Search results for: learning from history
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9642

Search results for: learning from history

7572 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion

Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro

Abstract:

Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.

Keywords: basketball, deep learning, feature extraction, single-camera, tracking

Procedia PDF Downloads 136
7571 Lifelong Learning in Applied Fields (LLAF) Tempus Funded Project: Assessing Constructivist Learning Features in Higher Education Settings

Authors: Dorit Alt, Nirit Raichel

Abstract:

Educational practice is continually subjected to renewal needs, due mainly to the growing proportion of information communication technology, globalization of education, and the pursuit of quality. These types of renewal needs require developing updated instructional and assessment practices that put a premium on adaptability to the emerging requirements of present society. However, university instruction is criticized for not coping with these new challenges while continuing to exemplify the traditional instruction. In order to overcome this critical inadequacy between current educational goals and instructional methods, the LLAF consortium (including 16 members from 8 countries) is collaborating to create a curricular reform for lifelong learning (LLL) in teachers' education, health care and other applied fields. This project aims to achieve its objectives by developing, and piloting models for training students in LLL and promoting meaningful learning activities that could integrate knowledge with the personal transferable skills. LLAF has created a practical guide for teachers containing updated pedagogical strategies and assessment tools based on the constructivist approach for learning. This presentation will be limited to teachers' education only and to the contribution of a pre-pilot research aimed at providing a scale designed to measure constructivist activities in higher education learning environments. A mix-method approach was implemented in two phases to construct the scale: The first phase included a qualitative content analysis involving both deductive and inductive category applications of students' observations. The results foregrounded eight categories: knowledge construction, authenticity, multiple perspectives, prior knowledge, in-depth learning, teacher- student interaction, social interaction and cooperative dialogue. The students' descriptions of their classes were formulated as 36 items. The second phase employed structural equation modeling (SEM). The scale was submitted to 597 undergraduate students. The goodness of fit of the data to the structural model yielded sufficient fit results. This research elaborates the body of literature by adding a category of in-depth learning which emerged from the content analysis. Moreover, the theoretical category of social activity has been extended to include two distinctive factors: cooperative dialogue and social interaction. Implications of these findings for the LLAF project are discussed.

Keywords: constructivist learning, higher education, mix-methodology, lifelong learning

Procedia PDF Downloads 333
7570 DLtrace: Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps

Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li

Abstract:

With the widespread popularity of mobile devices and the development of artificial intelligence (AI), deep learning (DL) has been extensively applied in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace; a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Moreover, using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. We conducted an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace has a more robust performance than FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.

Keywords: mobile computing, deep learning apps, sensitive information, static analysis

Procedia PDF Downloads 174
7569 Towards Human-Interpretable, Automated Learning of Feedback Control for the Mixing Layer

Authors: Hao Li, Guy Y. Cornejo Maceda, Yiqing Li, Jianguo Tan, Marek Morzynski, Bernd R. Noack

Abstract:

We propose an automated analysis of the flow control behaviour from an ensemble of control laws and associated time-resolved flow snapshots. The input may be the rich database of machine learning control (MLC) optimizing a feedback law for a cost function in the plant. The proposed methodology provides (1) insights into the control landscape, which maps control laws to performance, including extrema and ridge-lines, (2) a catalogue of representative flow states and their contribution to cost function for investigated control laws and (3) visualization of the dynamics. Key enablers are classification and feature extraction methods of machine learning. The analysis is successfully applied to the stabilization of a mixing layer with sensor-based feedback driving an upstream actuator. The fluctuation energy is reduced by 26%. The control replaces unforced Kelvin-Helmholtz vortices with subsequent vortex pairing by higher-frequency Kelvin-Helmholtz structures of lower energy. These efforts target a human interpretable, fully automated analysis of MLC identifying qualitatively different actuation regimes, distilling corresponding coherent structures, and developing a digital twin of the plant.

Keywords: machine learning control, mixing layer, feedback control, model-free control

Procedia PDF Downloads 222
7568 Effective Glosses in Reading to Help L2 Vocabulary Learning for Low-Intermediate Technology University Students in Taiwan

Authors: Pi-Lan Yang

Abstract:

It is controversial which type of gloss condition (i.e., gloss language or gloss position) is more effective in second or foreign language (L2) vocabulary learning. The present study compared the performance on learning ten English words in the conditions of L2 English reading with no glosses and with glosses of Chinese equivalents/translations and L2 English definitions at the side of a page and at an attached sheet for low-intermediate Chinese-speaking learners of English, who were technology university students in Taiwan. It is found first that the performances on the immediate posttest and the delayed posttest were overall better in the gloss condition than those in the no-gloss condition. Next, it is found that the glosses of Chinese translations were more effective and sustainable than those of L2 English definitions. Finally, the effects of L2 English glosses at the side of a page were observed to be less sustainable than those at an attached sheet. In addition, an opinion questionnaire used also showed a preference for the glosses of Chinese translations in L2 English reading. These results would be discussed in terms of automated lexical access, sentence processing mechanisms, and the trade-off nature of storage and processing functions in working memory system, proposed by the capacity theory of language comprehension.

Keywords: glosses of Chinese equivalents/translations, glosses of L2 English definitions, L2 vocabulary learning, L2 English reading

Procedia PDF Downloads 246
7567 Analysis and Identification of Different Factors Affecting Students’ Performance Using a Correlation-Based Network Approach

Authors: Jeff Chak-Fu Wong, Tony Chun Yin Yip

Abstract:

The transition from secondary school to university seems exciting for many first-year students but can be more challenging than expected. Enabling instructors to know students’ learning habits and styles enhances their understanding of the students’ learning backgrounds, allows teachers to provide better support for their students, and has therefore high potential to improve teaching quality and learning, especially in any mathematics-related courses. The aim of this research is to collect students’ data using online surveys, to analyze students’ factors using learning analytics and educational data mining and to discover the characteristics of the students at risk of falling behind in their studies based on students’ previous academic backgrounds and collected data. In this paper, we use correlation-based distance methods and mutual information for measuring student factor relationships. We then develop a factor network using the Minimum Spanning Tree method and consider further study for analyzing the topological properties of these networks using social network analysis tools. Under the framework of mutual information, two graph-based feature filtering methods, i.e., unsupervised and supervised infinite feature selection algorithms, are used to analyze the results for students’ data to rank and select the appropriate subsets of features and yield effective results in identifying the factors affecting students at risk of failing. This discovered knowledge may help students as well as instructors enhance educational quality by finding out possible under-performers at the beginning of the first semester and applying more special attention to them in order to help in their learning process and improve their learning outcomes.

Keywords: students' academic performance, correlation-based distance method, social network analysis, feature selection, graph-based feature filtering method

Procedia PDF Downloads 129
7566 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches

Authors: Aya Salama

Abstract:

Digital Twin is an emerging research topic that attracted researchers in the last decade. It is used in many fields, such as smart manufacturing and smart healthcare because it saves time and money. It is usually related to other technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, Human digital twin (HDT), in specific, is still a novel idea that still needs to prove its feasibility. HDT expands the idea of Digital Twin to human beings, which are living beings and different from the inanimate physical entities. The goal of this research was to create a Human digital twin that is responsible for real-time human replies automation by simulating human behavior. For this reason, clustering, supervised classification, topic extraction, and sentiment analysis were studied in this paper. The feasibility of the HDT for personal replies generation on social messaging applications was proved in this work. The overall accuracy of the proposed approach in this paper was 63% which is a very promising result that can open the way for researchers to expand the idea of HDT. This was achieved by using Random Forest for clustering the question data base and matching new questions. K-nearest neighbor was also applied for sentiment analysis.

Keywords: human digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification, clustering

Procedia PDF Downloads 85
7565 Examining the Functional and Practical Aspects of Iranian Painting as a Visual-Identity Language in Iranian Graphics

Authors: Arezoo Seifollahi

Abstract:

One of the topics that is receiving a lot of attention in artistic circles and among Iran today and has been the subject of many conversations is the issue of Iranian graphics. In this research, the functional and practical aspects of Iranian painting as a visual-identity language in Iranian graphics have been investigated by relying on Iranian cultural and social posters in order to gain an understanding of the trend of contemporary graphic art in Iran and to help us reach the identity of graphics. In order to arrive at Iranian graphics, first, the issue of identity and what it is has been examined, and then this category has been addressed in Iran and throughout the history of this country in order to reveal the characteristics of the identity that has come to us today under the name of Iranian identity cognition. In the following, the search for Iranian identity in the art of this land, especially the art of painting, and then the art of contemporary painting and the search for identity in it have been discussed. After that, Iranian identity has been investigated in Iranian graphics. To understand Iranian graphics, after a brief description of its contemporary history, this art is examined at the considered time point. By using the inductive method of examining the posters of each course and taking into account the related cultural and social conditions, we tried to get a general and comprehensive understanding of the graphic features of each course.

Keywords: Iranian painting, graphic visual language, Iranian identity, social cultural poster

Procedia PDF Downloads 48
7564 Interactive Learning Practices for Class Room Teaching

Authors: Shamshuddin K., Nagaraj Vannal, Diwakar Kulkarni

Abstract:

This paper presents details of teaching and learning pedagogical techniques attempted for the undergraduate engineering program to improve the concentration span of students in a classroom. The details of activities such as valid statement, quiz competition, classroom paper, group work and product marketing to make the students remain active for the entire class duration and to improve presentation skills are presented. These activities shown tremendous improvement in student’s performance in academics, also in asking questions, concept understanding and interaction with the course instructor. With these pedagogical activities we are able to achieve Program outcome elements and ABET Program outcomes such as d, i, g and h which are difficult to achieve through the conventional teaching methods.

Keywords: activities, pedagogy, interactive learning, valid statement, quiz competition, classroom papers, group work, product marketing

Procedia PDF Downloads 645
7563 Generic Competences, the Great Forgotten: Teamwork in the Undergraduate Degree in Translation and Interpretation

Authors: María-Dolores Olvera-Lobo, Bryan John Robinson, Juncal Gutierrez-Artacho

Abstract:

Graduates are equipped with a wide range of generic competencies which complement solid curricular competencies and facilitate their access to the labour market in diverse fields and careers. However, some generic competencies such as instrumental, personal and systemic competencies related to teamwork and interpersonal communication skills, decision-making and organization skills are seldom taught explicitly and even less often assessed. In this context, translator training has embraced a broad range of competencies specified in the undergraduate program currently taught at universities and opens up the learning experience to cover areas often ignored due to the difficulties inherent in both teaching and assessment. In practice, translator training combines two well-established approaches to teaching/learning: project-based learning and genuinely cooperative – or merely collaborative – learning. Our professional approach to translator training is a model focused on and adapted to the teleworking context of professional translation and presented through the medium of blended e-learning. Teamwork-related competencies are extremely relevant, and they require explicit and implicit teaching so that graduates can be confident about their capacity to make their way in professional contexts. In order to highlight the importance of teamwork and intra-team relationships beyond the classroom, we aim to raise awareness of teamwork processes so as to empower translation students in managing their interaction and ensure that they gain valuable pre-professional experience. With these objectives, at the University of Granada (Spain) we have developed a range of classroom activities and assessment tools. The results of their application are summarized in this study.

Keywords: blended learning, collaborative teamwork, cross-curricular competencies, higher education, intra-team relationships, students’ perceptions, translator training

Procedia PDF Downloads 168
7562 Introducing the Digital Backpack: Looking at Ivory Coast

Authors: Eunice H. Li

Abstract:

This e-Poster presents how the ‘digital backpack’ was introduced to primary school children in Ivory Coast. The idea of a ‘digital backpack’ was initiated by Mr. Thierry N’Doufou in 2012, who later designed and presented to the rest of the world in September 2014. The motivation behind the backpack was to relieve children of the heavy-weight they carry in their school backpacks. Another motivation was to promote Ivory Coast as a country where all children are brought into the digital era. Thierry N’Doufou regards education as the means by which his nation and the entire African Continent can be developed as a prosperous territory. The ‘digital backpack’ contains the entire curriculum for each class and favours a constructivist approach to learning. The children’s notes and exercises are also included in the pack. Additionally, teachers and parents are able to monitor remotely children’s activities while they are working with the ‘backpack’. Teachers are also able to issue homework, assess student’s progress and manage the student’s coursework. This means that teachers should always think the most appropriate pedagogies that can be used to help children to learn. Furthermore, teachers, parents and fellow students are able to have conversations and discussions by using web portals. It is also possible to access more apps if children would like to have additional learning activities. From the presentation in the e-Poster, it seems reasonable to conclude that the ‘digital backpack’ has potential to reach other-level of education. In this way, all will be able to benefit from this new invention.

Keywords: pedagogy, curriculum, constructivism, social constructivism, distance learning environment, ubiquitous learning environment

Procedia PDF Downloads 658
7561 Amsan Syndrome in Emergency Department

Authors: Okan Cakir, Okan Tatli

Abstract:

Acute motor and sensory axonal neuropathy (AMSAN) syndrome usually occurs following a postviral infection in two to four weeks and is a polyneuropathy characterized by axonal and sensorial degeneration as a rare variant of Gullian-Barre syndrome. In our case, we wanted to mention that a rare case of AMSAN Syndrome due to prior surgery. A 61-year-old male case admitted to emergency department with complaints of weakness in feet, numbness and incapability to walk. In his history, it was learned that endovascular aneurysm repair (EVAR) had applied for abdominal aort aneurysm two weeks ago before admission, his complaints had been for a couple of days increasingly and bilaterally, and there had been no infection disease history for four weeks. In physical examination, general status was good, vital signs were stable, and there was a mild paresis in dorsal flexion of feet in bilaterally lower extremities. No nuchal rigidity was determined. Other system examinations were normal. Urea:52 mg/dL (normal range: 15-44 mg/dL), creatinine: 1,05 mg/dL (normal range: 0,81-1,4 mg/dL), potassium: 3,68 mmol/L (normal range: 3,5-5,5 mmol/L), glycaemia: 142 mg/dL, calcium: 9,71 mg/dL (normal range: 8,5-10,5 mg/dL), erythrocyte sedimentation rate (ESR): 74 mm/h (normal range: 0-15 mm/h) were determined in biochemical tests. The case was consulted to neurology department and hospitalized. In performing electromyography, it was reported as a bilateral significant axonal degeneration with sensory-motor polyneuropathy. Normal ranges of glycaemia and protein levels were detected in lumbal punction. Viral markers and bucella, toxoplasma, and rubella markers were in normal range. Intravenous immunoglobulin (IVIG) was applied as a treatment, physical treatment programme was planned and the case discharged from neurology department. In our case, we mentioned that it should be considered polyneuropathy as an alternative diagnosis in cases admitting symptoms like weakness and numbness had a history of prior surgery.

Keywords: AMSAN Syndrome, emergency department, prior surgery, weakness

Procedia PDF Downloads 339
7560 The Impact of Social Interaction, Wellbeing and Mental Health on Student Achievement During COVID-19 Lockdown in Saudi Arabia

Authors: Shatha Ahmad Alharthi

Abstract:

Prior research suggests that reduced social interaction can negatively affect well-being and impair mental health (e.g., depression and anxiety), resulting in lower academic performance. The COVID-19 pandemic has significantly limited social interaction among Saudi Arabian school children since the government closed schools and implemented lockdown restrictions to reduce the spread of the disease. These restrictions have resulted in prolonged remote learning for middle school students with unknown consequences for perceived academic performance, mental health, and well-being. This research project explores how middle school Saudi students’ current remote learning practices affect their mental health (e.g., depression and anxiety) and well-being during the lockdown. Furthermore, the study will examine the association between social interaction, mental health, and well-being pertaining to students’ perceptions of their academic achievement. Research findings could lead to a better understanding of the role of lockdown on depression, anxiety, well-being and perceived academic performance. Research findings may also inform policy-makers or practitioners (e.g., teachers and school leaders) about the importance of facilitating increased social interactions in remote learning situations and help to identify important factors to consider when seeking to re-integrate students into a face-to-face classroom setting. Potential implications for future educational research include exploring remote learning interventions targeted at bolstering students’ mental health and academic achievement during periods of remote learning.

Keywords: depression, anxiety, academic performance, social interaction

Procedia PDF Downloads 116
7559 Positive Impact of Cartoon Movies on Adults

Authors: Yacoub Aljaffery

Abstract:

As much as we think negatively about social media such as TV and smart phones, there are many positive benefits our society can get from it. Cartoons, for example, are made specifically for children. However, in this paper, we will prove how cartoon videos can have a positive impact on adults, especially college students. Since cartoons are meant to be a good learning tool for children, as well as adults, we will show our audience how they can use cartoon in teaching critical thinking and other language skills.

Keywords: social media, TV, teaching, learning, cartoon movies

Procedia PDF Downloads 322
7558 Robot Movement Using the Trust Region Policy Optimization

Authors: Romisaa Ali

Abstract:

The Policy Gradient approach is one of the deep reinforcement learning families that combines deep neural networks (DNN) with reinforcement learning RL to discover the optimum of the control problem through experience gained from the interaction between the robot and its surroundings. In contrast to earlier policy gradient algorithms, which were unable to handle these two types of error because of over-or under-estimation introduced by the deep neural network model, this article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.

Keywords: deep neural networks, deep reinforcement learning, proximal policy optimization, state-of-the-art, trust region policy optimization

Procedia PDF Downloads 168
7557 Medical Imaging Fusion: A Teaching-Learning Simulation Environment

Authors: Cristina Maria Ribeiro Martins Pereira Caridade, Ana Rita Ferreira Morais

Abstract:

The use of computational tools has become essential in the context of interactive learning, especially in engineering education. In the medical industry, teaching medical image processing techniques is a crucial part of training biomedical engineers, as it has integrated applications with healthcare facilities and hospitals. The aim of this article is to present a teaching-learning simulation tool developed in MATLAB using a graphical user interface for medical image fusion that explores different image fusion methodologies and processes in combination with image pre-processing techniques. The application uses different algorithms and medical fusion techniques in real time, allowing you to view original images and fusion images, compare processed and original images, adjust parameters, and save images. The tool proposed in an innovative teaching and learning environment consists of a dynamic and motivating teaching simulation for biomedical engineering students to acquire knowledge about medical image fusion techniques and necessary skills for the training of biomedical engineers. In conclusion, the developed simulation tool provides real-time visualization of the original and fusion images and the possibility to test, evaluate and progress the student’s knowledge about the fusion of medical images. It also facilitates the exploration of medical imaging applications, specifically image fusion, which is critical in the medical industry. Teachers and students can make adjustments and/or create new functions, making the simulation environment adaptable to new techniques and methodologies.

Keywords: image fusion, image processing, teaching-learning simulation tool, biomedical engineering education

Procedia PDF Downloads 128
7556 Sustainable Transition of Universal Design for Learning-Based Teachers’ Latent Profiles from Contact to Distance Education

Authors: Alvyra Galkienė, Ona Monkevičienė

Abstract:

The full participation of all pupils in the overall educational process is defined by the concept of inclusive education, which is gradually evolving in education policy and practice. It includes the full participation of all pupils in a shared learning experience and educational practices that address barriers to learning. Inclusive education applying the principles of Universal Design for Learning (UDL), which includes promoting students' involvement in learning processes, guaranteeing a deep understanding of the analysed phenomena, initiating self-directed learning, and using e-tools to create a barrier-free environment, is a prerequisite for the personal success of each pupil. However, the sustainability of quality education is affected by the transformation of education systems. This was particularly evident during the period of the forced transition from contact to distance education in the COVID-19 pandemic. Research Problem: The transformation of the educational environment from real to virtual one and the loss of traditional forms of educational support highlighted the need for new research, revealing the individual profiles of teachers using UDL-based learning and the pathways of sustainable transfer of successful practices to non-conventional learning environments. Research Methods: In order to identify individual latent teacher profiles that encompass the essential components of UDL-based inclusive teaching and direct leadership of students' learning, the quantitative analysis software Mplius was used for latent profile analysis (LPA). In order to reveal proven, i.e., sustainable, pathways for the transit of the components of UDL-based inclusive learning to distance learning, latent profile transit analysis (LPTA) via Mplius was used. An online self-reported questionnaire was used for data collection. It consisted of blocks of questions designed to reveal the experiences of subject teachers in contact and distance learning settings. 1432 Lithuanian, Latvian, and Estonian subject teachers took part in the survey. Research Results: The LPA analysis revealed eight latent teacher profiles with different characteristics of UDL-based inclusive education or traditional teaching in contact teaching conditions. Only 4.1% of the subject teachers had a profile characterised by a sustained UDL approach to teaching: promoting pupils' self-directed learning; empowering pupils' engagement, understanding, independent action, and expression; promoting pupils' e-inclusion; and reducing the teacher's direct supervision of the students. Other teacher profiles were characterised by limited UDL-based inclusive education either due to the lack of one or more of its components or to the predominance of direct teacher guidance. The LPTA analysis allowed us to highlight the following transit paths of teacher profiles in the extreme conditions of the transition from contact to distance education: teachers staying in the same profile of UDL-based inclusive education (sustainable transit) or jumping to other profiles (unsustainable transit in case of barriers), and teachers from other profiles moving to this profile (ongoing transit taking advantage of the changed new possibilities in the teaching process).

Keywords: distance education, latent teacher profiles, sustainable transit, UDL

Procedia PDF Downloads 100
7555 A Literature Review Evaluating the Use of Online Problem-Based Learning and Case-Based Learning Within Dental Education

Authors: Thomas Turner

Abstract:

Due to the Covid-19 pandemic alternative ways of delivering dental education were required. As a result, many institutions moved teaching online. The impact of this is poorly understood. Is online problem-based learning (PBL) and case-based learning (CBL) effective and is it suitable in the post-pandemic era? PBL and CBL are both types of interactive, group-based learning which are growing in popularity within many dental schools. PBL was first introduced in the 1960’s and can be defined as learning which occurs from collaborative work to resolve a problem. Whereas CBL encourages learning from clinical cases, encourages application of knowledge and helps prepare learners for clinical practice. To evaluate the use of online PBL and CBL. A literature search was conducted using the CINAHL, Embase, PubMed and Web of Science databases. Literature was also identified from reference lists. Studies were only included from dental education. Seven suitable studies were identified. One of the studies found a high learner and facilitator satisfaction rate with online CBL. Interestingly one study found learners preferred CBL over PBL within an online format. A study also found, that within the context of distance learning, learners preferred a hybrid curriculum including PBL over a traditional approach. A further study pointed to the limitations of PBL within an online format, such as reduced interaction, potentially hindering the development of communication skills and the increased time and technology support required. An audience response system was also developed for use within CBL and had a high satisfaction rate. Interestingly one study found achievement of learning outcomes was correlated with the number of student and staff inputs within an online format. Whereas another study found the quantity of learner interactions were important to group performance, however the quantity of facilitator interactions was not. This review identified generally favourable evidence for the benefits of online PBL and CBL. However, there is limited high quality evidence evaluating these teaching methods within dental education and there appears to be limited evidence comparing online and faceto-face versions of these sessions. The importance of the quantity of learner interactions is evident, however the importance of the quantity of facilitator interactions appears to be questionable. An element to this may be down to the quality of interactions, rather than just quantity. Limitations of online learning regarding technological issues and time required for a session are also highlighted, however as learners and facilitators get familiar with online formats, these may become less of an issue. It is also important learners are encouraged to interact and communicate during these sessions, to allow for the development of communication skills. Interestingly CBL appeared to be preferred to PBL in an online format. This may reflect the simpler nature of CBL, however further research is required to explore this finding. Online CBL and PBL appear promising, however further research is required before online formats of these sessions are widely adopted in the post-pandemic era.

Keywords: case-based learning, online, problem-based learning, remote, virtual

Procedia PDF Downloads 76
7554 Diaper Dermatitis and Pancytopenia as the Primary Manifestation in an Infant with Vitamin B12 Deficiency

Authors: Ekaterina Sánchez Romero, Emily Gabriela Aguirre Herrera, Sandra Luz Espinoza Esquerra, Jorge García Campos

Abstract:

Female, 7 months old, daughter of a mother with anemia during pregnancy, with no history of atopy in the family, since birth she presents with recurrent dermatological and gastrointestinal infections, chronically treated for recurrent diaper dermatitis. At 6 months of age, she begins with generalized pallor, hyperpigmentation in hands and feet, smooth tongue, psychomotor retardation with lack of head support, sedation, and hypoactivity. She was referred to our hospital for a fever of 38°C, severe diaper rash, and pancytopenia with HB 9.3, platelets 38000, neutrophils 0.39 MCV: 86.80 high for her age. The approach was initiated to rule out myeloproliferative syndrome, with negative immunohistochemical results of bone marrow aspirate; during her stay, she presented neurological regression, lack of sucking, and focal seizures. CT scan showed cortical atrophy. The patient was diagnosed with primary immunodeficiency due to history; gamma globulin was administered without improvement with normal results of immunoglobulins and metabolic screening. When dermatological and neurological diagnoses were ruled out as the primary cause, a nutritional factor was evaluated, and a therapeutic trial was started with the administration of vitamin B12 and zinc, presenting clinical neurological improvement and resolution of pancytopenia in 2 months. It was decided to continue outpatient management. Discussion: We present a patient with neurological, dermatological involvement, and pancytopenia, so the most common differential diagnoses in this population were ruled out. Vitamin B12 deficiency is an uncommon entity. Due to maternal and clinical history, a therapeutic trial was started resulting in an improvement. Conclusion: VitaminB12 deficiency should be considered one of the differential diagnoses in the approach to pancytopenia with megaloblastic anemia associated with dermatologic and neurologic manifestations. Early treatment can reduce irreversible damage in these patients.

Keywords: vitamin B12 deficiency, pediatrics, pancytopenia, diaper dermatitis

Procedia PDF Downloads 94
7553 Ancient Iran Water Technologies

Authors: Akbar Khodavirdizadeh, Ali Nemati Babaylou, Hassan Moomivand

Abstract:

The history of human access to water technique has been one of the factors in the formation of human civilizations in the ancient world. The technique that makes surface water and groundwater accessible to humans on the ground has been a clever technique in human life to reach the water. In this study, while examining the water technique of ancient Iran using the Qanats technique, the water supply system of different regions of the ancient world were also studied and compared. Six groups of the ancient region of ancient Greece (Archaic 480-750 BC and Classical 223-480 BC), Urartu in Tuspa (600-850 BC), Petra (106-168 BC), Ancient Rome (265 BC), and the ancient United States (1450 BC) and ancient Iranian water technologies were studied under water supply systems. Past water technologies in these areas: water transmission systems in primary urban centers, use of water structures in water control, use of bridges in water transfer, construction of waterways for water transfer, storage of rainfall, construction of various types of pottery- ceramic, lead, wood and stone pipes have been used in water transfer, flood control, water reservoirs, dams, channel, wells, and Qanat. The central plateau of Iran is one of the arid and desert regions. Archaeological, geomorphological, and paleontological studies of the central region of the Iranian plateau showed that without the use of Qanats, the possibility of urban civilization in this region was difficult and even impossible. Zarch aqueduct is the most important aqueduct in Yazd region. Qanat of Zarch is a plain Qanat with a gallery length of 80 km; its mother well is 85 m deep and has 2115 well shafts. The main purpose of building the Qanat of Zārch was to access the groundwater source and transfer it to the surface of the ground. Regarding the structure of the aqueduct and the technique of transferring water from the groundwater source to the surface, it has a great impact on being different from other water techniques in the ancient world. The results show that the use of water technologies in ancient is very important to understand the history of humanity in the use of hydraulic techniques.

Keywords: ancient water technologies, groundwaters, qanat, human history, Ancient Iran

Procedia PDF Downloads 109
7552 A Development of Online Lessons to Strengthen the Learning Process of Master's Degree Students Majoring in Curriculum and Instruction at Suan Sunandha Rajabhat University

Authors: Chaiwat Waree

Abstract:

The purposes of the research were to develop online lessons to strengthen the learning process of Master's degree students majoring in Curriculum and Instruction at Suan Sunandha Rajabhat University; to achieve the efficiency criteria of 80/80; and to study the satisfaction of students who use online lessons to strengthen the learning process of Master’s degree students majoring in Curriculum and Instruction at Suan Sunandha Rajabhat University. The sample consisted of 40 University students studying in semester 1, academic year 2012. The sample was determined by Purposive Sampling. Selected students were from the class which the researcher was the homeroom tutor. The tutor was responsible for the teaching of learning process. Tools used in the study were online lessons, 60-point performance test, and evaluation test of satisfaction of students on online lessons. Data analysis yielded the following results; 83.66/88.29 efficiency of online lessons measured against the criteria; the comparison of performance before and after taking online lessons using t-test yielded 29.67. The statistical significance was at 0.05; the average satisfaction level of forty students on online lessons was 4.46 with standard deviation of 0.68.

Keywords: online, lessons, curriculum, instruction

Procedia PDF Downloads 223
7551 Quantum Statistical Machine Learning and Quantum Time Series

Authors: Omar Alzeley, Sergey Utev

Abstract:

Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.

Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series

Procedia PDF Downloads 467
7550 Improving the Teaching and Learning of Basic Mathematics: An Imperative for Sustainable Development

Authors: Dahiru Bawa Muhammad

Abstract:

Mathematics is accorded a prime position in basic education curriculum because it is envisaged to be an important tool in preparing children for life after school as well as equipping them with skills needed for secondary and higher education. As a result of this, the subject is made compulsory from primary through secondary school and candidates are expected to offer it and pass before fulfilling the requirement for higher education. Against this backdrop, this paper overviewed the basic education programme, context of teaching and learning mathematics at basic education level in Katsina State of Nigeria, relevance of the subject to different fields of human endeavours, challenges threatening the utility of the subject as a tool for the achievement of the goals of basic education programme and concluded by recommending how teaching and learning of mathematics can be improved for even development of citizens within nation states and enhanced/mutual sustainable development of nations in the global village.

Keywords: basic education, junior secondary school education, mathematical centre

Procedia PDF Downloads 459
7549 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study

Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman

Abstract:

Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.

Keywords: artificial neural network, data mining, classification, students’ evaluation

Procedia PDF Downloads 612
7548 Code Embedding for Software Vulnerability Discovery Based on Semantic Information

Authors: Joseph Gear, Yue Xu, Ernest Foo, Praveen Gauravaran, Zahra Jadidi, Leonie Simpson

Abstract:

Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities.

Keywords: code representation, deep learning, source code semantics, vulnerability discovery

Procedia PDF Downloads 155
7547 Performants: Making the Organization of Concerts Easier

Authors: Ioannis Andrianakis, Panagiotis Panagiotopoulos, Kyriakos Chatzidimitriou, Dimitrios Tampakis, Manolis Falelakis

Abstract:

Live music, whether performed in organized venues, restaurants, hotels or any other spots, creates value chains that support and develop local economies and tourism development. In this paper, we describe PerformAnts, a platform that increases the mobility of musicians and their accessibility to remotely located venues by rationalizing the cost of live acts. By analyzing the event history and taking into account their potential availability, the platform provides bespoke recommendations to both bands and venues while also facilitating the organization of tours and helping rationalize transportation expenses by realizing an innovative mechanism called “chain booking”. Moreover, the platform provides an environment where complicated tasks such as technical and financial negotiations, concert promotion or copyrights are easily manipulated by users using best practices. The proposed solution provides important benefits to the whole spectrum of small/medium size concert organizers, as the complexity and the cost of the production are rationalized. The environment is also very beneficial for local talent, musicians that are very mobile, venues located away from large urban areas or in touristic destinations, and managers who will be in a position to coordinate a larger number of musicians without extra effort.

Keywords: machine learning, music industry, creative industries, web applications

Procedia PDF Downloads 94
7546 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models

Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri

Abstract:

Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.

Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation

Procedia PDF Downloads 72
7545 The Innovation of English Materials to Communicate the Identity of Bangpoo, Samut Prakan Province, for Ecotourism

Authors: Kitda Praraththajariya

Abstract:

The main purpose of this research was to study how to communicate the identity of the Mueang district, SamutSongkram province for ecotourism. The qualitative data was collected through studying related materials, exploring the area, in-depth interviews with three groups of people: three directly responsible officers who were key informants of the district, twenty foreign tourists and five Thai tourist guides. A content analysis was used to analyze the qualitative data. The two main findings of the study were as follows: (1) The identity of Amphur (District) Mueang, SamutSongkram province. This establishment was near the Mouth of Maekong River for normal people and tourists, consisting of rest accommodations. There are restaurants where food and drinks are served, rich mangrove forests, Hoy Lod (Razor Clam) and mangrove trees. Don Hoy Lod, is characterized by muddy beaches, is a coastal wetland for Ramsar Site. It is at 1099th ranging where the greatest number of Hoy Lod (Razor Clam) can be seen from March to May each year. (2) The communication of the identity of AmphurMueang, SamutSongkram province which the researcher could find and design to present in English materials can be summed up in 4 items: 1) The history of AmphurMueang, SamutSongkram province 2) WatPhetSamutWorrawihan 3) The Learning source of Ecotourism: Don Hoy Lod and Mangrove forest 4) How to keep AmphurMueang, SamutSongkram province for ecotourism.

Keywords: foreigner tourists, signified, semiotics, ecotourism

Procedia PDF Downloads 304
7544 The Potential for Maritime Tourism: An African Perspective

Authors: Lynn C. Jonas

Abstract:

The African continent is rich in coastal history, heritage, and culture, presenting immense potential for the development of maritime tourism. Shipping and its related components are generally associated with the maritime industry, and tourism’s link is to the various forms of nautical tourism. Activities may include cruising, yachting, visits to lighthouses, ports, harbors, and excursions to related sites of cultural, historical, or ecological significance. There have been hundreds of years of explorers leaving a string of shipwrecks along the various coastal areas on the continent in their pursuit of establishing trade routes between Europe, Africa, and the Far East. These shipwrecks present diving opportunities in artificial reefs and marine heritage to be explored in various ways in the maritime cultural zones. Along the South African coast, for example, six Portuguese shipwrecks highlight the Bartolomeu Dias legacy of exploration, and there are a number of warships in Tanzanian waters. Furthermore, decades of African countries being under colonized rule have left the continent with an intricate cultural heritage that is enmeshed in European language architecture interlinked with, in many instances, hard-fought independent littoral states. There is potential for coastal trails to be developed to follow these historical events as, at one point in history, France had colonized 35 African states, and subsequently, 32 African states were colonized by Britain. Countries such as Cameroon still have the legacy of Francophone versus Anglophone as a result of this shift in colonizers. Further to the colonized history of the African continent, there is an uncomfortable heritage of the slave trade history. To a certain extent, these coastal slave trade posts are being considered attractive to a niche tourism audience; however, there is potential for education and interpretive measures to grow this as a tourism product. Notwithstanding these potential opportunities, there are numerous challenges to consider, such as poor maritime infrastructure, maritime security concerns with issues such as piracy, transnational crimes including weapons and migrant smuggling, drug, and human trafficking. These and related maritime issues contribute to the concerns over the porous nature of African ocean gateways, adding to the security concerns for tourists. This theoretical paper will consider these trends and how they may contribute to the growth and development of maritime tourism on the African continent. African considerations of the growth potential of tourism in coastal and marine spaces are needed, particularly with a focus on embracing the continent's tumultuous past as part of its heritage. This has the potential to contribute to the creation of a sense of ownership of opportunities.

Keywords: coastal trade routes, maritime tourism, shipwrecks, slave trade routes

Procedia PDF Downloads 19
7543 The Relationship between Confidence, Accuracy, and Decision Making in a Mobile Review Program

Authors: Carla Van De Sande, Jana Vandenberg

Abstract:

Just like physical skills, cognitive skills grow rusty over time unless they are regularly used and practiced, so academic breaks can have negative consequences on student learning and success. The Keeping in School Shape (KiSS) program is an engaging, accessible, and cost-effective intervention that harnesses the benefits of retrieval practice by using technology to help students maintain proficiency over breaks from school by delivering a daily review problem via text message or email. A growth mindset is promoted through feedback messages encouraging students to try again if they get a problem wrong and to take on a challenging problem if they get a problem correct. This paper reports on the relationship between confidence, accuracy, and decision-making during the implementation of the KiSS Program at a large university during winter break for students enrolled in an engineering introductory Calculus course sequence.

Keywords: growth mindset, learning loss, on-the-go learning, retrieval practice

Procedia PDF Downloads 204