Search results for: industrial design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15185

Search results for: industrial design

13115 Issues and Challenges of Planning in Commercial Business Districts of Farukh Nagar in Gurugram, Harayana, India

Authors: Adedayo Jeremiah Adeyekun, Samuel Oluwagbemiga Ishola

Abstract:

This research paper focuses on the study of the master plan of rural Farrukhnagar, a town in Gurugram with an aim to proffer solutions to the problems associated with the planning of the town. The commercial zone has been selected for the case study. The findings from the case studies will reveal problems that will require a proposed design of a new ultra-modern market to position traders selling along the road in well-deserved stalls, waste disposal/incinerator system for proper management of waste and cleanliness within the market square, design of stormwater drainage to avoid flood during the rainy season and the design of car/auto – tricycle parks to create more space in the existing market cycle and thereby avoiding congestion. The research proposes urban and architectural solutions to improve the rural commercial service settings in Farrukhnagar which is a study area in Gurugram, Haryana, India.

Keywords: management, commercial, service, planning, congestion

Procedia PDF Downloads 232
13114 Estimating the Properties of Polymer Concrete Using the Response Surface Method

Authors: Oguz Ugurkan Akkaya, Alpaslan Sipahi, Ozgur Firat Pamukcu, Murat Yasar, Tolga Guler, Arif Ulu, Ferit Cakir

Abstract:

With the increase in human population, expansion, and renovation of cities, infrastructure systems today need to be manufactured to be more durable and long-lasting. The most cost-effective and durable manufacturing of components is a general problem of all engineering disciplines. Therefore, it is important to determine the most optimal components. This study mainly focuses on the most optimal component design of the polymer concrete. For this purpose, the lower and upper limits of the three main components of the polymer concrete are determined. The effects of these three principal components on the compressive strength, tensile strength, and unit price of polymer concrete are estimated using the response surface method. Box-Behnken Design is used in designing the experiments. Compressive strength, tensile strength, and unit prices are successfully estimated with variance ratios (R²) of 0.82, 0.92, and 0.90, respectively, and the optimum mixture quantity is determined.

Keywords: Box-Behnken Design, compressive strength, mechanical tests, polymer concrete, tensile strength

Procedia PDF Downloads 171
13113 A Design-Based Approach to Developing a Mobile Learning System

Authors: Martina Holenko Dlab, Natasa Hoic-Bozic, Ivica Boticki

Abstract:

This paper presents technologically innovative and scalable mobile learning solution within the SCOLLAm project (“Opening up education through Seamless and COLLAborative mobile learning on tablet computers”). The main research method applied during the development of the SCOLLAm mobile learning system is design-based research. It assumes iterative refinement of the system guided by collaboration between researches and practitioners. Following the identification of requirements, a multiplatform mobile learning system SCOLLAm [in]Form was developed. Several experiments were designed and conducted in the first and second grade of elementary school. SCOLLAm [in]Form system was used to design learning activities for math classes during which students practice calculation. System refinements were based on experience and interaction data gathered during class observations. In addition to implemented improvements, the data were used to outline possible improvements and deficiencies of the system that should be addressed in the next phase of the SCOLLAm [in]Form development.

Keywords: adaptation, collaborative learning, educational technology, mobile learning, tablet computers

Procedia PDF Downloads 272
13112 The Effect of PM10 Dispersion from Industrial, Residential and Commercial Areas in Arid Environment

Authors: Meshari Al-Harbi

Abstract:

A comparative area-season-elemental-wise time series analysis by Dust Track monitor (2012-2013) revealed high PM10 dispersion in the outdoor environment in the sequence of industrial> express highways>residential>open areas. Time series analysis from 7AM-6AM (until next day), 30d (monthly), 3600sec. (for any given period of a month), and 12 months (yearly) showed peak PM10 dispersion during 1AM-7AM, 1d-4d and 25d-31d of every month, 1500-3600 with the exception in PM10 dispersion in residential areas, and in the months-March to June, respectively. This time-bound PM10 dispersion suggests the primary influence of human activities (peak mobility and productivity period for a given time frame) besides the secondary influence of meteorological parameters (high temperature and wind action) and, occasional dust storms. Whereas, gravimetric analysis reveals the influence of precipitation, low temperature and low volatility resulting high trace metals in PM10 during winter than in summer and primarily attributes to the influence of nature besides, the secondary attributes of smoke stack emission from various industries and automobiles. Furthermore, our study recommends residents to limit outdoor air pollution exposures and take precautionary measures to inhale PM10 pollutants from the atmosphere.

Keywords: aerosol, pollution, respirable particulates, trace-metals

Procedia PDF Downloads 307
13111 A Future Urban Street Design in Baltimore, Maryland Based on a Hierarchy of Functional Needs and the Context of Autonomous Vehicles, Green Infrastructure, and Evolving Street Typologies

Authors: Samuel Quick

Abstract:

The purpose of this paper is to examine future urban street design in the context of developing technologies, evolving street typologies, and projected transportation trends. The goal was to envision a future urban street in the year 2060 that addresses the advent and implementation of autonomous vehicles, the promotion of new street typologies, and the projection of current transportation trends. Using a hierarchy of functional needs for urban streets, the future street was designed and evaluated based on the functions the street provides to the surrounding community. The site chosen for the future street design is an eight-block section of West North Avenue in the city of Baltimore, Maryland. Three different conceptual designs were initially completed and evaluated leading to a master plan for West North Avenue as well as street designs for connecting streets that represent different existing street types. Final designs were compared with the existing street design and evaluated with the adapted ‘Hierarchy of Needs’ theory. The review of the literature and the results from this paper indicate that urban streets will have to become increasingly multi-functional to meet the competing needs of the environment and community. Future streets will have to accommodate multimodal transit which will include mass transit, walking, and biking. Furthermore, a comprehensive implementation of green infrastructure within the urban street will provide access to nature for urban communities and essential stormwater management. With these developments, the future of an urban street will move closer to a greenway typology. Findings from this study indicate that urban street design will have to be policy-driven to promote and implement autonomous bus-rapid-transit in order to conserve street space for other functions. With this conservation of space, urban streets can then provide more functions to the surrounding community, taking a holistic approach to urban street design.

Keywords: autonomous vehicle, greenway, green infrastructure, multi-modality, street typology

Procedia PDF Downloads 183
13110 Theoretical Study of Structural Parameters, Chemical Reactivity and Spectral and Thermodynamical Properties of Organometallic Complexes Containing Zinc, Nickel and Cadmium with Nitrilotriacetic Acid and Tea Ligands: Density Functional Theory Investigation

Authors: Nour El Houda Bensiradj, Nafila Zouaghi, Taha Bensiradj

Abstract:

The pollution of water resources is characterized by the presence of microorganisms, chemicals, or industrial waste. Generally, this waste generates effluents containing large quantities of heavy metals, making the water unsuitable for consumption and causing the death of aquatic life and associated biodiversity. Currently, it is very important to assess the impact of heavy metals in water pollution as well as the processes for treating and reducing them. Among the methods of water treatment and disinfection, we mention the complexation of metal ions using ligands which serve to precipitate and subsequently eliminate these ions. In this context, we are interested in the study of complexes containing heavy metals such as zinc, nickel, and cadmium, which are present in several industrial discharges and are discharged into water sources. We will use the ligands of triethanolamine (TEA) and nitrilotriacetic acid (NTA). The theoretical study is based on molecular modeling, using the density functional theory (DFT) implemented in the Gaussian 09 program. The geometric and energetic properties of the above complexes will be calculated. Spectral properties such as infrared, as well as reactivity descriptors, and thermodynamic properties such as enthalpy and free enthalpy will also be determined.

Keywords: heavy metals, NTA, TEA, DFT, IR, reactivity descriptors

Procedia PDF Downloads 101
13109 Analysis of Waterjet Propulsion System for an Amphibious Vehicle

Authors: Nafsi K. Ashraf, C. V. Vipin, V. Anantha Subramanian

Abstract:

This paper reports the design of a waterjet propulsion system for an amphibious vehicle based on circulation distribution over the camber line for the sections of the impeller and stator. In contrast with the conventional waterjet design, the inlet duct is straight for water entry parallel and in line with the nozzle exit. The extended nozzle after the stator bowl makes the flow more axial further improving thrust delivery. Waterjet works on the principle of volume flow rate through the system and unlike the propeller, it is an internal flow system. The major difference between the propeller and the waterjet occurs at the flow passing the actuator. Though a ducted propeller could constitute the equivalent of waterjet propulsion, in a realistic situation, the nozzle area for the Waterjet would be proportionately larger to the inlet area and propeller disc area. Moreover, the flow rate through impeller disk is controlled by nozzle area. For these reasons the waterjet design is based on pump systems rather than propellers and therefore it is important to bring out the characteristics of the flow from this point of view. The analysis is carried out using computational fluid dynamics. Design of waterjet propulsion is carried out adapting the axial flow pump design and performance analysis was done with three-dimensional computational fluid dynamics (CFD) code. With the varying environmental conditions as well as with the necessity of high discharge and low head along with the space confinement for the given amphibious vehicle, an axial pump design is suitable. The major problem of inlet velocity distribution is the large variation of velocity in the circumferential direction which gives rise to heavy blade loading that varies with time. The cavitation criteria have also been taken into account as per the hydrodynamic pump design. Generally, waterjet propulsion system can be parted into the inlet, the pump, the nozzle and the steering device. The pump further comprises an impeller and a stator. Analytical and numerical approaches such as RANSE solver has been undertaken to understand the performance of designed waterjet propulsion system. Unlike in case of propellers the analysis was based on head flow curve with efficiency and power curves. The modeling of the impeller is performed using rigid body motion approach. The realizable k-ϵ model has been used for turbulence modeling. The appropriate boundary conditions are applied for the domain, domain size and grid dependence studies are carried out.

Keywords: amphibious vehicle, CFD, impeller design, waterjet propulsion

Procedia PDF Downloads 228
13108 Modeling and Analysis of a Cycling Prosthetic

Authors: John Tolentino, Yong Seok Park

Abstract:

There are currently many people living with limb loss in the USA. The main causes for amputation can range from vascular disease, to trauma, or cancer. This number is expected increase over the next decade. Many patients have a single prosthetic for the first year but end up getting a second one to accommodate their changing physique. Afterwards, the prosthesis gets replaced every three to five years depending on how often it is used. This could cost the patient up to $500,000 throughout their lifetime. Complications do not end there, however. Due to the absence of nerves, it becomes more difficult to traverse terrain with a prosthetic. Moving on an incline or decline becomes difficult, thus curbs and stairs can be a challenge. Certain physical activities, such as cycling, could be even more strenuous. It will need to be relearned to accommodate for the change in weight, center of gravity, and transfer of energy from the leg to the pedal. The purpose of this research project is to develop a new, alternate below-knee cycling prosthetic using Dieter & Schmidt’s design process approach. It will be subjected to fatigue analysis under dynamic loading to observe the limitations as well as the strengths and weaknesses of the prosthetic. Benchmark comparisons will be made between existing prosthetics and the proposed one, examining the benefits and disadvantages. The resulting prosthetic will be 3D printed using acrylonitrile butadiene styrene (ABS) or polycarbonate (PC) plastic.

Keywords: 3D Printing, Cycling, Prosthetic design, Synthetic design.

Procedia PDF Downloads 142
13107 The Design of a Mixed Matrix Model for Activity Levels Extraction and Sub Processes Classification of a Work Project (Case: Great Tehran Electrical Distribution Company)

Authors: Elham Allahmoradi, Bahman Allahmoradi, Ali Bonyadi Naeini

Abstract:

Complex systems have many aspects. A variety of methods have been developed to analyze these systems. The most efficient of these methods should not only be simple, but also provide useful and comprehensive information about many aspects of the system. Matrix methods are considered the most commonly methods used to analyze and design systems. Each matrix method can examine a particular aspect of the system. If these methods are combined, managers can access to more comprehensive and broader information about the system. This study was conducted in four steps. In the first step, a process model of a real project has been extracted through IDEF3. In the second step, activity levels have been attained by writing a process model in the form of a design structure matrix (DSM) and sorting it through triangulation algorithm (TA). In the third step, sub-processes have been obtained by writing the process model in the form of an interface structure matrix (ISM) and clustering it through cluster identification algorithm (CIA). In the fourth step, a mixed model has been developed to provide a unified picture of the project structure through the simultaneous presentation of activities and sub-processes. Finally, the paper is completed with a conclusion.

Keywords: integrated definition for process description capture (IDEF3) method, design structure matrix (DSM), interface structure matrix (ism), mixed matrix model, activity level, sub-process

Procedia PDF Downloads 494
13106 Failure Statistics Analysis of China’s Spacecraft in Full-Life

Authors: Xin-Yan Ji

Abstract:

The historical failures data of the spacecraft is very useful to improve the spacecraft design and the test philosophies and reduce the spacecraft flight risk. A study of spacecraft failures data was performed, which is the most comprehensive statistics of spacecrafts in China. 2593 on-orbit failures data and 1298 ground data that occurred on 150 spacecraft launched from 2000 to 2016 were identified and collected, which covered the navigation satellites, communication satellites, remote sensing deep space exploration manned spaceflight platforms. In this paper, the failures were analyzed to compare different spacecraft subsystem and estimate their impact on the mission, then the development of spacecraft in China was evaluated from design, software, workmanship, management, parts, and materials. Finally, the lessons learned from the past years show that electrical and mechanical failures are responsible for the largest parts, and the key solution to reduce in-orbit failures is improving design technology, enough redundancy, adequate space environment protection measures, and adequate ground testing.

Keywords: spacecraft anomalies, anomalies mechanism, failure cause, spacecraft testing

Procedia PDF Downloads 117
13105 Experimental Investigation and Optimization of Nanoparticle Mass Concentration and Heat Input of Loop Heat Pipe

Authors: P. Gunnasegaran, M. Z. Abdullah, M. Z. Yusoff, Nur Irmawati

Abstract:

This study presents experimental and optimization of nanoparticle mass concentration and heat input based on the total thermal resistance (Rth) of loop heat pipe (LHP), employed for PC-CPU cooling. In this study, silica nanoparticles (SiO2) in water with particle mass concentration ranged from 0% (pure water) to 1% is considered as the working fluid within the LHP. The experimental design and optimization is accomplished by the design of the experimental tool, Response Surface Methodology (RSM). The results show that the nanoparticle mass concentration and the heat input have a significant effect on the Rth of LHP. For a given heat input, the Rth is found to decrease with the increase of the nanoparticle mass concentration up to 0.5% and increased thereafter. It is also found that the Rth is decreased when the heat input is increased from 20W to 60W. The results are optimized with the objective of minimizing the Rt, using Design-Expert software, and the optimized nanoparticle mass concentration and heat input are 0.48% and 59.97W, respectively, the minimum thermal resistance being 2.66(ºC/W).

Keywords: loop heat pipe, nanofluid, optimization, thermal resistance

Procedia PDF Downloads 461
13104 The Impact of Management Competency, Project Team, and Process Design to Corporate Performance through Implementing the Self-Development ERP

Authors: Zeplin Jiwa Husada Tarigan, Sautma Ronni Basana, Widjojo Suprapto

Abstract:

Manufacturing companies in East Java develop their own ERP system or alter the ERP system which is developed by other companies to suit their needs. To make their own system, the companies mostly assign several employees from various departments to create a project team, and the employees are from the departments that are going to utilize the ERP system as the integrated data. The project team decides the making of the ERP system from the preparation stage until the going live implementation process. In designing the business process, the top management is working together with the project team until the project is accomplished. The completion of the ERP projects depends on the project to be undertaken itself, the strategy chosen to complete the project, the work method selection, the measurement system to monitor the project, the evaluation system of the project, and, in the end, the declaration of 'going live' of the ERP project. There is an increase in the business performance for the companies that have implemented the information technology or ERP as they manage to integrate all management functions within their companies. To investigate, some questionnaires are distributed to 100 manufacturing companies, and 90 questionnaires are returned; however, there are only 46 companies that develop their own ERP system, so the response rate is 46%. The result of data analysis using PLS shows that the management competency brings impacts to the project team and the process design. The process design is adjusted to the real process in order to implement the ERP, but it does not bring direct impacts to the business performance. The implementation of ERP brings positive impacts to the company business performance.

Keywords: management competency, project team, process design, ERP implementation, business performance

Procedia PDF Downloads 218
13103 Influence of Loading Pattern and Shaft Rigidity on Laterally Loaded Helical Piles in Cohesion-Less Soil

Authors: Mohamed Hesham Hamdy Abdelmohsen, Ahmed Shawky Abdul Aziz, Mona Fawzy Al-Daghma

Abstract:

Helical piles are widely used as axially and laterally loaded deep foundations. Once they are required to resist bearing combined loads (BCLs), as axial compression and lateral thrust, different behaviour is expected, necessitating further investigation. The objective of the present article is to clarify the behaviour of a single helical pile of different shaft rigidity embedded in cohesion-less soil and subjected to simultaneous or successive loading patterns of BCLs. The study was first developed analytically and extended numerically. The numerical analysis was further verified through a laboratory experimental program on a set of helical pile models. The results indicate highly interactive effects of the studied parameters, but it is obviously confirmed that the pile performance increases with both the increase of shaft rigidity and the change of BCLs loading pattern from simultaneous to successive. However, it is noted that the increase of vertical load does not always enhance the lateral capacity but may cause a decrement in lateral capacity, as observed with helical piles of flexible shafts. This study provides insightful information for the design of helical piles in structures loaded by complex sequence of forces, wind turbines, and industrial shafts.

Keywords: helical pile, lateral loads, combined loads, cohesion-less soil, analytical, numerical

Procedia PDF Downloads 65
13102 Lockit: A Logic Locking Automation Software

Authors: Nemanja Kajtez, Yue Zhan, Basel Halak

Abstract:

The significant rise in the cost of manufacturing of nanoscale integrated circuits (IC) has led the majority of IC design companies to outsource the fabrication of their products to other companies, often located in different countries. This multinational nature of the hardware supply chain has led to a host of security threats, including IP piracy, IC overproduction, and Trojan insertion. To combat that, researchers have proposed logic locking techniques to protect the intellectual properties of the design and increase the difficulty of malicious modification of its functionality. However, the adoption of logic locking approaches is rather slow due to the lack of the integration with IC production process and the lack of efficacy of existing algorithms. This work automates the logic locking process by developing software using Python that performs the locking on a gate-level netlist and can be integrated with the existing digital synthesis tools. Analysis of the latest logic locking algorithms has demonstrated that the SFLL-HD algorithm is one of the most secure and versatile in trading-off levels of protection against different types of attacks and was thus selected for implementation. The presented tool can also be expanded to incorporate the latest locking mechanisms to keep up with the fast-paced development in this field. The paper also presents a case study to demonstrate the functionality of the tool and how it could be used to explore the design space and compare different locking solutions. The source code of this tool is available freely from (https://www.researchgate.net/publication/353195333_Source_Code_for_The_Lockit_Tool).

Keywords: design automation, hardware security, IP piracy, logic locking

Procedia PDF Downloads 183
13101 Effects of in silico (Virtual Lab) And in vitro (inside the Classroom) Labs in the Academic Performance of Senior High School Students in General Biology

Authors: Mark Archei O. Javier

Abstract:

The Fourth Industrial Revolution (FIR) is a major industrial era characterized by the fusion of technologies that is blurring the lines between the physical, digital, and biological spheres. Since this era teaches us how to thrive in the fast-paced developing world, it is important to be able to adapt. With this, there is a need to make learning and teaching in the bioscience laboratory more challenging and engaging. The goal of the research is to find out if using in silico and in vitro laboratory activities compared to the conventional conduct laboratory activities would have positive impacts on the academic performance of the learners. The potential contribution of the research is that it would improve the teachers’ methods in delivering the content to the students when it comes to topics that need laboratory activities. This study will develop a method by which teachers can provide learning materials to the students. A one-tailed t-Test for independent samples was used to determine the significant difference in the pre- and post-test scores of students. The tests of hypotheses were done at a 0.05 level of significance. Based on the results of the study, the gain scores of the experimental group are greater than the gain scores of the control group. This implies that using in silico and in vitro labs for the experimental group is more effective than the conventional method of doing laboratory activities.

Keywords: academic performance, general biology, in silico laboratory, in vivo laboratory, virtual laboratory

Procedia PDF Downloads 189
13100 Budgetary Performance Model for Managing Pavement Maintenance

Authors: Vivek Hokam, Vishrut Landge

Abstract:

An ideal maintenance program for an industrial road network is one that would maintain all sections at a sufficiently high level of functional and structural conditions. However, due to various constraints such as budget, manpower and equipment, it is not possible to carry out maintenance on all the needy industrial road sections within a given planning period. A rational and systematic priority scheme needs to be employed to select and schedule industrial road sections for maintenance. Priority analysis is a multi-criteria process that determines the best ranking list of sections for maintenance based on several factors. In priority setting, difficult decisions are required to be made for selection of sections for maintenance. It is more important to repair a section with poor functional conditions which includes uncomfortable ride etc. or poor structural conditions i.e. sections those are in danger of becoming structurally unsound. It would seem therefore that any rational priority setting approach must consider the relative importance of functional and structural condition of the section. The maintenance priority index and pavement performance models tend to focus mainly on the pavement condition, traffic criteria etc. There is a need to develop the model which is suitably used with respect to limited budget provisions for maintenance of pavement. Linear programming is one of the most popular and widely used quantitative techniques. A linear programming model provides an efficient method for determining an optimal decision chosen from a large number of possible decisions. The optimum decision is one that meets a specified objective of management, subject to various constraints and restrictions. The objective is mainly minimization of maintenance cost of roads in industrial area. In order to determine the objective function for analysis of distress model it is necessary to fix the realistic data into a formulation. Each type of repair is to be quantified in a number of stretches by considering 1000 m as one stretch. A stretch considered under study is having 3750 m length. The quantity has to be put into an objective function for maximizing the number of repairs in a stretch related to quantity. The distress observed in this stretch are potholes, surface cracks, rutting and ravelling. The distress data is measured manually by observing each distress level on a stretch of 1000 m. The maintenance and rehabilitation measured that are followed currently are based on subjective judgments. Hence, there is a need to adopt a scientific approach in order to effectively use the limited resources. It is also necessary to determine the pavement performance and deterioration prediction relationship with more accurate and economic benefits of road networks with respect to vehicle operating cost. The infrastructure of road network should have best results expected from available funds. In this paper objective function for distress model is determined by linear programming and deterioration model considering overloading is discussed.

Keywords: budget, maintenance, deterioration, priority

Procedia PDF Downloads 207
13099 Changing Employment Relations Practices in Hong Kong: Cases of Two Multinational Retail Banks since 1997

Authors: Teresa Shuk-Ching Poon

Abstract:

This paper sets out to examine the changing employment relations practices in Hong Kong’s retail banking sector over a period of more than 10 years. The major objective of the research is to examine whether and to what extent local institutional influences have overshadowed global market forces in shaping strategic management decisions and employment relations practices in Hong Kong, with a view to drawing implications to comparative employment relations studies. Examining the changing pattern of employment relations, this paper finds the industrial relations strategic choice model (Kochan, McKersie and Cappelli, 1984) appropriate to use as a framework for the study. Four broad aspects of employment relations are examined, including work organisation and job design; staffing and labour adjustment; performance appraisal, compensation and employee development; and labour unions and employment relations. Changes in the employment relations practices in two multinational retail banks operated in Hong Kong are examined in detail. The retail banking sector in Hong Kong is chosen as a case to examine as it is a highly competitive segment in the financial service industry very much susceptible to global market influences. This is well illustrated by the fact that Hong Kong was hit hard by both the Asian and the Global Financial Crises. This sector is also subject to increasing institutional influences, especially after the return of Hong Kong’s sovereignty to the People’s Republic of China (PRC) since 1997. The case study method is used as it is a suitable research design able to capture the complex institutional and environmental context which is the subject-matter to be examined in the paper. The paper concludes that operation of the retail banks in Hong Kong has been subject to both institutional and global market changes at different points in time. Information obtained from the two cases examined tends to support the conclusion that the relative significance of institutional as against global market factors in influencing retail banks’ operation and their employment relations practices is depended very much on the time in which these influences emerged and the scale and intensity of these influences. This case study highlights the importance of placing comparative employment relations studies within a context where employment relations practices in different countries or different regions/cities within the same country could be examined and compared over a longer period of time to make the comparison more meaningful.

Keywords: employment relations, institutional influences, global market forces, strategic management decisions, retail banks, Hong Kong

Procedia PDF Downloads 402
13098 Case Study; Drilled Shafts Installation in Difficult Site Conditions; Loose Sand and High Water Table

Authors: Anthony El Hachem, Hosam Salman

Abstract:

Selecting the most effective construction method for drilled shafts under the high phreatic surface can be a challenging task that requires effective communication between the design and construction teams. Slurry placement, temporary casing, and permanent casing are the three most commonly used installation techniques to ensure the stability of the drilled hole before casting the concrete. Each one of these methods has its implications on the installation and performance of the drilled piers. Drilled shafts were designed to support a fire wall for an Energy project in Central Texas. The subsurface consisted of interlayers of sands and clays of varying shear strengths. The design recommended that the shafts be installed with temporary casing or slurry displacement due to the anticipated groundwater seepage through granular soils. During the foundation construction, it was very difficult to maintain the stability of the hole, and the contractor requested to install the shafts using permanent casings. Therefore, the foundation design was modified to ensure that the cased shafts achieve the required load capacity. Effective and continuous communications between the owner, contractor and design team during field shaft installations to mitigate the unforeseen challenges helped the team to successfully complete the project.

Keywords: construction challenges, deep foundations, drilled shafts, loose sands underwater table, permanent casing

Procedia PDF Downloads 193
13097 Enhancing Industrial Wastewater Treatment: Efficacy and Optimization of Ultrasound-Assisted Laccase Immobilized on Magnetic Fe₃O₄ Nanoparticles

Authors: K. Verma, v. S. Moholkar

Abstract:

In developed countries, water pollution caused by industrial discharge has emerged as a significant environmental concern over the past decades. However, despite ongoing efforts, a fully effective and sustainable remediation strategy has yet to be identified. This paper describes how enzymatic and sonochemical treatments have demonstrated great promise in degrading bio-refractory pollutants. Mainly, a compelling area of interest lies in the combined technique of sono-enzymatic treatment, which has exhibited a synergistic enhancement effect surpassing that of the individual techniques. This study employed the covalent attachment method to immobilize Laccase from Trametes versicolor onto amino-functionalized magnetic Fe₃O₄ nanoparticles. To comprehensively characterize the synthesized free nanoparticles and the laccase-immobilized nanoparticles, various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), and surface area through Brunauer-Emmett-Teller (BET) were employed. The size of immobilized Fe₃O₄@Laccase was found to be 60 nm, and the maximum loading of laccase was found to be 24 mg/g of nanoparticle. An investigation was conducted to study the effect of various process parameters, such as immobilized Fe₃O₄ Laccase dose, temperature, and pH, on the % Chemical oxygen demand (COD) removal as a response. The statistical design pinpointed the optimum conditions (immobilized Fe₃O₄ Laccase dose = 1.46 g/L, pH = 4.5, and temperature = 66 oC), resulting in a remarkable 65.58% COD removal within 60 minutes. An even more significant improvement (90.31% COD removal) was achieved with ultrasound-assisted enzymatic reaction utilizing a 10% duty cycle. The investigation of various kinetic models for free and immobilized laccase, such as the Haldane, Yano, and Koga, and Michaelis-Menten, showed that ultrasound application impacted the kinetic parameters Vmax and Km. Specifically, Vmax values for free and immobilized laccase were found to be 0.021 mg/L min and 0.045 mg/L min, respectively, while Km values were 147.2 mg/L for free laccase and 136.46 mg/L for immobilized laccase. The lower Km and higher Vmax for immobilized laccase indicate its enhanced affinity towards the substrate, likely due to ultrasound-induced alterations in the enzyme's confirmation and increased exposure of active sites, leading to more efficient degradation. Furthermore, the toxicity and Liquid chromatography-mass spectrometry (LC-MS) analysis revealed that after the treatment process, the wastewater exhibited 70% less toxicity than before treatment, with over 25 compounds degrading by more than 75%. At last, the prepared immobilized laccase had excellent recyclability retaining 70% activity up to 6 consecutive cycles. A straightforward manufacturing strategy and outstanding performance make the recyclable magnetic immobilized Laccase (Fe₃O₄ Laccase) an up-and-coming option for various environmental applications, particularly in water pollution control and treatment.

Keywords: kinetic, laccase enzyme, sonoenzymatic, ultrasound irradiation

Procedia PDF Downloads 67
13096 Revisiting Hospital Ward Design Basics for Sustainable Family Integration

Authors: Ibrahim Abubakar Alkali, Abubakar Sarkile Kawuwa, Ibrahim Sani Khalil

Abstract:

The concept of space and function forms the bedrock for spatial configuration in architectural design. Thus, the effectiveness and functionality of an architectural product depends their cordial relationship. This applies to all buildings especially to a hospital ward setting designed to accommodate various complex and diverse functions. Health care facilities design, especially an inpatient setting, is governed by many regulations and technical requirements. It is also affected by many less defined needs, particularly, response to culture and the need to provide for patient families’ presence and participation. The spatial configuration of the hospital ward setting in developing countries has no consideration for the patient’s families despite the significant role they play in promoting recovery. Attempts to integrate facilities for patients’ families have always been challenging, especially in developing countries like Nigeria, where accommodation for inpatients is predominantly in an open ward system. In addition, the situation is compounded by culture, which significantly dictates healthcare practices in Africa. Therefore, achieving such a hospital ward setting that is patient and family-centered requires careful assessment of family care actions and transaction spaces so as to arrive at an evidence based solution. Therefore, the aim of this study is to identify how hospital ward spaces can be reconfigured to provide for sustainable family integration. In achieving this aim, a qualitative approach using the principles of behavioral mapping was employed in male and female medical wards of the Federal Teaching Hospital (FTH) Gombe, Nigeria. The data obtained was analysed using classical and comparative content analysis. Patients’ families have been found to be a critical component of hospital ward design that cannot be undermined. Accordingly, bedsides, open yards, corridors and foyers have been identified as patient families’ transaction spaces that require design attention. Arriving at sustainable family integration can be achieved by revisiting the design requirements of the family transaction spaces based on the findings in order to avoid the rowdiness of the wards and uncoordinated sprawl.

Keywords: caregiving, design basics, family integration, hospital ward, sustainability

Procedia PDF Downloads 305
13095 Modeling of Induced Voltage in Disconnected Grounded Conductor of Three-Phase Power Line

Authors: Misho Matsankov, Stoyan Petrov

Abstract:

The paper presents the methodology and the obtained mathematical models for determining the value of the grounding resistance of a disconnected conductor in a three-phase power line, for which the contact voltage is safe, by taking into account the potentials, induced by the non-disconnected phase conductors. The mathematical models have been obtained by implementing the experimental design techniques.

Keywords: contact voltage, experimental design, induced voltage, safety

Procedia PDF Downloads 176
13094 Study and Design of Novel Structure of Circularly Polarized Dual Band Microstrip Antenna Fed by Hybrid Coupler for RFID Applications

Authors: M. Taouzari, A. Sardi, J. El Aoufi, Ahmed Mouhsen

Abstract:

The purpose of this work is to design a reader antenna fed by 90° hybrid coupler that would ensure a tag which is detected regardless of its orientation for the radio frequency identification system covering the UHF and ISM bands frequencies. Based on this idea, the proposed work is dividing in two parts, first part is about study and design hybrid coupler using the resonators planar called T-and Pi networks operating in commercial bands. In the second part, the proposed antenna fed by the hybrid coupler is designed on FR4 substrate with dielectric permittivity 4.4, thickness dielectric 1.6mm and loss tangent 0.025. The T-slot is inserted in patch of the proposed antenna fed by the hybrid coupler is first designed, optimized and simulated using electromagnetic simulator ADS and then simulated in a full wave simulation software CST Microwave Studio. The simulated antenna by the both softwares achieves the expected performances in terms of matching, pattern radiation, phase shifting, gain and size.

Keywords: dual band antenna, RFID, hybrid coupler, polarization, radiation pattern

Procedia PDF Downloads 131
13093 Formal Verification of Cache System Using a Novel Cache Memory Model

Authors: Guowei Hou, Lixin Yu, Wei Zhuang, Hui Qin, Xue Yang

Abstract:

Formal verification is proposed to ensure the correctness of the design and make functional verification more efficient. As cache plays a vital role in the design of System on Chip (SoC), and cache with Memory Management Unit (MMU) and cache memory unit makes the state space too large for simulation to verify, then a formal verification is presented for such system design. In the paper, a formal model checking verification flow is suggested and a new cache memory model which is called “exhaustive search model” is proposed. Instead of using large size ram to denote the whole cache memory, exhaustive search model employs just two cache blocks. For cache system contains data cache (Dcache) and instruction cache (Icache), Dcache memory model and Icache memory model are established separately using the same mechanism. At last, the novel model is employed to the verification of a cache which is module of a custom-built SoC system that has been applied in practical, and the result shows that the cache system is verified correctly using the exhaustive search model, and it makes the verification much more manageable and flexible.

Keywords: cache system, formal verification, novel model, system on chip (SoC)

Procedia PDF Downloads 496
13092 Biosensor Design through Molecular Dynamics Simulation

Authors: Wenjun Zhang, Yunqing Du, Steven W. Cranford, Ming L. Wang

Abstract:

The beginning of 21st century has witnessed new advancements in the design and use of new materials for biosensing applications, from nano to macro, protein to tissue. Traditional analytical methods lack a complete toolset to describe the complexities introduced by living systems, pathological relations, discrete hierarchical materials, cross-phase interactions, and structure-property dependencies. Materiomics – via systematic molecular dynamics (MD) simulation – can provide structure-process-property relations by using a materials science approach linking mechanisms across scales and enables oriented biosensor design. With this approach, DNA biosensors can be utilized to detect disease biomarkers present in individuals’ breath such as acetone for diabetes. Our wireless sensor array based on single-stranded DNA (ssDNA)-decorated single-walled carbon nanotubes (SWNT) has successfully detected trace amount of various chemicals in vapor differentiated by pattern recognition. Here, we present how MD simulation can revolutionize the way of design and screening of DNA aptamers for targeting biomarkers related to oral diseases and oral health monitoring. It demonstrates great potential to be utilized to build a library of DNDA sequences for reliable detection of several biomarkers of one specific disease, and as well provides a new methodology of creating, designing, and applying of biosensors.

Keywords: biosensor, DNA, biomarker, molecular dynamics simulation

Procedia PDF Downloads 463
13091 Augmented Reality to Support the Design of Innovative Agroforestry Systems

Authors: Laetitia Lemiere, Marie Gosme, Gerard Subsol, Marc Jaeger

Abstract:

Agroforestry is recognized as a way of developing sustainable and resilient agriculture that can fight against climate change. However, the number of species combinations, spatial configurations, and management options for trees and crops is vast. These choices must be adapted to the pedoclimatic and socio-economic contexts and to the objectives of the farmer, who therefore needs support in designing his system. Participative design workshops are a good way to integrate the knowledge of several experts in order to design such complex systems. The design of agroforestry systems should take into account both spatial aspects (e.g., spacing of trees within the lines and between lines, tree line orientation, tree-crop distance, species spatial patterns) and temporal aspects (e.g., crop rotations, tree thinning and pruning, tree planting in the case of successional agroforestry). Furthermore, the interactions between trees and crops evolve as the trees grow. However, agroforestry design workshops generally emphasize the spatial aspect only through the use of static tokens to represent the different species when designing the spatial configuration of the system. Augmented reality (AR) may overcome this limitation, allowing to visualize dynamic representations of trees and crops, and also their interactions, while at the same time retaining the possibility to physically interact with the system being designed (i.e., move trees, add or remove species, etc.). We propose an ergonomic digital solution capable of assisting a group of agroforestry experts to design an agroforestry system and to represent it. We investigated the use of web-based marker-based AR that does not require specific hardware and does not require specific installation so that all users could use their own smartphones right out of the pocket. We developed a prototype mobilizing the AR.js, ArToolKit.js, and Three.js open source libraries. In our implementation, we gradually build a virtual agroforestry system pattern scene from the users' interactions. A specific set of markers initialize the scene properties, and the various plant species are added and located during the workshop design session. The full virtual scene, including the trees positions with their neighborhood, are saved for further uses, such as virtual, augmented instantiation in the farmer fields. The number of tree species available in the application is gradually increasing; we mobilize 3D digital models for walnut, poplar, wild cherry, and other popular species used in agroforestry systems. The prototype allows shadow computations and the representation of trees at various growth stages, as well as different tree generations, and is thus able to visualize the dynamics of the system over time. Future work will focus on i) the design of complex patterns mobilizing several tree/shrub organizations, not restricted to lines; ii) the design of interfaces related to cultural practices, such as clearing or pruning; iii) the representation of tree-crop interactions. Beside tree shade (light competition), our objective is to represent also below-ground competitions (water, nitrogen) or other variables of interest for the design of agroforestry systems (e.g., predicted crop yield).

Keywords: agroforestry system design, augmented reality, marker-based AR, participative design, web-based AR

Procedia PDF Downloads 175
13090 Analyses and Optimization of Physical and Mechanical Properties of Direct Recycled Aluminium Alloy (AA6061) Wastes by ANOVA Approach

Authors: Mohammed H. Rady, Mohd Sukri Mustapa, S Shamsudin, M. A. Lajis, A. Wagiman

Abstract:

The present study is aimed at investigating microhardness and density of aluminium alloy chips when subjected to various settings of preheating temperature and preheating time. Three values of preheating temperature were taken as 450 °C, 500 °C, and 550 °C. On the other hand, three values of preheating time were chosen (1, 2, 3) hours. The influences of the process parameters (preheating temperature and time) were analyzed using Design of Experiments (DOE) approach whereby full factorial design with center point analysis was adopted. The total runs were 11 and they comprise of two factors of full factorial design with 3 center points. The responses were microhardness and density. The results showed that the density and microhardness increased with decreasing the preheating temperature. The results also found that the preheating temperature is more important to be controlled rather than the preheating time in microhardness analysis while both the preheating temperature and preheating time are important in density analysis. It can be concluded that setting temperature at 450 °C for 1 hour resulted in the optimum responses.

Keywords: AA6061, density, DOE, hot extrusion, microhardness

Procedia PDF Downloads 349
13089 Nonlinear Observer Canonical Form for Genetic Regulation Process

Authors: Bououden Soraya

Abstract:

This paper aims to study the existence of the change of coordinates which permits to transform a class of nonlinear dynamical systems into the so-called nonlinear observer canonical form (NOCF). Moreover, an algorithm to construct such a change of coordinates is given. Based on this form, we can design an observer with a linear error dynamic. This enables us to estimate the state of a nonlinear dynamical system. A concrete example (biological model) is provided to illustrate the feasibility of the proposed results.

Keywords: nonlinear observer canonical form, observer, design, gene regulation, gene expression

Procedia PDF Downloads 433
13088 Structural Testing and the Finite Element Modelling of Anchors Loaded Against Partially Confined Surfaces

Authors: Ali Karrech, Alberto Puccini, Ben Galvin, Davide Galli

Abstract:

This paper summarises the laboratory tests, numerical models and statistical approach developed to investigate the behaviour of concrete blocks loaded in shear through metallic anchors. This research is proposed to bridge a gap in the state of the art and practice related to anchors loaded against partially confined concrete surfaces. Eight concrete blocks (420 mm x 500 mm x 1000 mm) with 150 and/or 250 deep anchors were tested. The stainless-steel anchors of diameter 16 mm were bonded with HIT-RE 500 V4 injection epoxy resin and were subjected to shear loading against partially supported edges. In addition, finite element models were constructed to validate the laboratory tests and explore the influence of key parameters such as anchor depth, anchor distance from the edge, and compressive strength on the stability of the block. Upon their validation experimentally, the numerical results were used to populate, develop and interpret a systematic parametric study based on the Design of Experiment approach through the Box-Behnken design and Response Surface Methodology. An empirical model has been derived based on this approach, which predicts the load capacity with the desirable intervals of confidence.

Keywords: finite element modelling, design of experiment, response surface methodology, Box-Behnken design, empirical model, interval of confidence, load capacity

Procedia PDF Downloads 24
13087 Designing Agile Product Development Processes by Transferring Mechanisms of Action Used in Agile Software Development

Authors: Guenther Schuh, Michael Riesener, Jan Kantelberg

Abstract:

Due to the fugacity of markets and the reduction of product lifecycles, manufacturing companies from high-wage countries are nowadays faced with the challenge to place more innovative products within even shorter development time on the market. At the same time, volatile customer requirements have to be satisfied in order to successfully differentiate from market competitors. One potential approach to address the explained challenges is provided by agile values and principles. These agile values and principles already proofed their success within software development projects in the form of management frameworks like Scrum or concrete procedure models such as Extreme Programming or Crystal Clear. Those models lead to significant improvements regarding quality, costs and development time and are therefore used within most software development projects. Motivated by the success within the software industry, manufacturing companies have tried to transfer agile mechanisms of action to the development of hardware products ever since. Though first empirical studies show similar effects in the agile development of hardware products, no comprehensive procedure model for the design of development iterations has been developed for hardware development yet due to different constraints of the domains. For this reason, this paper focusses on the design of agile product development processes by transferring mechanisms of action used in agile software development towards product development. This is conducted by decomposing the individual systems 'product development' and 'agile software development' into relevant elements and symbiotically composing the elements of both systems in respect of the design of agile product development processes afterwards. In a first step, existing product development processes are described following existing approaches of the system theory. By analyzing existing case studies from industrial companies as well as academic approaches, characteristic objectives, activities and artefacts are identified within a target-, action- and object-system. In partial model two, mechanisms of action are derived from existing procedure models of agile software development. These mechanisms of action are classified in a superior strategy level, in a system level comprising characteristic, domain-independent activities and their cause-effect relationships as well as in an activity-based element level. Within partial model three, the influence of the identified agile mechanism of action towards the characteristic system elements of product development processes is analyzed. For this reason, target-, action- and object-system of the product development are compared with the strategy-, system- and element-level of agile mechanism of action by using the graph theory. Furthermore, the necessity of existence of activities within iteration can be determined by defining activity-specific degrees of freedom. Based on this analysis, agile product development processes are designed in form of different types of iterations within a last step. By defining iteration-differentiating characteristics and their interdependencies, a logic for the configuration of activities, their form of execution as well as relevant artefacts for the specific iteration is developed. Furthermore, characteristic types of iteration for the agile product development are identified.

Keywords: activity-based process model, agile mechanisms of action, agile product development, degrees of freedom

Procedia PDF Downloads 207
13086 Genetically Modified Fuel-Ethanol Industrial Yeast Strains as Biocontrol Agents

Authors: Patrícia Branco, Catarina Prista, Helena Albergaria

Abstract:

Industrial fuel-ethanol fermentations are carried out under non-sterile conditions, which favors the development of microbial contaminants, leading to huge economic losses. Wild yeasts such as Brettanomyces bruxellensis and lactic acid bacteria are the main contaminants of industrial bioethanol fermentation, affecting Saccharomyces cerevisiae performance and decreasing ethanol yields and productivity. In order to control microbial contaminations, the fuel-ethanol industry uses different treatments, including acid washing and antibiotics. However, these control measures carry environmental risks such as acid toxicity and the rise of antibiotic-resistant bacteria. Therefore, it is crucial to develop and apply less toxic and more environmentally friendly biocontrol methods. In the present study, an industrial fuel-ethanol starter, S. cerevisiae Ethanol-Red, was genetically modified to over-express AMPs with activity against fuel-ethanol microbial contaminants and evaluated regarding its biocontrol effect during mixed-culture alcoholic fermentations artificially contaminated with B. bruxellensis. To achieve this goal, S. cerevisiae Ethanol-Red strain was transformed with a plasmid containing the AMPs-codifying genes, i.e., partial sequences of TDH1 (925-963 bp) and TDH2/3 (925-963 bp) and a geneticin resistance marker. The biocontrol effect of those genetically modified strains was evaluated against B. bruxellensis and compared with the antagonistic effect exerted by the modified strain with an empty plasmid (without the AMPs-codifying genes) and the non-modified strain S. cerevisiae Ethanol-Red. For that purpose, mixed-culture alcoholic fermentations were performed in a synthetic must use the modified S. cerevisiae Ethanol-Red strains together with B. bruxellensis. Single-culture fermentations of B. bruxellensis strains were also performed as a negative control of the antagonistic effect exerted by S. cerevisiae strains. Results clearly showed an improved biocontrol effect of the genetically-modified strains against B. bruxellensis when compared with the modified Ethanol-Red strain with the empty plasmid (without the AMPs-codifying genes) and with the non-modified Ethanol-Red strain. In mixed-culture fermentation with the modified S. cerevisiae strain, B. bruxellensis culturability decreased from 5×104 CFU/mL on day-0 to less than 1 CFU/mL on day-10, while in single-culture B. bruxellensis increased its culturability from 6×104 to 1×106 CFU/mL in the first 6 days and kept this value until day-10. Besides, the modified Ethanol-Red strain exhibited an enhanced antagonistic effect against B. bruxellensis when compared with that induced by the non-modified Ethanol-Red strain. Indeed, culturability loss of B. bruxellensis after 10 days of fermentation with the modified Ethanol-Red strain was 98.7 and 100% higher than that occurred in fermentations performed with the non-modified Ethanol-Red and the empty-plasmid modified strain, respectively. Therefore, one can conclude that the S. cerevisiae genetically modified strain obtained in the present work may be a valuable solution for the mitigation of microbial contamination in fuel-ethanol fermentations, representing a much safer and environmentally friendly preservation strategy than the antimicrobial treatments (acid washing and antibiotics) currently applied in fuel-ethanol industry.

Keywords: antimicrobial peptides, fuel-ethanol microbial contaminations, fuel-ethanol fermentation, biocontrol agents, genetically-modified yeasts

Procedia PDF Downloads 99