Search results for: micro polypropylene fibers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2658

Search results for: micro polypropylene fibers

588 Studies of Heavy Metal Ions Removal Efficiency in the Presence of Anionic Surfactant Using Ion Exchangers

Authors: Anna Wolowicz, Katarzyna Staszak, Zbigniew Hubicki

Abstract:

Nowadays heavy metal ions as well as surfactants are widely used throughout the world due to their useful properties. The consequence of such widespread use is their significant production. On the other hand, the increasing demand for surfactants and heavy metal ions results in production of large amounts of wastewaters which are discharged to the environment from mining, metal plating, pharmaceutical, cosmetic, fertilizer, paper, pesticide and electronic industries, pigments producing, petroleum refining and from autocatalyst, fibers, food, polymer industries etc. Heavy metal ions are non-biodegradable in the environment, cable of accumulation in living organisms and organs, toxic and carcinogenic. On the other hand, not only heavy metal ions but also surfactants affect the purity of water and soils. Some of surfactants are also toxic, harmful and dangerous because they are able to penetrate into surface waters causing foaming, blocked diffusion of oxygen from the atmosphere and act as emulsifiers of hydrophobic substances and increase solubility of many the dangerous pollutants. Among surfactants the anionic ones dominate and their share in the global production of surfactants is around 50 ÷ 60%. Due to the negative impact of heavy metals and surfactants on aquatic ecosystems and living organisms, removal and monitoring of their concentration in the environment is extremely important. Surfactants and heavy metal ions removal can be achieved by different biological and physicochemical methods. The adsorption as well as the ion-exchange methods play here a significant role. The aim of this study was heavy metal ions removal from aqueous solutions using different types of ion exchangers in the presence of anionic surfactants. Preliminary studies of copper(II), nickel(II), zinc(II) and cobalt(II) removal from acidic solutions using ion exchangers (Lewatit MonoPlus TP 220, Lewatit MonoPlus SR 7, Purolite A 400 TL, Purolite A 830, Purolite S 984, Dowex PSR 2, Dowex PSR3, Lewatit AF-5) allowed to select the most effective ones for the above mentioned sorbates and then to checking their removal efficiency in the presence of anionic surfactants. As it was found out Lewatit MonoPlus TP 220 of the chelating type, show the highest sorption capacities for copper(II) ions in comparison with the other ion exchangers under discussion, e.g. 9.98 mg/g (0.1 M HCl); 9.12 mg/g (6 M HCl). Moreover, cobalt(II) removal efficiency was the highest in 0.1 M HCl using also Lewatit MonoPlus TP 220 (6.9 mg/g) similar to zinc(II) (9.1 mg/g) and nickiel(II) (6.2 mg/g). As the anionic surfactant sodium dodecyl sulphate (SDS) was used and surfactant parameters such as viscosity (η), density (ρ) and critical micelle concentration (CMC) were obtained: η = 1.13 ± 0,01 mPa·s; ρ = 999.76 mg/cm3; CMC = 2.26 g/cm3. The studies of copper(II) removal from acidic solutions in the presence of SDS of different concentration show negligible effects on copper(II) removal efficiency. The sorption capacity of Cu(II) from 0.1 M acidic solution of 500 mg/L initial concentration was equal to 46.8 mg/g whereas in the presence of SDS 45.3 mg/g (0.1 mg SDS/L), 47.1 mg/g (0.5 mg SDS/L), 46.6 mg/g (1 mg SDS/L).

Keywords: anionic surfactant, heavy metal ions, ion exchanger, removal

Procedia PDF Downloads 132
587 The Ideology of the Jordanian Media Women’s Discourse: Lana Mamkgh as an Example

Authors: Amani Hassan Abu Atieh

Abstract:

This study aims at examining the patterns of ideology reflected in the written discourse of women writers in the media of Jordan; Lana Mamkgh is taken as an example. This study critically analyzes the discursive, linguistic, and cognitive representations that she employs as an agent in the institutionalized discourse of the media. Grounded in van Dijk’s critical discourse analysis approach to Sociocognitive Discourse Studies, the present study builds a multilayer framework that encompasses van Dijk’s triangle: discourse, society, and cognition. Specifically, the study attempts to analyze, at both micro and macro levels, the underlying cognitive processes and structures, mainly ideology and discursive strategies, which are functional in the production of women’s discourse in terms of meaning, forms, and functions. Cognitive processes that social actors adopt are underlined by experience/context and semantic mental models on the one hand and social cognition on the other. This study is based on qualitative research and adopts purposive sampling, taking as an example a sample of an opinion article written by Lana Mamkgh in the Arabic Jordanian Daily, Al Rai. Taking her role as an agent in the public sphere, she stresses the National and feminist ideologies, demonstrating the use of assertive, evaluative, and expressive linguistic and rhetorical devices that appeal to the logic, ethics, and emotions of the addressee. Highlighting the agency of Jordanian writers in the media, the study sought to achieve the macro goal of dispensing political and social justice to the underprivileged. Further, the study seeks to prove that the voice of Jordanian women, viewed as underrepresented and invisible in the public arena, has come through clearly.

Keywords: critical discourse analysis, sociocognitive theory, ideology, women discourse, media

Procedia PDF Downloads 97
586 Approach to Honey Volatiles' Profiling by Gas Chromatography and Mass Spectrometry

Authors: Igor Jerkovic

Abstract:

Biodiversity of flora provides many different nectar sources for the bees. Unifloral honeys possess distinctive flavours, mainly derived from their nectar sources (characteristic volatile organic components (VOCs)). Specific or nonspecific VOCs (chemical markers) could be used for unifloral honey characterisation as addition to the melissopalynologycal analysis. The main honey volatiles belong, in general, to three principal categories: terpenes, norisoprenoids, and benzene derivatives. Some of these substances have been described as characteristics of the floral source, and other compounds, like several alcohols, branched aldehydes, and furan derivatives, may be related to the microbial purity of honey processing and storage conditions. Selection of the extraction method for the honey volatiles profiling should consider that heating of the honey produce different artefacts and therefore conventional methods of VOCs isolation (such as hydrodistillation) cannot be applied for the honey. Two-way approach for the isolation of the honey VOCs was applied using headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE). The extracts were analysed by gas chromatography and mass spectrometry (GC-MS). HS-SPME (with the fibers of different polarity such as polydimethylsiloxane/ divinylbenzene (PDMS/DVB) or divinylbenzene/carboxene/ polydimethylsiloxane (DVB/CAR/PDMS)) enabled isolation of high volatile headspace VOCs of the honey samples. Among them, some characteristic or specific compounds can be found such as 3,4-dihydro-3-oxoedulan (in Centaurea cyanus L. honey) or 1H-indole, methyl anthranilate, and cis-jasmone (in Citrus unshiu Marc. honey). USE with different solvents (mainly dichloromethane or the mixture pentane : diethyl ether 1 : 2 v/v) enabled isolation of less volatile and semi-volatile VOCs of the honey samples. Characteristic compounds from C. unshiu honey extracts were caffeine, 1H-indole, 1,3-dihydro-2H-indol-2-one, methyl anthranilate, and phenylacetonitrile. Sometimes, the selection of solvent sequence was useful for more complete profiling such as sequence I: pentane → diethyl ether or sequence II: pentane → pentane/diethyl ether (1:2, v/v) → dichloromethane). The extracts with diethyl ether contained hydroquinone and 4-hydroxybenzoic acid as the major compounds, while (E)-4-(r-1’,t-2’,c-4’-trihydroxy-2’,6’,6’-trimethylcyclo-hexyl)but-3-en-2-one predominated in dichloromethane extracts of Allium ursinum L. honey. With this two-way approach, it was possible to obtain a more detailed insight into the honey volatile and semi-volatile compounds and to minimize the risks of compound discrimination due to their partial extraction that is of significant importance for the complete honey profiling and identification of the chemical biomarkers that can complement the pollen analysis.

Keywords: honey chemical biomarkers, honey volatile compounds profiling, headspace solid-phase microextraction (HS-SPME), ultrasonic solvent extraction (USE)

Procedia PDF Downloads 189
585 Optimal Power Distribution and Power Trading Control among Loads in a Smart Grid Operated Industry

Authors: Vivek Upadhayay, Siddharth Deshmukh

Abstract:

In recent years utilization of renewable energy sources has increased majorly because of the increase in global warming concerns. Organization these days are generally operated by Micro grid or smart grid on a small level. Power optimization and optimal load tripping is possible in a smart grid based industry. In any plant or industry loads can be divided into different categories based on their importance to the plant and power requirement pattern in the working days. Coming up with an idea to divide loads in different such categories and providing different power management algorithm to each category of load can reduce the power cost and can come handy in balancing stability and reliability of power. An objective function is defined which is subjected to a variable that we are supposed to minimize. Constraint equations are formed taking difference between the power usages pattern of present day and same day of previous week. By considering the objectives of minimal load tripping and optimal power distribution the proposed problem formulation is a multi-object optimization problem. Through normalization of each objective function, the multi-objective optimization is transformed to single-objective optimization. As a result we are getting the optimized values of power required to each load for present day by use of the past values of the required power for the same day of last week. It is quite a demand response scheduling of power. These minimized values then will be distributed to each load through an algorithm used to optimize the power distribution at a greater depth. In case of power storage exceeding the power requirement, profit can be made by selling exceeding power to the main grid.

Keywords: power flow optimization, power trading enhancement, smart grid, multi-object optimization

Procedia PDF Downloads 515
584 Flexible and Color Tunable Inorganic Light Emitting Diode Array for High Resolution Optogenetic Devices

Authors: Keundong Lee, Dongha Yoo, Youngbin Tchoe, Gyu-Chul Yi

Abstract:

Light emitting diode (LED) array is an ideal optical stimulation tool for optogenetics, which controls inhibition and excitation of specific neurons with light-sensitive ion channels or pumps. Although a fiber-optic cable with an external light source, either a laser or LED mechanically connected to the end of the fiber-optic cable has widely been used for illumination on neural tissue, a new approach to use micro LEDs (µLEDs) has recently been demonstrated. The LEDs can be placed directly either on the cortical surface or within the deep brain using a penetrating depth probe. Accordingly, this method would not need a permanent opening in the skull if the LEDs are integrated with miniature electrical power source and wireless communication. In addition, multiple color generation from single µLED cell would enable to excite and/or inhibit neurons in localized regions. Here, we demonstrate flexible and color tunable µLEDs for the optogenetic device applications. The flexible and color tunable LEDs was fabricated using multifaceted gallium nitride (GaN) nanorod arrays with GaN nanorods grown on InxGa1−xN/GaN single quantum well structures (SQW) anisotropically formed on the nanorod tips and sidewalls. For various electroluminescence (EL) colors, current injection paths were controlled through a continuous p-GaN layer depending on the applied bias voltage. The electric current was injected through different thickness and composition, thus changing the color of light from red to blue that the LED emits. We believe that the flexible and color tunable µLEDs enable us to control activities of the neuron by emitting various colors from the single µLED cell.

Keywords: light emitting diode, optogenetics, graphene, flexible optoelectronics

Procedia PDF Downloads 205
583 Evaluation of Mechanical Properties and Analysis of Rapidly Heat Treated M-42 High Speed Steel

Authors: R. N. Karthik Babu, R. Sarvesh, A. Rajendra Prasad, G. Swaminathan

Abstract:

M42 is a molybdenum-series high-speed alloy steel widely used because of its better hot-hardness and wear resistance. These steels are conventionally heat treated in a salt bath furnace with up to three stages of preheating with predetermined soaking and holding periods. Such methods often involve long periods of processing with a large amount of energy consumed. In this study, the M42 steel samples were heat-treated by rapidly heating the specimens to the austenising temperature of 1260 °C and cooled conventionally by quenching in a neutral salt bath at a temperature of 550 °C with the aid of a hybrid microwave furnace. As metals reflect microwaves, they cannot directly be heated up when placed in a microwave furnace. The technology used herein requires the specimens to be placed in a crucible lined with SiC which is a good absorber of microwaves and the SiC lining heats the metal through radiation which facilitates the volumetric heating of the metal. A sample of similar dimensions was heat treated conventionally and cooled in the same manner. Conventional tempering process was then carried out on both these samples and analysed for various parameters such as micro-hardness, processing time, etc. Microstructure analysis and scanning electron microscopy was also carried out. The objective of the study being that similar or better properties, with substantial time and energy saving and cost cutting are achievable by rapid heat treatment through hybrid microwave furnaces. It is observed that the heat treatment is done with substantial time and energy savings, and also with minute improvement in mechanical properties of the tool steel heat treated.

Keywords: rapid heating, heat treatment, metal processing, microwave heating

Procedia PDF Downloads 281
582 Experimental Evaluation of 10 Ecotypes of Toxic and Non-Toxic Jatropha curcas as Raw Material to Produce Biodiesel in Morelos State, Mexico

Authors: Guadalupe Pérez, Jorge Islas, Mirna Guevara, Raúl Suárez

Abstract:

Jatropha curcas is a perennial oleaginous plant that is currently considered an energy crop with high potential as an environmentally sustainable biofuel. During the last decades, research in biofuels has grown in tropical and subtropical regions in Latin America. However, as far we know, there are no reports on the growth and yield patterns of Jatropha curcas under the specific agro climatic scenarios of the State of Morelos, Mexico. This study presents the results of 52 months monitoring of 10 toxic and non-toxic ecotypes of Jatropha curcas (E1M, E2M, E3M, E4M, E5M, E6O, E7O, E8O, E9C, E10C) in an experimental plantation with minimum watering and fertilization resources. The main objective is to identify the ecotypes with the highest potential as biodiesel raw material in the select region, by developing experimental information. Specifically, we monitored biophysical and growth parameters, including plant survival and seed production (at the end of month 52), to study the performance of each ecotype and to establish differences among the variables of morphological growth, net seed oil content, and toxicity. To analyze the morphological growth, a statistical approach to the biophysical parameters was used; the net seed oil content -80 to 192 kg/ha- was estimated with the first harvest; and the toxicity was evaluated by examining the phorbol ester concentration (µg/L) in the oil extracted from the seeds. The comparison and selection of ecotypes was performed through a methodology developed based on the normalization of results. We identified four outstanding ecotypes (E1M, E2M, E3M, and E4M) that can be used to establish Jatropha curcas as energy crops in the state of Morelos for feasible agro-industrial production of biodiesel and other products related to the use of biomass.

Keywords: biodiesel production, Jatropha curcas, seed oil content, toxic and non-toxic ecotypes

Procedia PDF Downloads 120
581 Bionaut™: A Microrobotic Drug-Device Platform for the Local Treatment of Brainstem Gliomas

Authors: Alex Kiselyov, Suehyun Cho, Darrell Harrington; Florent Cros, Olin Palmer, John Caputo, Michael Kardosh, Eran Oren, William Loudon, Michael Shpigelmacher

Abstract:

Despite the most aggressive surgical and adjuvant therapeutic strategies, treatment of both pediatric and adult brainstem tumors remains problematic. Novel strategies, including targeted biologics, immunotherapy, and specialized delivery systems such as convection-enhanced delivery (CED), have been proposed. While some of these novel treatments are entering phase I trials, the field is still in need of treatment(s) that exhibits dramatically enhanced potency with optimal therapeutic ratio. Bionaut Labs has developed a modular microrobotic platform for performing localized delivery of diverse therapeutics in vivo. Our biocompatible particles (Bionauts™) are externally propelled and visualized in real-time. Bionauts™ are specifically designed to enhance the effect of radiation therapy via anatomically precise delivery of a radiosensitizing agent, as exemplified by temozolomide (TMZ) and Avastin™ to the brainstem gliomas of diverse origin. The treatment protocol is designed to furnish a better therapeutic outcome due to the localized (vs systemic) delivery of the drug to the neoplastic lesion(s) for use as a synergistic combination of radiation and radiosensitizing agent. In addition, the procedure is minimally invasive and is expected to be appropriate for both adult and pediatric patients. Current progress, including platform optimization, selection of the lead radiosensitizer as well as in vivo safety studies of the Bionauts™ in large animals, specifically the spine and the brain of porcine and ovine models, will be discussed.

Keywords: Bionaut, brainstem, glioma, local delivery, micro-robot, radiosensitizer

Procedia PDF Downloads 183
580 Bilingual Siblings and Dynamic Family Language Policies in Italian/English Families

Authors: Daniela Panico

Abstract:

Framed by language socialization and family language policy theories, the present study explores the ways the language choice patterns of bilingual siblings contribute to the shaping of the language environment and the language practices of Italian/English families residing in Sydney. The main source of data is video recordings of naturally occurring parent-children and child-to-child interactions during everyday routines (i.e., family mealtimes and siblings playtime) in the home environment. Recurrent interactional practices are analyzed in detail through a conversational analytical approach. This presentation focuses on the interactional trajectories developing during the negotiation of language choices between all family members and between siblings in face-to-face interactions. Fine-grained analysis is performed on language negotiation sequences of multiparty bilingual conversations in order to uncover the sequential patterns through which a) the children respond to the parental strategies aiming to minority language maintenance, and b) the siblings influence each other’s language use and choice (e.g., older siblings positioning themselves as language teachers and language brokers, younger siblings accepting the role of apprentices). The findings show that, along with the parents, children are active socializing agents in the family and, with their linguistic behavior, they contribute to the establishment of a bilingual or a monolingual context in the home. Moreover, by orienting themselves towards the use of one or the other language in family talk, bilingual siblings are a major internal micro force in the language ecology of a bilingual family and can strongly support language maintenance or language shift processes in such domain. Overall, the study provides insights into the dynamic ways in which family language policy is interactionally negotiated and instantiated in bilingual homes as well as the challenges of intergenerational language transmission.

Keywords: bilingual siblings, family interactions, family language policy, language maintenance

Procedia PDF Downloads 181
579 Study of Information Technology Support to Knowledge Sharing in Social Enterprises

Authors: Maria Granados

Abstract:

Information technology (IT) facilitates the management of knowledge in organisations through the effective leverage of collective experience and knowledge of employees. This supports information processing needs, as well as enables and facilitates sense-making activities of knowledge workers. The study of IT support for knowledge management (KM) has been carried out mainly in larger organisations where resources and competitive conditions can trigger the use of KM. However, there is still a lack of understanding on how IT can support the management of knowledge under different organisational settings influenced by: constant tensions between social and economic objectives, more focus on sustainability than competiveness, limited resources, and high levels of democratic participation and intrinsic motivations among employees. All these conditions are presented in Social Enterprises (SEs), which are normally micro and small businesses that trade to tackle social problems, improve communities, people’s life chances, and the environment. Thus, their importance to society and economies is increasing. However, there is still a need for more understanding of how these organisations operate, perform, innovate and scale-up. This knowledge is crucial to design and provide accurate strategies to enhance the sector and increase its impact and coverage. To obtain a conceptual and empirical understanding of how IT can facilitate KM in the particular organisational conditions of SEs, a quantitative study was conducted with 432 owners and senior members of SEs in UK, underpinned by 21 interviews. The findings demonstrated how IT was supporting more the recovery and storage of necessary information in SEs, and less the collaborative work and communication among enterprise members. However, it was established that SEs were using cloud solutions, web 2.0 tools, Skype and centralised shared servers to manage informally their knowledge. The possible impediments for SEs to support themselves more on IT solutions can be linked mainly to economic and human constraints. These findings elucidate new perspectives that can contribute not only to SEs and SE supporters, but also to other businesses.

Keywords: social enterprises, knowledge management, information technology, collaboration, small firms

Procedia PDF Downloads 256
578 Lightweight Sheet Molding Compound Composites by Coating Glass Fiber with Cellulose Nanocrystals

Authors: Amir Asadi, Karim Habib, Robert J. Moon, Kyriaki Kalaitzidou

Abstract:

There has been considerable interest in cellulose nanomaterials (CN) as polymer and polymer composites reinforcement due to their high specific modulus and strength, low density and toxicity, and accessible hydroxyl side groups that can be readily chemically modified. The focus of this study is making lightweight composites for better fuel efficiency and lower CO2 emission in auto industries with no compromise on mechanical performance using a scalable technique that can be easily integrated in sheet molding compound (SMC) manufacturing lines. Light weighting will be achieved by replacing part of the heavier components, i.e. glass fibers (GF), with a small amount of cellulose nanocrystals (CNC) in short GF/epoxy composites made using SMC. CNC will be introduced as coating of the GF rovings prior to their use in the SMC line. The employed coating method is similar to the fiber sizing technique commonly used and thus it can be easily scaled and integrated to industrial SMC lines. This will be an alternative route to the most techniques that involve dispersing CN in polymer matrix, in which the nanomaterials agglomeration limits the capability for scaling up in an industrial production. We have demonstrated that incorporating CNC as a coating on GF surface by immersing the GF in CNC aqueous suspensions, a simple and scalable technique, increases the interfacial shear strength (IFSS) by ~69% compared to the composites produced by uncoated GF, suggesting an enhancement of stress transfer across the GF/matrix interface. As a result of IFSS enhancement, incorporation of 0.17 wt% CNC in the composite results in increases of ~10% in both elastic modulus and tensile strength, and 40 % and 43 % in flexural modulus and strength respectively. We have also determined that dispersing 1.4 and 2 wt% CNC in the epoxy matrix of short GF/epoxy SMC composites by sonication allows removing 10 wt% GF with no penalty on tensile and flexural properties leading to 7.5% lighter composites. Although sonication is a scalable technique, it is not quite as simple and inexpensive as coating the GF by passing through an aqueous suspension of CNC. In this study, the above findings are integrated to 1) investigate the effect of CNC content on mechanical properties by passing the GF rovings through CNC aqueous suspension with various concentrations (0-5%) and 2) determine the optimum ratio of the added CNC to the removed GF to achieve the maximum possible weight reduction with no cost on mechanical performance of the SMC composites. The results of this study are of industrial relevance, providing a path toward producing high volume lightweight and mechanically enhanced SMC composites using cellulose nanomaterials.

Keywords: cellulose nanocrystals, light weight polymer-matrix composites, mechanical properties, sheet molding compound (SMC)

Procedia PDF Downloads 213
577 Microplastics Accumulation and Abundance Standardization for Fluvial Sediments: Case Study for the Tena River

Authors: Mishell E. Cabrera, Bryan G. Valencia, Anderson I. Guamán

Abstract:

Human dependence on plastic products has led to global pollution, with plastic particles ranging in size from 0.001 to 5 millimeters, which are called microplastics (hereafter, MPs). The abundance of microplastics is used as an indicator of pollution. However, reports of pollution (abundance of MPs) in river sediments do not consider that the accumulation of sediments and MPs depends on the energy of the river. That is, the abundance of microplastics will be underestimated if the sediments analyzed come from places where the river flows with a lot of energy, and the abundance will be overestimated if the sediment analyzed comes from places where the river flows with less energy. This bias can generate an error greater than 300% of the MPs value reported for the same river and should increase when comparisons are made between 2 rivers with different characteristics. Sections where the river flows with higher energy allow sands to be deposited and limit the accumulation of MPs, while sections, where the same river has lower energy, allow fine sediments such as clays and silts to be deposited and should facilitate the accumulation of MPs particles. That is, the abundance of MPs in the same river is underrepresented when the sediment analyzed is sand, and the abundance of MPs is overrepresented if the sediment analyzed is silt or clay. The present investigation establishes a protocol aimed at incorporating sample granulometry to calibrate MPs quantification and eliminate over- or under-representation bias (hereafter granulometric bias). A total of 30 samples were collected by taking five samples within six work zones. The slope of the sampling points was less than 8 degrees, referred to as low slope areas, according to the Van Zuidam slope classification. During sampling, blanks were used to estimate possible contamination by MPs during sampling. Samples were dried at 60 degrees Celsius for three days. A flotation technique was employed to isolate the MPs using sodium metatungstate with a density of 2 gm/l. For organic matter digestion, 30% hydrogen peroxide and Fenton were used at a ratio of 6:1 for 24 hours. The samples were stained with rose bengal at a concentration of 200 mg/L and were subsequently dried in an oven at 60 degrees Celsius for 1 hour to be identified and photographed in a stereomicroscope with the following conditions: Eyepiece magnification: 10x, Zoom magnification (zoom knob): 4x, Objective lens magnification: 0.35x for analysis in ImageJ. A total of 630 fibers of MPs were identified, mainly red, black, blue, and transparent colors, with an overall average length of 474,310 µm and an overall median length of 368,474 µm. The particle size of the 30 samples was calculated using 100 g per sample using sieves with the following apertures: 2 mm, 1 mm, 500 µm, 250 µm, 125 µm and 0.63 µm. This sieving allowed a visual evaluation and a more precise quantification of the microplastics present. At the same time, the weight of sediment in each fraction was calculated, revealing an evident magnitude: as the presence of sediment in the < 63 µm fraction increases, a significant increase in the number of MPs particles is observed.

Keywords: microplastics, pollution, sediments, Tena River

Procedia PDF Downloads 63
576 Numerical Study of Fluid Flow and Heat Transfer in Microchannel with Thin Obstacles

Authors: Malorzata Kmiotek, Anna Kucaba-Pietal, Robert Smusz

Abstract:

Due to the miniaturisation process, in many technical devices, microchannels are used in cooling systems. Because of the small size of microchannels, the flow inside is laminar, which caused a slow heat exchange. In order to intensify the heat exchange, the flow must be disturbed, for example, by introducing obstacles. We present results on the influence of a thin obstacle, placed on microchannel wall, on the fluid and heat flow in the aspect of their use by constructors of heat exchangers. The obstacle is called 'thin' when its geometrical parameter (o=w/h, w- width, h - height of the obstacle) satisfies inequality: o < 0.5. In this work, we report numerical results on heat and mass transfer in the microchannels of 400 micrometer height (H - height of the microchannel), where thin obstacles are immersed on the walls, to disturb the flow. The Reynolds number of the flow in microchannel varies between 20 and 200 and is typical for the flow in micro heat exchangers. The equations describing the fluid and heat flows in microchannels were solved numerically by using the finite element method with an application of CFD&FSI package of ADINA R&D, Inc. 9.4 solver. In the case of flows in the microchannels with sequences of thin rectangular obstacles placed on the bottom and the top wall of a microchannel, the influence of distances s (s is the distance between two thin obstacles) and heights of obstacles on the fluid and heat transfer was investigated. Thermal and flow conditions of the application area of microchannels in electronic cooling systems, i.e., wall temperature of 60 °C, the fluid temperature of 20°C were used to solve equations. Additionally, the distance s between the thin obstacles in microchannels as a multiple of the amount of the channel height was determined. Results show that placing thin obstacles on microchannel walls increase the length of recirculation zones of the flow and improves the heat transfer.

Keywords: Finite Element Method, heat transfer, mechanical engineering, microchannel

Procedia PDF Downloads 124
575 Rapid and Easy Fabrication of Collagen-Based Biocomposite Scaffolds for 3D Cell Culture

Authors: Esra Turker, Umit Hakan Yildiz, Ahu Arslan Yildiz

Abstract:

The key of regenerative medicine is mimicking natural three dimensional (3D) microenvironment of tissues by utilizing appropriate biomaterials. In this study, a synthetic biodegradable polymer; poly (L-lactide-co-ε-caprolactone) (PLLCL) and a natural polymer; collagen was used to mimic the biochemical structure of the natural extracellular matrix (ECM), and by means of electrospinning technique the real physical structure of ECM has mimicked. PLLCL/Collagen biocomposite scaffolds enables cell attachment, proliferation and nutrient transport through fabrication of micro to nanometer scale nanofibers. Biocomposite materials are commonly preferred due to limitations of physical and biocompatible properties of natural and synthetic materials. Combination of both materials improves the strength, degradation and biocompatibility of scaffold. Literature studies have shown that collagen is mostly solved with heavy chemicals, which is not suitable for cell culturing. To overcome this problem, a new approach has been developed in this study where polyvinylpyrrolidone (PVP) is used as co-electrospinning agent. PVP is preferred due to its water solubility, so PLLCL/collagen biocomposite scaffold can be easily and rapidly produced. Hydrolytic and enzymatic biodegradation as well as mechanical strength of scaffolds were examined in vitro. Cell adhesion, proliferation and cell morphology characterization studies have been performed as well. Further, on-chip drug screening analysis has been performed over 3D tumor models. Overall, the developed biocomposite scaffold was used for 3D tumor model formation and obtained results confirmed that developed model could be used for drug screening studies to predict clinical efficacy of a drug.

Keywords: biomaterials, 3D cell culture, drug screening, electrospinning, lab-on-a-chip, tissue engineering

Procedia PDF Downloads 300
574 Power Energy Management For A Grid-Connected PV System Using Rule-Base Fuzzy Logic

Authors: Nousheen Hashmi, Shoab Ahmad Khan

Abstract:

Active collaboration among the green energy sources and the load demand leads to serious issues related to power quality and stability. The growing number of green energy resources and Distributed-Generators need newer strategies to be incorporated for their operations to keep the power energy stability among green energy resources and micro-grid/Utility Grid. This paper presents a novel technique for energy power management in Grid-Connected Photovoltaic with energy storage system under set of constraints including weather conditions, Load Shedding Hours, Peak pricing Hours by using rule-based fuzzy smart grid controller to schedule power coming from multiple Power sources (photovoltaic, grid, battery) under the above set of constraints. The technique fuzzifies all the inputs and establishes fuzzify rule set from fuzzy outputs before defuzzification. Simulations are run for 24 hours period and rule base power scheduler is developed. The proposed fuzzy controller control strategy is able to sense the continuous fluctuations in Photovoltaic power generation, Load Demands, Grid (load Shedding patterns) and Battery State of Charge in order to make correct and quick decisions.The suggested Fuzzy Rule-based scheduler can operate well with vague inputs thus doesn’t not require any exact numerical model and can handle nonlinearity. This technique provides a framework for the extension to handle multiple special cases for optimized working of the system.

Keywords: photovoltaic, power, fuzzy logic, distributed generators, state of charge, load shedding, membership functions

Procedia PDF Downloads 471
573 A Prototype for Biological Breakdown of Plastic Bags in Desert Areas

Authors: Yassets Egaña, Patricio Núñez, Juan C. Rios, Ivan Balic, Alex Manquez, Yarela Flores, Maria C. Gatica, Sergio Diez De Medina, Rocio Tijaro-Rojas

Abstract:

Globally, humans produce millions of tons of waste per year. An important percentage of this waste is plastic, which frequently ends up in landfills and oceans. During the last decades, the greatest plastics production in history have been made, a few amount of this plastic is recycled, the rest ending up as plastic pollution in soils and seas. Plastic pollution is disastrous for the environment, affecting essential species, quality of consumption water, and some economic activities such as tourism, in different parts of the world. Due to its durability and decomposition on micro-plastics, animals and humans are accumulating a variety of plastic components without having clear their effects on human health, economy, and wildlife. In dry regions as the Atacama Desert, up to 95% of the water consumption comes from underground reservoirs, therefore preventing the soil pollution is an urgent need. This contribution focused on isolating, genotyping and optimizing microorganisms that use plastic waste as the only source of food to construct a batch-type bioreactor able to degrade in a faster way the plastic waste before it gets the desert soils and groundwater consumed by people living in this areas. Preliminary results, under laboratory conditions, has shown an improved degradation of polyethylene when three species of bacteria and three of fungi act on a selected plastic material. These microorganisms have been inoculated in dry soils, initially lacking organic matter, under environmental conditions in the laboratory. Our team designed and constructed a prototype using the natural conditions of the region and the best experimental results.

Keywords: biological breakdown, plastic bags, prototype, desert regions

Procedia PDF Downloads 277
572 Enhancing Wire Electric Discharge Machining Efficiency through ANOVA-Based Process Optimization

Authors: Rahul R. Gurpude, Pallvita Yadav, Amrut Mulay

Abstract:

In recent years, there has been a growing focus on advanced manufacturing processes, and one such emerging process is wire electric discharge machining (WEDM). WEDM is a precision machining process specifically designed for cutting electrically conductive materials with exceptional accuracy. It achieves material removal from the workpiece metal through spark erosion facilitated by electricity. Initially developed as a method for precision machining of hard materials, WEDM has witnessed significant advancements in recent times, with numerous studies and techniques based on electrical discharge phenomena being proposed. These research efforts and methods in the field of ED encompass a wide range of applications, including mirror-like finish machining, surface modification of mold dies, machining of insulating materials, and manufacturing of micro products. WEDM has particularly found extensive usage in the high-precision machining of complex workpieces that possess varying hardness and intricate shapes. During the cutting process, a wire with a diameter ranging from 0.18mm is employed. The evaluation of EDM performance typically revolves around two critical factors: material removal rate (MRR) and surface roughness (SR). To comprehensively assess the impact of machining parameters on the quality characteristics of EDM, an Analysis of Variance (ANOVA) was conducted. This statistical analysis aimed to determine the significance of various machining parameters and their relative contributions in controlling the response of the EDM process. By undertaking this analysis, optimal levels of machining parameters were identified to achieve desirable material removal rates and surface roughness.

Keywords: WEDM, MRR, optimization, surface roughness

Procedia PDF Downloads 66
571 An Exploratory Study on 'Sub-Region Life Circle' in Chinese Big Cities Based on Human High-Probability Daily Activity: Characteristic and Formation Mechanism as a Case of Wuhan

Authors: Zhuoran Shan, Li Wan, Xianchun Zhang

Abstract:

With an increasing trend of regionalization and polycentricity in Chinese contemporary big cities, “sub-region life circle” turns to be an effective method on rational organization of urban function and spatial structure. By the method of questionnaire, network big data, route inversion on internet map, GIS spatial analysis and logistic regression, this article makes research on characteristic and formation mechanism of “sub-region life circle” based on human high-probability daily activity in Chinese big cities. Firstly, it shows that “sub-region life circle” has been a new general spatial sphere of residents' high-probability daily activity and mobility in China. Unlike the former analysis of the whole metropolitan or the micro community, “sub-region life circle” has its own characteristic on geographical sphere, functional element, spatial morphology and land distribution. Secondly, according to the analysis result with Binary Logistic Regression Model, the research also shows that seven factors including land-use mixed degree and bus station density impact the formation of “sub-region life circle” most, and then analyzes the index critical value of each factor. Finally, to establish a smarter “sub-region life circle”, this paper indicates that several strategies including jobs-housing fit, service cohesion and space reconstruction are the keys for its spatial organization optimization. This study expands the further understanding of cities' inner sub-region spatial structure based on human daily activity, and contributes to the theory of “life circle” in urban's meso-scale.

Keywords: sub-region life circle, characteristic, formation mechanism, human activity, spatial structure

Procedia PDF Downloads 287
570 Use of Smartwatches for the Emotional Self-Regulation of Individuals with Autism Spectrum Disorder (ASD)

Authors: Juan C. Torrado, Javier Gomez, Guadalupe Montero, German Montoro, M. Dolores Villalba

Abstract:

One of the most challenging aspects of the executive dysfunction of people with Autism Spectrum Disorders is the behavior control. This is related to a deficit in their ability to regulate, recognize and manage their own emotions. Some researchers have developed applications for tablets and smartphones to practice strategies of relaxation and emotion recognition. However, they cannot be applied to the very moment of temper outbursts, anger episodes or anxiety, since they require to carry the device, start the application and be helped by caretakers. Also, some of these systems are developed for either obsolete technologies (old versions of tablet devices, PDAs, outdated operative systems of smartphones) or specific devices (self-developed or proprietary ones) that create differentiation between the users and the rest of the individuals in their context. For this project we selected smartwatches. Focusing on emergent technologies ensures a wide lifespan of the developed products, because the derived products are intended to be available in the same moment the very technology gets popularized, not later. We also focused our research in commercial versions of smartwatches, since this way differentiation is easily avoided, so the users’ abandonment rate lowers. We have developed a smartwatch system along with a smartphone authoring tool to display self-regulation strategies. These micro-prompting strategies are conformed of pictograms, animations and temporizers, and they are designed by means of the authoring tool: When both devices synchronize their data, the smartwatch holds the self-regulation strategies, which are triggered when the smartwatch sensors detect a remarkable rise of heart rate and movement. The system is being currently tested in an educational center of people with ASD of Madrid, Spain.

Keywords: assistive technologies, emotion regulation, human-computer interaction, smartwatches

Procedia PDF Downloads 285
569 Analysis of Surface Hardness, Surface Roughness and near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process

Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.

Abstract:

In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor Hobson Talysurf tester, micro Vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer.

Keywords: hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness

Procedia PDF Downloads 410
568 Dynamic Analysis of Functionally Graded Nano Composite Pipe with PZT Layers Subjected to Moving Load

Authors: Morteza Raminnia

Abstract:

In this study, dynamic analysis of functionally graded nano-composite pipe reinforced by single-walled carbon nano-tubes (SWCNTs) with simply supported boundary condition subjected to moving mechanical loads is investigated. The material properties of functionally graded carbon nano tube-reinforced composites (FG-CNTRCs) are assumed to be graded in the thickness direction and are estimated through a micro-mechanical model. In this paper polymeric matrix considered as isotropic material and for the CNTRC, uniform distribution (UD) and three types of FG distribution patterns of SWCNT reinforcements are considered. The system equation of motion is derived by using Hamilton's principle under the assumptions of first order shear deformation theory (FSDT).The thin piezoelectric layers embedded on inner and outer surfaces of FG-CNTRC layer are acted as distributed sensor and actuator to control dynamic characteristics of the FG-CNTRC laminated pipe. The modal analysis technique and Newmark's integration method are used to calculate the displacement and dynamic stress of the pipe subjected to moving loads. The effects of various material distribution and velocity of moving loads on dynamic behavior of the pipe is presented. This present approach is validated by comparing the numerical results with the published numerical results in literature. The results show that the above-mentioned effects play very important role on dynamic behavior of the pipe .This present work shows that some meaningful results that which are interest to scientific and engineering community in the field of FGM nano-structures.

Keywords: nano-composite, functionally garded material, moving load, active control, PZT layers

Procedia PDF Downloads 406
567 Effect of Short-Term Enriching of Algae with Selenium and Zinc on Growth and Mineral Composition of Marine Rotifer

Authors: Sirwe Ghaderpour, Nasrollah Ahmadifard, Naser Agh, Zakaria Vahabzadeh

Abstract:

Rotifers are used in many hatcheries for feeding the earliest stages of fish larvae and crustaceans due to their small size, slow movements, fast reproduction, and easy cultivation. One of the disadvantages of using rotifers as live prey is their lower content of some nutrients compared to copepods, so it is necessary to increase the amounts of these nutrients by means of enrichment. Minerals are a group of micro-elements, essential to fish, that is lacking in the rotifers, for example, selenium (30 fold) and zinc (5 fold) are present in lower quantities than the minimum amounts found in copepods. In this study, the condensed Isochrysis aff. galbana (T-ISO) and Nannochloropsis oculata were suspended at concentration of 18 × 109 cell mL⁻¹ of water with 20 ppt of salinity. Four different levels (0, 1000, 2000, and 4000 mg L⁻¹) of each Na₂SeO₃ and ZnSO₄.7H₂O separately were prepared, and 1 mL of each stock was poured to the algae enrichment vessels for 1 h simultaneously. After that, the material was centrifuged (at 4000 rpm for 5 min), and the precipitated enriched algae was used for rotifer feeding. The contents of Se, Zn, Cu, and Mn were determined in enriched microalgae and rotifer by Atomic absorption. The highest content of both minerals was observed in 0.4 Zn + 0.4 Se treatment and also rotifer enriched with these enriched microalgae. The enrichment of microalgae with Zn and Se does not affect the content of Cu in the microalgae. Also, the content of Cu in rotifer fed with the enriched microalgae showed the highest Cu content in the treatments than the control. But, the enrichment with both minerals had a negative effect on the content Mn in enriched mixed microalgae except 0.4 Zn + 0.4 Se. The Mn content in enriched rotifer decreased in the treatments than the control except for 0.1 Zn + 0.1 Se. There was no significant effect on rotifer growth in combined enrichment with both minerals (p < 0.05). Overall, rotifers enrichment with Se and Zn mixed microalgae resulted in increasing Se, Zn, and Cu. This will allow Se and Zn microalgae enriched rotifers to be used as the minerals delivery method for fish larvae nutritional requirements.

Keywords: enrichment, larvae, microalgae, mineral, rotifer

Procedia PDF Downloads 121
566 Adaptive Design of Large Prefabricated Concrete Panels Collective Housing

Authors: Daniel M. Muntean, Viorel Ungureanu

Abstract:

More than half of the urban population in Romania lives today in residential buildings made out of large prefabricated reinforced concrete panels. Since their initial design was made in the 1960’s, these housing units are now being technically and morally outdated, consuming large amounts of energy for heating, cooling, ventilation and lighting, while failing to meet the needs of the contemporary life-style. Due to their widespread use, the design of a system that improves their energy efficiency would have a real impact, not only on the energy consumption of the residential sector, but also on the quality of life that it offers. Furthermore, with the transition of today’s existing power grid to a “smart grid”, buildings could become an active element for future electricity networks by contributing in micro-generation and energy storage. One of the most addressed issues today is to find locally adapted strategies that can be applied considering the 20-20-20 EU policy criteria and to offer sustainable and innovative solutions for the cost-optimal energy performance of buildings adapted on the existing local market. This paper presents a possible adaptive design scenario towards sustainable retrofitting of these housing units. The apartments are transformed in order to meet the current living requirements and additional extensions are placed on top of the building, replacing the unused roof space, acting not only as housing units, but as active solar energy collection systems. An adaptive building envelope is ensured in order to achieve overall air-tightness and an elevator system is introduced to facilitate access to the upper levels.

Keywords: adaptive building, energy efficiency, retrofitting, residential buildings, smart grid

Procedia PDF Downloads 287
565 Catalytic Soot Gasification in Single and Mixed Atmospheres of CO2 and H2O in the Presence of CO and H2

Authors: Yeidy Sorani Montenegro Camacho, Samir Bensaid, Nunzio Russo, Debora Fino

Abstract:

LiFeO2 nano-powders were prepared via solution combustion synthesis (SCS) method and were used as carbon gasification catalyst in a reduced atmosphere. The gasification of soot with CO2 and H2O in the presence of CO and H2 (syngas atmosphere) were also investigated under atmospheric conditions using a fixed-bed micro-reactor placed in an electric, PID-regulated oven. The catalytic bed was composed of 150 mg of inert silica, 45 mg of carbon (Printex-U) and 5 mg of catalyst. The bed was prepared by ball milling the mixture at 240 rpm for 15 min to get an intimate contact between the catalyst and soot. A Gas Hourly Space Velocity (GHSV) of 38.000 h-1 was used for the tests campaign. The furnace was heated up to the desired temperature, a flow of 120 mL/min was sent into the system and at the same time the concentrations of CO, CO2 and H2 were recorded at the reactor outlet using an EMERSON X-STREAM XEGP analyzer. Catalytic and non-catalytic soot gasification reactions were studied in a temperature range of 120°C – 850°C with a heating rate of 5 °C/min (non-isothermal case) and at 650°C for 40 minutes (isothermal case). Experimental results show that the gasification of soot with H2O and CO2 are inhibited by the H2 and CO, respectively. The soot conversion at 650°C decreases from 70.2% to 31.6% when the CO is present in the feed. Besides, the soot conversion was 73.1% and 48.6% for H2O-soot and H2O-H2-soot gasification reactions, respectively. Also, it was observed that the carbon gasification in mixed atmosphere, i.e., when simultaneous carbon gasification with CO2 and steam take place, with H2 and CO as co-reagents; the gasification reaction is strongly inhibited by CO and H2, as well has been observed in single atmospheres for the isothermal and non-isothermal reactions. Further, it has been observed that when CO2 and H2O react with carbon at the same time, there is a passive cooperation of steam and carbon dioxide in the gasification reaction, this means that the two gases operate on separate active sites without influencing each other. Finally, despite the extreme reduced operating conditions, it has been demonstrated that the 32.9% of the initial carbon was gasified using LiFeO2-catalyst, while in the non-catalytic case only 8% of the soot was gasified at 650°C.

Keywords: soot gasification, nanostructured catalyst, reducing environment, syngas

Procedia PDF Downloads 247
564 Interrogating Western Political Perspectives of Social Justice in Canadian Social Work

Authors: Samantha Clarke

Abstract:

The term social justice is central to social work; however, the meaning behind this term is not as simple as defining the term itself. This is because the meaning of social justice is relative since its origin and development is based on evolving political perspectives. Political perspectives provide numerous lenses to view social justice in social work; however, the realities of changing society have meant that social justice has assumed different values, definitions, and understandings over time and in different geopolitical and cultural contexts. There are many competing and convincing theories of social justice that are relevant to social work practice. Exploring the term is not an idle preoccupation because the meaning of the term is not as crucial as the meaning of the worldview, as it is the worldview that positions social justice as crucial in the emancipation of people marginalized from oppression. The many political assumptions that underlie the term social justice are explored and connected to the contemporary discussions about social justice in social work. These connections are then interrogated in the Canadian Social Works Code of Ethics, and in micro, mezzo, and macro approaches. To be remiss in interrogating the underlying political assumptions of the worldview of social justice is to entrench oppression and to preserve oppressive structures in contemporary Canadian social work. The concept of social justice is unable to withstand closer scrutiny about its emancipatory qualities in Canadian social work when we interrogate the many political assumptions that frame its understanding. In order to authenticate social justice as an emancipatory central organizing principle, Canadian social workers must engage in deeper discussions about the political implications of social justice in their everyday practices based on diverse worldviews and geopolitical contexts. Social workers are well positioned to develop an understanding of social justice that is emancipatory based on their everyday practices because as social and political actors they are positioned to work for and with individuals and toward the greater good of those who are marginalized from oppression.

Keywords: Canadian social work, political analysis, social justice, social work practice

Procedia PDF Downloads 171
563 Nanomechanical Characterization of Healthy and Tumor Lung Tissues at Cell and Extracellular Matrix Level

Authors: Valeria Panzetta, Ida Musella, Sabato Fusco, Paolo Antonio Netti

Abstract:

The study of the biophysics of living cells drew attention to the pivotal role of the cytoskeleton in many cell functions, such as mechanics, adhesion, proliferation, migration, differentiation and neoplastic transformation. In particular, during the complex process of malignant transformation and invasion cell cytoskeleton devolves from a rigid and organized structure to a more compliant state, which confers to the cancer cells a great ability to migrate and adapt to the extracellular environment. In order to better understand the malignant transformation process from a mechanical point of view, it is necessary to evaluate the direct crosstalk between the cells and their surrounding extracellular matrix (ECM) in a context which is close to in vivo conditions. In this study, human biopsy tissues of lung adenocarcinoma were analyzed in order to define their mechanical phenotype at cell and ECM level, by using particle tracking microrheology (PTM) technique. Polystyrene beads (500 nm) were introduced into the sample slice. The motion of beads was obtained by tracking their displacements across cell cytoskeleton and ECM structures and mean squared displacements (MSDs) were calculated from bead trajectories. It has been already demonstrated that the amplitude of MSD is inversely related to the mechanical properties of intracellular and extracellular microenvironment. For this reason, MSDs of particles introduced in cytoplasm and ECM of healthy and tumor tissues were compared. PTM analyses showed that cancerous transformation compromises mechanical integrity of cells and extracellular matrix. In particular, the MSD amplitudes in cells of adenocarcinoma were greater as compared to cells of normal tissues. The increased motion is probably associated to a less structured cytoskeleton and consequently to an increase of deformability of cells. Further, cancer transformation is also accompanied by extracellular matrix stiffening, as confirmed by the decrease of MSDs of matrix in tumor tissue, a process that promotes tumor proliferation and invasiveness, by activating typical oncogenic signaling pathways. In addition, a clear correlation between MSDs of cells and tumor grade was found. MSDs increase when tumor grade passes from 2 to 3, indicating that cells undergo to a trans-differentiation process during tumor progression. ECM stiffening is not dependent on tumor grade, but the tumor stage resulted to be strictly correlated with both cells and ECM mechanical properties. In fact, a greater stage is assigned to tumor spread to regional lymph nodes and characterized by an up-regulation of different ECM proteins, such as collagen I fibers. These results indicate that PTM can be used to get nanomechanical characterization at different scale levels in an interpretative and diagnostic context.

Keywords: cytoskeleton, extracellular matrix, mechanical properties, particle tracking microrheology, tumor

Procedia PDF Downloads 268
562 Qualitative and Quantitative Screening of Biochemical Compositions for Six Selected Marine Macroalgae from Mediterranean Coast of Egypt

Authors: Madelyn N. Moawad, Hermine R. Z. Tadros, Mary G. Ghobrial, Ahmad R. Bassiouny, Kamal M. Kandeel, Athar Ata

Abstract:

Seaweeds are potential renewable resources in marine environment. They provide an excellent source of bioactive substances such as dietary fibers and various functional polysaccharides that could potentially be used as ingredients for both human and animal health applications. The observations suggested that these bioactive compounds have strong antioxidant properties, which have beneficial effects on human health. The present research aimed at finding new chemical products from local marine macroalgae for natural medicinal uses and consumption for their nutritional values. Macroalgae samples were collected manually mainly from the Mediterranean Sea at shallow subtidal zone of Abu Qir Bay, Alexandria, Egypt. The chemical compositions of lyophilized materials of six selected macroalgal species; Colpomenia sinuosa, Sargassum linifolium, Padina pavonia, Pterocladiella capillacea, Laurencia pinnatifidia, and Caulerpa racemosa, were investigated for proteins using bovine serum albumin, and carbohydrates were assayed by phenol-sulfuric acid reaction. The macroalgae lipid was extracted with chloroform, methanol and phosphate buffer. Vitamins were extracted using trichloroacetic acid. Chlorophylls and total carotenoids were determined spectrophotometrically and total phenols were extracted with methanol. In addition, lipid-soluble, and water-soluble antioxidant, and anti α-glucosidase activities were measured spectrophotometrically. The antioxidant activity of hexane extracts was investigated using phosphomolybdenum reagent. The anti-α-glucosidase effect measurement was initiated by mixing α-glucosidase solution with p-nitrophenyl α-D-glucopyranoside. The results showed that the ash contents varied from 11.2 to 35.4 % on dry weight basis for P. capillacea and Laurencia pinnatifidia, respectively. The protein contents ranged from 5.63 % in brown macroalgae C. sinuosa to 8.73 % in P. pavonia. A relative wide range in carbohydrate contents was observed (20.06–46.75 %) for the test algal species. The highest lipid percentage was found in green alga C. racemosa (5.91%) followed by brown algae P. pavonia (3.57%) and C. sinuosa (2.64%). The phenolic contents varied from 1.32 mg GAE/g for C. sinuosa to 4.00 mg GAE/g in P. pavonia. The lipid-soluble compounds exhibited higher antioxidant capacity (73.18-145.95 µM/g) than that of the water-soluble ones ranging from 24.83 µM/g in C. racemosa to 74.07 µM/g in S. linifolium. The most potent anti-α-glucosidase activity was observed for P. pavonia with IC50 of 17.12 μg/ml followed by S. linifolium (IC50 = 71.75 μg/ml), C. racemosa (IC50 = 84.73 μg/ml), P. capillacea (IC50 = 92.16 μg/ml), C. sinuosa (IC50 = 112.44 μg/ml), and L. pinnatifida (IC50 = 115.11 μg/ml).

Keywords: α-glucosidase, lyophilized, macroalgae, spectrophotometrically

Procedia PDF Downloads 285
561 Numerical Study of Flapping-Wing Flight of Hummingbird Hawkmoth during Hovering: Longitudinal Dynamics

Authors: Yao Jie, Yeo Khoon Seng

Abstract:

In recent decades, flapping wing aerodynamics has attracted great interest. Understanding the physics of biological flyers such as birds and insects can help improve the performance of micro air vehicles. The present research focuses on the aerodynamics of insect-like flapping wing flight with the approach of numerical computation. Insect model of hawkmoth is adopted in the numerical study with rigid wing assumption currently. The numerical model integrates the computational fluid dynamics of the flow and active control of wing kinematics to achieve stable flight. The computation grid is a hybrid consisting of background Cartesian nodes and clouds of mesh-free grids around immersed boundaries. The generalized finite difference method is used in conjunction with single value decomposition (SVD-GFD) in computational fluid dynamics solver to study the dynamics of a free hovering hummingbird hawkmoth. The longitudinal dynamics of the hovering flight is governed by three control parameters, i.e., wing plane angle, mean positional angle and wing beating frequency. In present work, a PID controller works out the appropriate control parameters with the insect motion as input. The controller is adjusted to acquire desired maneuvering of the insect flight. The numerical scheme in present study is proven to be accurate and stable to simulate the flight of the hummingbird hawkmoth, which has relatively high Reynolds number. The PID controller is responsive to provide feedback to the wing kinematics during the hovering flight. The simulated hovering flight agrees well with the real insect flight. The present numerical study offers a promising route to investigate the free flight aerodynamics of insects, which could overcome some of the limitations of experiments.

Keywords: aerodynamics, flight control, computational fluid dynamics (CFD), flapping-wing flight

Procedia PDF Downloads 336
560 Oxidation States of Trace Elements in Synthetic Corundum

Authors: Ontima Yamchuti, Waruntorn Kanitpanyacharoen, Chakkaphan Sutthirat, Wantana Klysuban, Penphitcha Amonpattarakit

Abstract:

Natural corundum occurs in various colors due to impurities or trace elements in its structure. Sapphire and ruby are essentially the same mineral, corundum, but valued differently due to their red and blue varieties, respectively. Color is one of the critical factors used to determine the value of natural and synthetic corundum. Despite the abundance of research on impurities in natural corundum, little is known about trace elements in synthetic corundum. This project thus aims to quantify trace elements and identify their oxidation states in synthetic corundum. A total of 15 corundum samples in red, blue, and yellow, synthesized by melt growth process, were first investigated by X-ray diffraction (XRD) analysis to determine the composition. Electron probe micro-analyzer (EPMA) was used to identify the types of trace elements. Results confirm that all synthetic corundums contain crystalline Al₂O₃ and a wide variety type of trace element, particularly Cr, Fe, and Ti. In red, yellow, and blue corundums respectively. To further determine their oxidation states, synchrotron X-ray absorption near edge structure spectrometry (XANES) was used to observe absorbing energy of each element. XANES results show that red synthetic corundum has Cr³⁺ as a major trace element (62%). The pre-edge absorption energy of Cr³⁺ is at 6001 eV. In addition, Fe²⁺ and Fe³⁺ are dominant oxidation states of yellow synthetic corundum while Ti³⁺and Ti⁴⁺ are dominant oxidation states of blue synthetic corundum. the average absorption energy of Fe and Ti is 4980 eV and 7113 eV respectively. The presence of Fe²⁺, Fe³⁺, Cr³⁺, Ti³⁺, and Ti⁴⁺ in synthetic corundums in this study is governed by comparison absorption energy edge with standard transition. The results of oxidation states in this study conform with natural corundum. However yellow synthetic corundums show difference oxidation state of trace element compared with synthetic in electron spin resonance spectrometer method which found that Ni³⁺ is a dominant oxidation state.

Keywords: corundum, trace element, oxidation state, XANES technique

Procedia PDF Downloads 157
559 Stronger Together – Micro-Entrepreneurs’ Resilience Development in a Communal Training Space 

Authors: Halonen

Abstract:

Covid-19 pandemic and the succeeding crises have profoundly shaken the accustomed ways of interaction and thereby challenged the customary engagement patterns among entrepreneurs Consequently, this has led to the experience of lack of collegial interaction for some. Networks and relationships are a crucial factor to strengthening resilience, being especially significant in non-ordinary times. This study aims to shed light on entrepreneurs’ resilience development in and through entrepreneurs’ communal and training space. The context for research is a communal training space in a municipality in Finland of which goal is to help entrepreneurs to experience of peer support and community as part of the "tribe" is strengthened, the entrepreneurs' well-being at work, resilience, ability to change, innovativeness and general life management is strengthened. This communal space is regarded as an example of a physical community of practice (CoP) of entrepreneurs. The research aims to highlight the importance of rediscovering the “new normal” communality as itself but as a key building block of resilience. The initial research questions of the study are: RQ1: What is the role of entrepreneurs’ CoP and communal space in nurturing resilience development among them? RQ2: What positive entrepreneurial outcomes can be achieved through established CoP. The data will be gathered starting from the launch of the communality space in September 2023 onwards. It includes participatory observations of training gatherings, interviews with entrepreneurs and utilizes action research as the method. The author has an active role in participating and facilitating the development. The full paper will be finalized by the fall 2024. The idea of the new normal communality in a CoP among entrepreneurs is to be rediscovered due to its positive impact on entrepreneur’s resilience and business success. The other implications of study can extend to wider entrepreneurial ecosystem and other key stakeholders. Especially emphasizing the potential of communality in CoP for fostering entrepreneurs’ resilience and well-being ensuing business growth, community-driven entrepreneurship development and vitality of the case municipality.

Keywords: resilience, resilience development, communal space, community of practice (CoP)

Procedia PDF Downloads 65