Search results for: adaptive robust rbf neural network approximation
5762 “Ethiopian Approach” to Combating Desertification: The Case of Semi-Arid Savanna Grasslands in Southern Ethiopia
Authors: Wang Yongdong, Yeneayehu Fenetahun, You Yuan, Ogbue Chukwuka, Yahaya Ibrahim, Xu Xinwen
Abstract:
This paper explores an innovative Ethiopian approach to combatting desertification, focusing on the semi-arid savanna grasslands in Southern Ethiopia. The study investigates the multifaceted strategies employed by Ethiopian communities, governmental bodies, and non-governmental organizations to address desertification challenges in the region. Through an analysis of legislative frameworks, community engagement, afforestation programs, and sustainable land management techniques, this research highlights the efficacy of Ethiopia's strategy in reducing the effects of desertification. The results emphasize how crucial it is to build effective measures for halting desertification in fragile ecosystems by utilizing local knowledge, community involvement, and adaptive governance. In addition, this study also addresses how the Ethiopian approach may be applied to other areas with comparable environmental problems. In summary, this research adds significant perspectives to the worldwide conversation about desertification and provides useful guidance for sustainable land use.Keywords: adaptive governance, community engagement, desertification, policy frameworks
Procedia PDF Downloads 445761 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement
Procedia PDF Downloads 945760 MegaProjects and the Governing Processes That Lead to Success and Failure: A Literature Review
Authors: Fangwei Zhu, Wei Tian, Linzhuo Wang, Miao Yu
Abstract:
Megaproject has long been a critical issue in project governance, for its low success rate and large impact on society. Although the extant literature on megaproject governance is vast, to our best knowledge, the lacking of a thorough literature review makes it hard for us to gain a holistic view on current scenario of megaproject governance. The study conducts a systematic literature review process to analyze the existing literatures on megaproject governance. The finding indicates that mega project governance needs to be handled at network level and forming a network level governance provides a holistic framework for governing megaproject towards sustainable development of the projects. Theoretical and practical implications, as well as future studies and limitations, were discussed.Keywords: megaproject, governance, literature review, network
Procedia PDF Downloads 2005759 Enhancing Athlete Training using Real Time Pose Estimation with Neural Networks
Authors: Jeh Patel, Chandrahas Paidi, Ahmed Hambaba
Abstract:
Traditional methods for analyzing athlete movement often lack the detail and immediacy required for optimal training. This project aims to address this limitation by developing a Real-time human pose estimation system specifically designed to enhance athlete training across various sports. This system leverages the power of convolutional neural networks (CNNs) to provide a comprehensive and immediate analysis of an athlete’s movement patterns during training sessions. The core architecture utilizes dilated convolutions to capture crucial long-range dependencies within video frames. Combining this with the robust encoder-decoder architecture to further refine pose estimation accuracy. This capability is essential for precise joint localization across the diverse range of athletic poses encountered in different sports. Furthermore, by quantifying movement efficiency, power output, and range of motion, the system provides data-driven insights that can be used to optimize training programs. Pose estimation data analysis can also be used to develop personalized training plans that target specific weaknesses identified in an athlete’s movement patterns. To overcome the limitations posed by outdoor environments, the project employs strategies such as multi-camera configurations or depth sensing techniques. These approaches can enhance pose estimation accuracy in challenging lighting and occlusion scenarios, where pose estimation accuracy in challenging lighting and occlusion scenarios. A dataset is collected From the labs of Martin Luther King at San Jose State University. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing different poses, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced pose detection model and lays the groundwork for future innovations in assistive enhancement technologies.Keywords: computer vision, deep learning, human pose estimation, U-NET, CNN
Procedia PDF Downloads 565758 Robust Fuzzy PID Stabilizer: Modified Shuffled Frog Leaping Algorithm
Authors: Oveis Abedinia, Noradin Ghadimi, Nasser Mikaeilvand, Roza Poursoleiman, Asghar Poorfaraj
Abstract:
In this paper a robust Fuzzy Proportional Integral Differential (PID) controller is applied to multi-machine power system based on Modified Shuffled Frog Leaping (MSFL) algorithm. This newly proposed controller is more efficient because it copes with oscillations and different operating points. In this strategy the gains of the PID controller is optimized using the proposed technique. The nonlinear problem is formulated as an optimization problem for wide ranges of operating conditions using the MSFL algorithm. The simulation results demonstrate the effectiveness, good robustness and validity of the proposed method through some performance indices such as ITAE and FD under wide ranges operating conditions in comparison with TS and GSA techniques. The single-machine infinite bus system and New England 10-unit 39-bus standard power system are employed to illustrate the performance of the proposed method.Keywords: fuzzy PID, MSFL, multi-machine, low frequency oscillation
Procedia PDF Downloads 4305757 Video-On-Demand QoE Evaluation across Different Age-Groups and Its Significance for Network Capacity
Authors: Mujtaba Roshan, John A. Schormans
Abstract:
Quality of Experience (QoE) drives churn in the broadband networks industry, and good QoE plays a large part in the retention of customers. QoE is known to be affected by the Quality of Service (QoS) factors packet loss probability (PLP), delay and delay jitter caused by the network. Earlier results have shown that the relationship between these QoS factors and QoE is non-linear, and may vary from application to application. We use the network emulator Netem as the basis for experimentation, and evaluate how QoE varies as we change the emulated QoS metrics. Focusing on Video-on-Demand, we discovered that the reported QoE may differ widely for users of different age groups, and that the most demanding age group (the youngest) can require an order of magnitude lower PLP to achieve the same QoE than is required by the most widely studied age group of users. We then used a bottleneck TCP model to evaluate the capacity cost of achieving an order of magnitude decrease in PLP, and found it be (almost always) a 3-fold increase in link capacity that was required.Keywords: network capacity, packet loss probability, quality of experience, quality of service
Procedia PDF Downloads 2735756 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset
Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli
Abstract:
Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are playing an increasingly important role in automated customer service. These models, which are able to recognize complex relationships between input and output sequences, are crucial for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the focus of the model during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the domain of chatbots using the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Utilizing the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k=3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k=3). These results emphasize the crucial influence of selecting an appropriate attention-scoring function in improving the performance of seq2seq models for chatbots. Particularly, the model that integrates tanh activation proves to be a promising approach to improve the quality of chatbots in the customer support context.Keywords: attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence
Procedia PDF Downloads 785755 Performance Evaluation of DSR and OLSR Routing Protocols in MANET Using Varying Pause Time
Authors: Yassine Meraihi, Dalila Acheli, Rabah Meraihi
Abstract:
MANET for Mobile Ad hoc NETwork is a collection of wireless mobile nodes that communicates with each other without using any existing infrastructure, access point or centralized administration, due to the higher mobility and limited radio transmission range, routing is an important issue in ad hoc network, so in order to ensure reliable and efficient route between to communicating nodes quickly, an appropriate routing protocol is needed. In this paper, we present the performance analysis of two mobile ad hoc network routing protocols namely DSR and OLSR using NS2.34, the performance is determined on the basis of packet delivery ratio, throughput, average jitter and end to end delay with varying pause time.Keywords: DSR, OLSR, quality of service, routing protocols, MANET
Procedia PDF Downloads 5525754 The Urban Stray Animal Identification Management System Based on YOLOv5
Authors: Chen Xi, LIU Xuebin, Kuan Sinman, LI Haofeng, Huang Hongming, Zeng Chengyu, Lao Xuerui
Abstract:
Stray animals are on the rise in mainland China's cities. There are legal reasons for this, namely the lack of protection for domestic pets in mainland China, where only wildlife protection laws exist. At a social level, the ease with which families adopt pets and the lack of a social view of animal nature have led to the frequent abandonment and loss of stray animals. If left unmanaged, conflicts between humans and stray animals can also increase. This project provides an inexpensive and widely applicable management tool for urban management by collecting videos and pictures of stray animals captured by surveillance or transmitted by humans and using artificial intelligence technology (mainly using Yolov5 recognition technology) and recording and managing them in a database.Keywords: urban planning, urban governance, artificial intelligence, convolutional neural network, machine vision
Procedia PDF Downloads 995753 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning
Authors: Richard O’Riordan, Saritha Unnikrishnan
Abstract:
Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection
Procedia PDF Downloads 1045752 The Computational Psycholinguistic Situational-Fuzzy Self-Controlled Brain and Mind System Under Uncertainty
Authors: Ben Khayut, Lina Fabri, Maya Avikhana
Abstract:
The models of the modern Artificial Narrow Intelligence (ANI) cannot: a) independently and continuously function without of human intelligence, used for retraining and reprogramming the ANI’s models, and b) think, understand, be conscious, cognize, infer, and more in state of Uncertainty, and changes in situations, and environmental objects. To eliminate these shortcomings and build a new generation of Artificial Intelligence systems, the paper proposes a Conception, Model, and Method of Computational Psycholinguistic Cognitive Situational-Fuzzy Self-Controlled Brain and Mind System (CPCSFSCBMSUU) using a neural network as its computational memory, operating under uncertainty, and activating its functions by perception, identification of real objects, fuzzy situational control, forming images of these objects, modeling their psychological, linguistic, cognitive, and neural values of properties and features, the meanings of which are identified, interpreted, generated, and formed taking into account the identified subject area, using the data, information, knowledge, and images, accumulated in the Memory. The functioning of the CPCSFSCBMSUU is carried out by its subsystems of the: fuzzy situational control of all processes, computational perception, identifying of reactions and actions, Psycholinguistic Cognitive Fuzzy Logical Inference, Decision making, Reasoning, Systems Thinking, Planning, Awareness, Consciousness, Cognition, Intuition, Wisdom, analysis and processing of the psycholinguistic, subject, visual, signal, sound and other objects, accumulation and using the data, information and knowledge in the Memory, communication, and interaction with other computing systems, robots and humans in order of solving the joint tasks. To investigate the functional processes of the proposed system, the principles of Situational Control, Fuzzy Logic, Psycholinguistics, Informatics, and modern possibilities of Data Science were applied. The proposed self-controlled System of Brain and Mind is oriented on use as a plug-in in multilingual subject Applications.Keywords: computational brain, mind, psycholinguistic, system, under uncertainty
Procedia PDF Downloads 1775751 Microwave-Assisted Chemical Pre-Treatment of Waste Sorghum Leaves: Process Optimization and Development of an Intelligent Model for Determination of Volatile Compound Fractions
Authors: Daneal Rorke, Gueguim Kana
Abstract:
The shift towards renewable energy sources for biofuel production has received increasing attention. However, the use and pre-treatment of lignocellulosic material are inundated with the generation of fermentation inhibitors which severely impact the feasibility of bioprocesses. This study reports the profiling of all volatile compounds generated during microwave assisted chemical pre-treatment of sorghum leaves. Furthermore, the optimization of reducing sugar (RS) from microwave assisted acid pre-treatment of sorghum leaves was assessed and gave a coefficient of determination (R2) of 0.76, producing an optimal RS yield of 2.74 g FS/g substrate. The development of an intelligent model to predict volatile compound fractions gave R2 values of up to 0.93 for 21 volatile compounds. Sensitivity analysis revealed that furfural and phenol exhibited high sensitivity to acid concentration, alkali concentration and S:L ratio, while phenol showed high sensitivity to microwave duration and intensity as well. These findings illustrate the potential of using an intelligent model to predict the volatile compound fraction profile of compounds generated during pre-treatment of sorghum leaves in order to establish a more robust and efficient pre-treatment regime for biofuel production.Keywords: artificial neural networks, fermentation inhibitors, lignocellulosic pre-treatment, sorghum leaves
Procedia PDF Downloads 2485750 Evaluation of Collect Tree Protocol for Structural Health Monitoring System Using Wireless Sensor Networks
Authors: Amira Zrelli, Tahar Ezzedine
Abstract:
Routing protocol may enhance the lifetime of sensor network, it has a highly importance, especially in wireless sensor network (WSN). Therefore, routing protocol has a big effect in these networks, thus the choice of routing protocol must be studied before setting up our network. In this work, we implement the routing protocol collect tree protocol (CTP) which is one of the hierarchic protocols used in structural health monitoring (SHM). Therefore, to evaluate the performance of this protocol, we choice to work with Contiki system and Cooja simulator. By throughput and RSSI evaluation of each node, we will deduce about the utility of CTP in structural monitoring system.Keywords: CTP, WSN, SHM, routing protocol
Procedia PDF Downloads 2965749 A Multi Agent Based Protection Scheme for Smart Distribution Network in Presence of Distributed Energy Resources
Authors: M. R. Ebrahimi, B. Mahdaviani
Abstract:
Conventional electric distribution systems are radial in nature, supplied at one end through a main source. These networks generally have a simple protection system usually implemented using fuses, re-closers, and over-current relays. Recently, great attention has been paid to applying Distributed energy resources (DERs) throughout electric distribution systems. Presence of such generation in a network leads to losing coordination of protection devices. Therefore, it is desired to develop an algorithm which is capable of protecting distribution systems that include DER. On the other hand smart grid brings opportunities to the power system. Fast advancement in communication and measurement techniques accelerates the development of multi agent system (MAS). So in this paper, a new approach for the protection of distribution networks in the presence of DERs is presented base on MAS. The proposed scheme has been implemented on a sample 27-bus distribution network.Keywords: distributed energy resource, distribution network, protection, smart grid, multi agent system
Procedia PDF Downloads 6085748 Advancing UAV Operations with Hybrid Mobile Network and LoRa Communications
Authors: Annika J. Meyer, Tom Piechotta
Abstract:
Unmanned Aerial Vehicles (UAVs) have increasingly become vital tools in various applications, including surveillance, search and rescue, and environmental monitoring. One common approach to ensure redundant communication systems when flying beyond visual line of sight is for UAVs to employ multiple mobile data modems by different providers. Although widely adopted, this approach suffers from several drawbacks, such as high costs, added weight and potential increases in signal interference. In light of these challenges, this paper proposes a communication framework intermeshing mobile networks and LoRa (Long Range) technology—a low-power, long-range communication protocol. LoRaWAN (Long Range Wide Area Network) is commonly used in Internet of Things applications, relying on stationary gateways and Internet connectivity. This paper, however, utilizes the underlying LoRa protocol, taking advantage of the protocol’s low power and long-range capabilities while ensuring efficiency and reliability. Conducted in collaboration with the Potsdam Fire Department, the implementation of mobile network technology in combination with the LoRa protocol in small UAVs (take-off weight < 0.4 kg), specifically designed for search and rescue and area monitoring missions, is explored. This research aims to test the viability of LoRa as an additional redundant communication system during UAV flights as well as its intermeshing with the primary, mobile network-based controller. The methodology focuses on direct UAV-to-UAV and UAV-to-ground communications, employing different spreading factors optimized for specific operational scenarios—short-range for UAV-to-UAV interactions and long-range for UAV-to-ground commands. This explored use case also dramatically reduces one of the major drawbacks of LoRa communication systems, as a line of sight between the modules is necessary for reliable data transfer. Something that UAVs are uniquely suited to provide, especially when deployed as a swarm. Additionally, swarm deployment may enable UAVs that have lost contact with their primary network to reestablish their connection through another, better-situated UAV. The experimental setup involves multiple phases of testing, starting with controlled environments to assess basic communication capabilities and gradually advancing to complex scenarios involving multiple UAVs. Such a staged approach allows for meticulous adjustment of parameters and optimization of the communication protocols to ensure reliability and effectiveness. Furthermore, due to the close partnership with the Fire Department, the real-world applicability of the communication system is assured. The expected outcomes of this paper include a detailed analysis of LoRa's performance as a communication tool for UAVs, focusing on aspects such as signal integrity, range, and reliability under different environmental conditions. Additionally, the paper seeks to demonstrate the cost-effectiveness and operational efficiency of using a single type of communication technology that reduces UAV payload and power consumption. By shifting from traditional cellular network communications to a more robust and versatile cellular and LoRa-based system, this research has the potential to significantly enhance UAV capabilities, especially in critical applications where reliability is paramount. The success of this paper could pave the way for broader adoption of LoRa in UAV communications, setting a new standard for UAV operational communication frameworks.Keywords: LoRa communication protocol, mobile network communication, UAV communication systems, search and rescue operations
Procedia PDF Downloads 435747 Building a Parametric Link between Mapping and Planning: A Sunlight-Adaptive Urban Green System Plan Formation Process
Authors: Chenhao Zhu
Abstract:
Quantitative mapping is playing a growing role in guiding urban planning, such as using a heat map created by CFX, CFD2000, or Envi-met, to adjust the master plan. However, there is no effective quantitative link between the mappings and planning formation. So, in many cases, the decision-making is still based on the planner's subjective interpretation and understanding of these mappings, which limits the improvement of scientific and accuracy brought by the quantitative mapping. Therefore, in this paper, an effort has been made to give a methodology of building a parametric link between the mapping and planning formation. A parametric planning process based on radiant mapping has been proposed for creating an urban green system. In the first step, a script is written in Grasshopper to build a road network and form the block, while the Ladybug Plug-in is used to conduct a radiant analysis in the form of mapping. Then, the research creatively transforms the radiant mapping from a polygon into a data point matrix, because polygon is hard to engage in the design formation. Next, another script is created to select the main green spaces from the road network based on the criteria of radiant intensity and connect the green spaces' central points to generate a green corridor. After that, a control parameter is introduced to adjust the corridor's form based on the radiant intensity. Finally, a green system containing greenspace and green corridor is generated under the quantitative control of the data matrix. The designer only needs to modify the control parameter according to the relevant research results and actual conditions to realize the optimization of the green system. This method can also be applied to much other mapping-based analysis, such as wind environment analysis, thermal environment analysis, and even environmental sensitivity analysis. The parameterized link between the mapping and planning will bring about a more accurate, objective, and scientific planning.Keywords: parametric link, mapping, urban green system, radiant intensity, planning strategy, grasshopper
Procedia PDF Downloads 1425746 Stability and Performance Improvement of a Two-Degree-of-Freedom Robot under Interaction Using the Impedance Control
Authors: Seyed Reza Mirdehghan, Mohammad Reza Haeri Yazdi
Abstract:
In this paper, the stability and the performance of a two-degree-of-freedom robot under an interaction with a unknown environment has been investigated. The time when the robot returns to its initial position after an interaction and the primary resistance of the robot against the impact must be reduced. Thus, the applied torque on the motor will be reduced. The impedance control is an appropriate method for robot control in these conditions. The stability of the robot at interaction moment was transformed to be a robust stability problem. The dynamic of the unknown environment was modeled as a weight function and the stability of the robot under an interaction with the environment has been investigated using the robust control concept. To improve the performance of the system, a force controller has been designed which the normalized impedance after interaction has been reduced. The resistance of the robot has been considered as a normalized cost function and its value was 0.593. The results has showed reduction of resistance of the robot against impact and the reduction of convergence time by lower than one second.Keywords: impedance control, control system, robots, interaction
Procedia PDF Downloads 4305745 Robustness of the Deep Chroma Extractor and Locally-Normalized Quarter Tone Filters in Automatic Chord Estimation under Reverberant Conditions
Authors: Luis Alvarado, Victor Poblete, Isaac Gonzalez, Yetzabeth Gonzalez
Abstract:
In MIREX 2016 (http://www.music-ir.org/mirex), the deep neural network (DNN)-Deep Chroma Extractor, proposed by Korzeniowski and Wiedmer, reached the highest score in an audio chord recognition task. In the present paper, this tool is assessed under acoustic reverberant environments and distinct source-microphone distances. The evaluation dataset comprises The Beatles and Queen datasets. These datasets are sequentially re-recorded with a single microphone in a real reverberant chamber at four reverberation times (0 -anechoic-, 1, 2, and 3 s, approximately), as well as four source-microphone distances (32, 64, 128, and 256 cm). It is expected that the performance of the trained DNN will dramatically decrease under these acoustic conditions with signals degraded by room reverberation and distance to the source. Recently, the effect of the bio-inspired Locally-Normalized Cepstral Coefficients (LNCC), has been assessed in a text independent speaker verification task using speech signals degraded by additive noise at different signal-to-noise ratios with variations of recording distance, and it has also been assessed under reverberant conditions with variations of recording distance. LNCC showed a performance so high as the state-of-the-art Mel Frequency Cepstral Coefficient filters. Based on these results, this paper proposes a variation of locally-normalized triangular filters called Locally-Normalized Quarter Tone (LNQT) filters. By using the LNQT spectrogram, robustness improvements of the trained Deep Chroma Extractor are expected, compared with classical triangular filters, and thus compensating the music signal degradation improving the accuracy of the chord recognition system.Keywords: chord recognition, deep neural networks, feature extraction, music information retrieval
Procedia PDF Downloads 2325744 Approximation of a Wanted Flow via Topological Sensitivity Analysis
Authors: Mohamed Abdelwahed
Abstract:
We propose an optimization algorithm for the geometric control of fluid flow. The used approach is based on the topological sensitivity analysis method. It consists in studying the variation of a cost function with respect to the insertion of a small obstacle in the domain. Some theoretical and numerical results are presented in 2D and 3D.Keywords: sensitivity analysis, topological gradient, shape optimization, stokes equations
Procedia PDF Downloads 5375743 Implementation of Edge Detection Based on Autofluorescence Endoscopic Image of Field Programmable Gate Array
Authors: Hao Cheng, Zhiwu Wang, Guozheng Yan, Pingping Jiang, Shijia Qin, Shuai Kuang
Abstract:
Autofluorescence Imaging (AFI) is a technology for detecting early carcinogenesis of the gastrointestinal tract in recent years. Compared with traditional white light endoscopy (WLE), this technology greatly improves the detection accuracy of early carcinogenesis, because the colors of normal tissues are different from cancerous tissues. Thus, edge detection can distinguish them in grayscale images. In this paper, based on the traditional Sobel edge detection method, optimization has been performed on this method which considers the environment of the gastrointestinal, including adaptive threshold and morphological processing. All of the processes are implemented on our self-designed system based on the image sensor OV6930 and Field Programmable Gate Array (FPGA), The system can capture the gastrointestinal image taken by the lens in real time and detect edges. The final experiments verified the feasibility of our system and the effectiveness and accuracy of the edge detection algorithm.Keywords: AFI, edge detection, adaptive threshold, morphological processing, OV6930, FPGA
Procedia PDF Downloads 2305742 Integrating Optuna And Synthetic Data Generation For Optimized Medical Transcript Classification Using BioBERT
Authors: Sachi Nandan Mohanty, Shreya Sinha, Sweeti Sah, Shweta Sharma
Abstract:
The advancement of natural language processing has majorly influenced the field of medical transcript classification, providing a robust framework for enhancing the accuracy of clinical data processing. It has enormous potential to transform healthcare and improve people's livelihoods. This research focuses on improving the accuracy of medical transcript categorization using Bidirectional Encoder Representations from Transformers (BERT) and its specialized variants, including BioBERT, ClinicalBERT, SciBERT, and BlueBERT. The experimental work employs Optuna, an optimization framework, for hyperparameter tuning to identify the most effective variant, concluding that BioBERT yields the best performance. Furthermore, various optimizers, including Adam, RMSprop, and Layerwise adaptive large batch optimization (LAMB), were evaluated alongside BERT's default AdamW optimizer. The findings show that the LAMB optimizer achieves equally good performance as AdamW. Synthetic data generation techniques from Gretel were utilized to augment the dataset, expanding the original dataset from 5,000 to 10,000 rows. Subsequent evaluations demonstrated that the model maintained its performance with synthetic data, with the LAMB optimizer showing marginally better results. The enhanced dataset and optimized model configurations improved classification accuracy, showcasing the efficacy of the BioBERT variant and the LAMB optimizer. It resulted in an accuracy of up to 98.2% and 90.8% for the original and combined datasets, respectively.Keywords: BioBERT, clinical data, healthcare AI, transformer models
Procedia PDF Downloads 05741 Development of Terrorist Threat Prediction Model in Indonesia by Using Bayesian Network
Authors: Hilya Mudrika Arini, Nur Aini Masruroh, Budi Hartono
Abstract:
There are more than 20 terrorist threats from 2002 to 2012 in Indonesia. Despite of this fact, preventive solution through studies in the field of national security in Indonesia has not been conducted comprehensively. This study aims to provide a preventive solution by developing prediction model of the terrorist threat in Indonesia by using Bayesian network. There are eight stages to build the model, started from literature review, build and verify Bayesian belief network to what-if scenario. In order to build the model, four experts from different perspectives are utilized. This study finds several significant findings. First, news and the readiness of terrorist group are the most influent factor. Second, according to several scenarios of the news portion, it can be concluded that the higher positive news proportion, the higher probability of terrorist threat will occur. Therefore, the preventive solution to reduce the terrorist threat in Indonesia based on the model is by keeping the positive news portion to a maximum of 38%.Keywords: Bayesian network, decision analysis, national security system, text mining
Procedia PDF Downloads 3925740 Using AI to Advance Factory Planning: A Case Study to Identify Success Factors of Implementing an AI-Based Demand Planning Solution
Authors: Ulrike Dowie, Ralph Grothmann
Abstract:
Rational planning decisions are based upon forecasts. Precise forecasting has, therefore, a central role in business. The prediction of customer demand is a prime example. This paper introduces recurrent neural networks to model customer demand and combines the forecast with uncertainty measures to derive decision support of the demand planning department. It identifies and describes the keys to the successful implementation of an AI-based solution: bringing together data with business knowledge, AI methods, and user experience, and applying agile software development practices.Keywords: agile software development, AI project success factors, deep learning, demand forecasting, forecast uncertainty, neural networks, supply chain management
Procedia PDF Downloads 1915739 Facebook Spam and Spam Filter Using Artificial Neural Networks
Authors: A. Fahim, Mutahira N. Naseem
Abstract:
SPAM is any unwanted electronic message or material in any form posted to many people. As the world is growing as global world, social networking sites play an important role in making world global providing people from different parts of the world a platform to meet and express their views. Among different social networking sites facebook become the leading one. With increase in usage different users start abusive use of facebook by posting or creating ways to post spam. This paper highlights the potential spam types nowadays facebook users faces. This paper also provide the reason how user become victim to spam attack. A methodology is proposed in the end discusses how to handle different types of spam.Keywords: artificial neural networks, facebook spam, social networking sites, spam filter
Procedia PDF Downloads 3725738 Model Averaging in a Multiplicative Heteroscedastic Model
Authors: Alan Wan
Abstract:
In recent years, the body of literature on frequentist model averaging in statistics has grown significantly. Most of this work focuses on models with different mean structures but leaves out the variance consideration. In this paper, we consider a regression model with multiplicative heteroscedasticity and develop a model averaging method that combines maximum likelihood estimators of unknown parameters in both the mean and variance functions of the model. Our weight choice criterion is based on a minimisation of a plug-in estimator of the model average estimator's squared prediction risk. We prove that the new estimator possesses an asymptotic optimality property. Our investigation of finite-sample performance by simulations demonstrates that the new estimator frequently exhibits very favourable properties compared to some existing heteroscedasticity-robust model average estimators. The model averaging method hedges against the selection of very bad models and serves as a remedy to variance function misspecification, which often discourages practitioners from modeling heteroscedasticity altogether. The proposed model average estimator is applied to the analysis of two real data sets.Keywords: heteroscedasticity-robust, model averaging, multiplicative heteroscedasticity, plug-in, squared prediction risk
Procedia PDF Downloads 3855737 Musical Instrument Recognition in Polyphonic Audio Through Convolutional Neural Networks and Spectrograms
Authors: Rujia Chen, Akbar Ghobakhlou, Ajit Narayanan
Abstract:
This study investigates the task of identifying musical instruments in polyphonic compositions using Convolutional Neural Networks (CNNs) from spectrogram inputs, focusing on binary classification. The model showed promising results, with an accuracy of 97% on solo instrument recognition. When applied to polyphonic combinations of 1 to 10 instruments, the overall accuracy was 64%, reflecting the increasing challenge with larger ensembles. These findings contribute to the field of Music Information Retrieval (MIR) by highlighting the potential and limitations of current approaches in handling complex musical arrangements. Future work aims to include a broader range of musical sounds, including electronic and synthetic sounds, to improve the model's robustness and applicability in real-time MIR systems.Keywords: binary classifier, CNN, spectrogram, instrument
Procedia PDF Downloads 805736 Analyze and Visualize Eye-Tracking Data
Authors: Aymen Sekhri, Emmanuel Kwabena Frimpong, Bolaji Mubarak Ayeyemi, Aleksi Hirvonen, Matias Hirvonen, Tedros Tesfay Andemichael
Abstract:
Fixation identification, which involves isolating and identifying fixations and saccades in eye-tracking protocols, is an important aspect of eye-movement data processing that can have a big impact on higher-level analyses. However, fixation identification techniques are frequently discussed informally and rarely compared in any meaningful way. With two state-of-the-art algorithms, we will implement fixation detection and analysis in this work. The velocity threshold fixation algorithm is the first algorithm, and it identifies fixation based on a threshold value. For eye movement detection, the second approach is U'n' Eye, a deep neural network algorithm. The goal of this project is to analyze and visualize eye-tracking data from an eye gaze dataset that has been provided. The data was collected in a scenario in which individuals were shown photos and asked whether or not they recognized them. The results of the two-fixation detection approach are contrasted and visualized in this paper.Keywords: human-computer interaction, eye-tracking, CNN, fixations, saccades
Procedia PDF Downloads 1355735 Crushing Analysis of Foam-Filled Thin-Walled Aluminum Profiles Subjected to Axial Loading
Authors: Michał Rogala, Jakub Gajewski
Abstract:
As the automotive industry develops, passive safety is becoming an increasingly important aspect when designing motor vehicles. A commonly used solution is energy absorption by thin-walled construction. One such structure is a closed thin-walled profile fixed to the vehicle stringers. The article presents numerical tests of conical thin-walled profiles filled with aluminum foam. The columns were loaded axially with constant energy. On the basis of the results obtained, efficiency indicators were calculated. The efficiency of the foam filling was evaluated. Artificial neural networks were used for data analysis. The application of regression analysis was used as a tool to study the relationship between the quantities characteristic of the dynamic crush.Keywords: aluminium foam, crashworthiness, neural networks, thin-walled structure
Procedia PDF Downloads 1465734 Optimizing Road Transportation Network Considering the Durability Factors
Authors: Yapegue Bayogo, Ahmadou Halassi Dicko, Brahima Songore
Abstract:
In developing countries, the road transportation system occupies an important place because of its flexibility and the low prices of infrastructure and rolling stock. While road transport is necessary for economic development, the movement of people and their goods, it is urgent to use transportation systems that minimize carbon emissions in order to ensure sustainable development. One of the main objectives of OEDC and the Word Bank is to ensure sustainable economic’ development. This paper aims to develop a road transport network taking into account environmental impacts. The methodology adopted consists of formulating a model optimizing the flow of goods and then collecting information relating to the transport of products. Our model was tested with data on product transport in CMDT areas in the Republic of Mali. The results of our study indicate that emissions from the transport sector can be significantly reduced by minimizing the traffic volume. According to our study, optimizing the transportation network, we benefit from a significant amount of tons of CO₂.Keywords: road transport, transport sustainability, pollution, flexibility, optimized network
Procedia PDF Downloads 1505733 A Hybrid Model for Secure Protocol Independent Multicast Sparse Mode and Dense Mode Protocols in a Group Network
Authors: M. S. Jimah, A. C. Achuenu, M. Momodu
Abstract:
Group communications over public infrastructure are prone to a lot of security issues. Existing network protocols like Protocol Independent Multicast Sparse Mode (PIM SM) and Protocol Independent Multicast Dense Mode (PIM DM) do not have inbuilt security features. Therefore, any user or node can easily access the group communication as long as the user can send join message to the source nodes, the source node then adds the user to the network group. In this research, a hybrid method of salting and hashing to encrypt information in the source and stub node was designed, and when stub nodes need to connect, they must have the appropriate key to join the group network. Object oriented analysis design (OOAD) was the methodology used, and the result shows that no extra controlled bandwidth overhead cost was added by encrypting and the hybrid model was more securing than the existing PIM SM, PIM DM and Zhang secure PIM SM.Keywords: group communications, multicast, PIM SM, PIM DM, encryption
Procedia PDF Downloads 162