) adsorption over hydrated Ce0.25Zr0.75O2.nH2O models was analyzed using pseudo-first and pseudo-second order kinetics. The Langmuir and Freundlich models were used to model the experimental data. The convergence between the experimental values and those predicted by the model, is expressed as a linear regression correlation coefficient (R2) and was employed as the model selection criterion. The adsorption process followed the pseudo-second order kinetic model and obeyed the Langmuir isotherm model. The thermodynamic parameters were calculated as: ΔH°=9.04 kJmol-1,ΔS°=0.03 kJmol-1 K-1, ΔG°=-0.35 kJmol-1 and indicated the endothermic and spontaneous nature of the adsorption process, governed by physisorption interactions.Keywords: adsorption, hexavalent chromium, kinetics, thermodynamics
Procedia PDF Downloads 2994206 Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms
Authors: Dhruvit S. Berawala, Jann R. Ursin, Obrad Slijepcevic
Abstract:
Shale gas is one of the most rapidly growing forms of natural gas. Unconventional natural gas deposits are difficult to characterize overall, but in general are often lower in resource concentration and dispersed over large areas. Moreover, gas is densely packed into the matrix through adsorption which accounts for large volume of gas reserves. Gas production from tight shale deposits are made possible by extensive and deep well fracturing which contacts large fractions of the formation. The conventional reservoir modelling and production forecasting methods, which rely on fluid-flow processes dominated by viscous forces, have proved to be very pessimistic and inaccurate. This paper presents a new approach to forecast shale gas production by detailed modeling of gas desorption, diffusion and non-linear flow mechanisms in combination with statistical representation of these processes. The representation of the model involves a cube as a porous media where free gas is present and a sphere (SiC: Sphere in Cube model) inside it where gas is adsorbed on to the kerogen or organic matter. Further, the sphere is considered consisting of many layers of adsorbed gas in an onion-like structure. With pressure decline, the gas desorbs first from the outer most layer of sphere causing decrease in its molecular concentration. The new available surface area and change in concentration triggers the diffusion of gas from kerogen. The process continues until all the gas present internally diffuses out of the kerogen, gets adsorbs onto available surface area and then desorbs into the nanopores and micro-fractures in the cube. Each SiC idealizes a gas pathway and is characterized by sphere diameter and length of the cube. The diameter allows to model gas storage, diffusion and desorption; the cube length takes into account the pathway for flow in nanopores and micro-fractures. Many of these representative but general cells of the reservoir are put together and linked to a well or hydraulic fracture. The paper quantitatively describes these processes as well as clarifies the geological conditions under which a successful shale gas production could be expected. A numerical model has been derived which is then compiled on FORTRAN to develop a simulator for the production of shale gas by considering the spheres as a source term in each of the grid blocks. By applying SiC to field data, we demonstrate that the model provides an effective way to quickly access gas production rates from shale formations. We also examine the effect of model input properties on gas production.Keywords: adsorption, diffusion, non-linear flow, shale gas production
Procedia PDF Downloads 1654205 Non-Linear Assessment of Chromatographic Lipophilicity of Selected Steroid Derivatives
Authors: Milica Karadžić, Lidija Jevrić, Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Anamarija Mandić, Aleksandar Oklješa, Andrea Nikolić, Marija Sakač, Katarina Penov Gaši
Abstract:
Using chemometric approach, the relationships between the chromatographic lipophilicity and in silico molecular descriptors for twenty-nine selected steroid derivatives were studied. The chromatographic lipophilicity was predicted using artificial neural networks (ANNs) method. The most important in silico molecular descriptors were selected applying stepwise selection (SS) paired with partial least squares (PLS) method. Molecular descriptors with satisfactory variable importance in projection (VIP) values were selected for ANN modeling. The usefulness of generated models was confirmed by detailed statistical validation. High agreement between experimental and predicted values indicated that obtained models have good quality and high predictive ability. Global sensitivity analysis (GSA) confirmed the importance of each molecular descriptor used as an input variable. High-quality networks indicate a strong non-linear relationship between chromatographic lipophilicity and used in silico molecular descriptors. Applying selected molecular descriptors and generated ANNs the good prediction of chromatographic lipophilicity of the studied steroid derivatives can be obtained. This article is based upon work from COST Actions (CM1306 and CA15222), supported by COST (European Cooperation and Science and Technology).Keywords: artificial neural networks, chemometrics, global sensitivity analysis, liquid chromatography, steroids
Procedia PDF Downloads 3454204 Society and Cinema in Iran
Authors: Seyedeh Rozhano Azimi Hashemi
Abstract:
There is no doubt that ‘Art’ is a social phenomena and cinema is the most social kind of art. Hence, it’s clear that we can analyze the relation’s of cinema and art from different aspects. In this paper sociological cinema will be investigated which, is a subdivision of sociological art. This term will be discussed by two main approaches. One of these approaches is focused on the effects of cinema on the society, which is known as “Effects Theory” and the second one, which is dealing with the reflection of social issues in cinema is called ” Reflection Theory”. "Reflect theory" approach, unlike "Effects theory" is considering movies as documents, in which social life is reflected, and by analyzing them, the changes and tendencies of a society are understood. Criticizing these approaches to cinema and society doesn’t mean that they are not real. Conversely, it proves the fact that for better understanding of cinema and society’s relation, more complicated models are required, which should consider two aspects. First, they should be bilinear and they should provide a dynamic and active relation between cinema and society, as for the current concept social life and cinema have bi-linear effects on each other, and that’s how they fit in a dialectic and dynamic process. Second, it should pay attention to the role of inductor elements such as small social institutions, marketing, advertisements, cultural pattern, art’s genres and popular cinema in society. In the current study, image of middle class in cinema of Iran and changing the role of women in cinema and society which were two bold issue that cinema and society faced since 1979 revolution till 80s are analyzed. Films as an artwork on one hand, are reflections of social changes and with their effects on the society on the other hand, are trying to speed up the trends of these changes. Cinema by the illustration of changes in ideologies and approaches in exaggerated ways and through it’s normalizing functions, is preparing the audiences and public opinions for the acceptance of these changes. Consequently, audience takes effect from this process, which is a bi-linear and interactive process.Keywords: Iranian Cinema, Cinema and Society, Middle Class, Woman’s Role
Procedia PDF Downloads 3404203 Joint Replenishment and Heterogeneous Vehicle Routing Problem with Cyclical Schedule
Authors: Ming-Jong Yao, Chin-Sum Shui, Chih-Han Wang
Abstract:
This paper is developed based on a real-world decision scenario that an industrial gas company that applies the Vendor Managed Inventory model and supplies liquid oxygen with a self-operated heterogeneous vehicle fleet to hospitals in nearby cities. We name it as a Joint Replenishment and Heterogeneous Vehicle Routing Problem with Cyclical Schedule and formulate it as a non-linear mixed-integer linear programming problem which simultaneously determines the length of the planning cycle (PC), the length of the replenishment cycle and the dates of replenishment for each customer and the vehicle routes of each day within PC, such that the average daily operation cost within PC, including inventory holding cost, setup cost, transportation cost, and overtime labor cost, is minimized. A solution method based on genetic algorithm, embedded with an encoding and decoding mechanism and local search operators, is then proposed, and the hash function is adopted to avoid repetitive fitness evaluation for identical solutions. Numerical experiments demonstrate that the proposed solution method can effectively solve the problem under different lengths of PC and number of customers. The method is also shown to be effective in determining whether the company should expand the storage capacity of a customer whose demand increases. Sensitivity analysis of the vehicle fleet composition shows that deploying a mixed fleet can reduce the daily operating cost.Keywords: cyclic inventory routing problem, joint replenishment, heterogeneous vehicle, genetic algorithm
Procedia PDF Downloads 874202 Asset Pricing Puzzle and GDP-Growth: Pre and Post Covid-19 Pandemic Effect on Pakistan Stock Exchange
Authors: Mohammad Azam
Abstract:
This work is an endeavor to empirically investigate the Gross Domestic Product-Growth as mediating variable between various factors and portfolio returns using a broad sample of 522 financial and non-financial firms enlisted on Pakistan Stock Exchange between January-1993 and June-2022. The study employs the Structural Equation modeling and Ordinary Least Square regression to determine the findings before and during the Covid-19 epidemiological situation, which has not received due attention by researchers. The analysis reveals that market and investment factors are redundant, whereas size and value show significant results, whereas Gross Domestic Product-Growth performs significant mediating impact for the whole time frame. Using before Covid-19 period, the results reveal that market, value, and investment are redundant, but size, profitability, and Gross Domestic Product-Growth are significant. During the Covid-19, the statistics indicate that market and investment are redundant, though size and Gross Domestic Product-Growth are highly significant, but value and profitability are moderately significant. The Ordinary Least Square regression shows that market and investment are statistically insignificant, whereas size is highly significant but value and profitability are marginally significant. Using the Gross Domestic Product-Growth augmented model, a slight growth in R-square is observed. The size, value and profitability factors are recommended to the investors for Pakistan Stock Exchange. Conclusively, in the Pakistani market, the Gross Domestic Product-Growth indicates a feeble moderating effect between risk-premia and portfolio returns.Keywords: asset pricing puzzle, mediating role of GDP-growth, structural equation modeling, COVID-19 pandemic, Pakistan stock exchange
Procedia PDF Downloads 734201 Investigation of Shear Thickening Fluid Isolator with Vibration Isolation Performance
Authors: M. C. Yu, Z. L. Niu, L. G. Zhang, W. W. Cui, Y. L. Zhang
Abstract:
According to the theory of the vibration isolation for linear systems, linear damping can reduce the transmissibility at the resonant frequency, but inescapably increase the transmissibility of the isolation frequency region. To resolve this problem, nonlinear vibration isolation technology has recently received increasing attentions. Shear thickening fluid (STF) is a special colloidal material. When STF is subject to high shear rate, it rheological property changes from a flowable behavior into a rigid behavior, i.e., it presents shear thickening effect. STF isolator is a vibration isolator using STF as working material. Because of shear thickening effect, STF isolator is a variable-damped isolator. It exhibits small damping under high vibration frequency and strong damping at resonance frequency due to shearing rate increasing. So its special inherent character is very favorable for vibration isolation, especially for restraining resonance. In this paper, firstly, STF was prepared by dispersing nano-particles of silica into polyethylene glycol 200 fluid, followed by rheological properties test. After that, an STF isolator was designed. The vibration isolation system supported by STF isolator was modeled, and the numerical simulation was conducted to study the vibration isolation properties of STF. And finally, the effect factors on vibrations isolation performance was also researched quantitatively. The research suggests that owing to its variable damping, STF vibration isolator can effetely restrain resonance without bringing unfavorable effect at high frequency, which meets the need of ideal damping properties and resolves the problem of traditional isolators.Keywords: shear thickening fluid, variable-damped isolator, vibration isolation, restrain resonance
Procedia PDF Downloads 1794200 Segmented Pupil Phasing with Deep Learning
Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan
Abstract:
Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.Keywords: wavefront sensing, deep learning, deployable telescope, space telescope
Procedia PDF Downloads 1044199 Prevalence and Risk Factors of Diabetes and Its Association with Com-Morbidities among South Indian Women
Authors: Balasaheb Bansode
Abstract:
Diabetes is a very important component in non-communicable diseases. Diabetes ailment is a route of the multi-morbidities ailments. The South Indian states are almost completing the demographic transition in India. The study objectives present the prevalence of diabetes and its association with co-morbidities among the south Indian women. The study based on National Family Health Survey fourth round (NFHS) 4 conducted in 2015-16. The univariate, bivariate and multivariate analyses techniques have been used to find the association of risk factors and comorbidities with diabetics. The result reveals that the prevalence of diabetes is high among South Indian women. The study shows the women with diabetics have more chances to diagnose with hypertension and anemia comorbidities. The factors responsible for co-morbidities are changing the demographic situation, socioeconomic status, overweight and addict with substance use in South India. The awareness about diabetes prevention and management should be increased through health education, disease management programmes, trained peers and community health workers and community-based programmes.Keywords: diabetes, risk factors, comorbidities, women
Procedia PDF Downloads 185