Search results for: two delay differential equation
3918 Exponential Stabilization of a Flexible Structure via a Delayed Boundary Control
Authors: N. Smaoui, B. Chentouf
Abstract:
The boundary stabilization problem of the rotating disk-beam system is a topic of interest in research studies. This system involves a flexible beam attached to the center of a disk, and the control and stabilization of this system have been extensively studied. This research focuses on the case where the center of mass is fixed in an inertial frame, and the rotation of the center is non-uniform. The system is represented by a set of nonlinear coupled partial differential equations and ordinary differential equations. The boundary stabilization problem of this system via a delayed boundary control is considered. We assume that the boundary control is either of a force type control or a moment type control and is subject to the presence of a constant time-delay. The aim of this research is threefold: First, we demonstrate that the rotating disk-beam system is well-posed in an appropriate functional space. Then, we establish the exponential stability property of the system. Finally, we provide numerical simulations that illustrate the theoretical findings. The research utilizes the semigroup theory to establish the well-posedness of the system. The resolvent method is then employed to prove the exponential stability property. Finally, the finite element method is used to demonstrate the theoretical results through numerical simulations. The research findings indicate that the rotating disk-beam system can be stabilized using a boundary control with a time delay. The proof of stability is based on the resolvent method and a variation of constants formula. The numerical simulations further illustrate the theoretical results. The findings have potential implications for the design and implementation of control strategies in similar systems. In conclusion, this research demonstrates that the rotating disk-beam system can be stabilized using a boundary control with time delay. The well-posedness and exponential stability properties are established through theoretical analysis, and these findings are further supported by numerical simulations. The research contributes to the understanding and practical application of control strategies for flexible structures, providing insights into the stability of rotating disk-beam systems.Keywords: rotating disk-beam, delayed force control, delayed moment control, torque control, exponential stability
Procedia PDF Downloads 753917 Modification of Rk Equation of State for Liquid and Vapor of Ammonia by Genetic Algorithm
Authors: S. Mousavian, F. Mousavian, V. Nikkhah Rashidabad
Abstract:
Cubic equations of state like Redlich–Kwong (RK) EOS have been proved to be very reliable tools in the prediction of phase behavior. Despite their good performance in compositional calculations, they usually suffer from weaknesses in the predictions of saturated liquid density. In this research, RK equation was modified. The result of this study shows that modified equation has good agreement with experimental data.Keywords: equation of state, modification, ammonia, genetic algorithm
Procedia PDF Downloads 3823916 Exact Solutions of a Nonlinear Schrodinger Equation with Kerr Law Nonlinearity
Authors: Muna Alghabshi, Edmana Krishnan
Abstract:
A nonlinear Schrodinger equation has been considered for solving by mapping methods in terms of Jacobi elliptic functions (JEFs). The equation under consideration has a linear evolution term, linear and nonlinear dispersion terms, the Kerr law nonlinearity term and three terms representing the contribution of meta materials. This equation which has applications in optical fibers is found to have soliton solutions, shock wave solutions, and singular wave solutions when the modulus of the JEFs approach 1 which is the infinite period limit. The equation with special values of the parameters has also been solved using the tanh method.Keywords: Jacobi elliptic function, mapping methods, nonlinear Schrodinger Equation, tanh method
Procedia PDF Downloads 3143915 Nonlinear Vibration Analysis of a Functionally Graded Micro-Beam under a Step DC Voltage
Authors: Ali Raheli, Rahim Habibifar, Behzad Mohammadi-Alasti, Mahdi Abbasgholipour
Abstract:
This paper presents vibration behavior of a FGM micro-beam and its pull-in instability under a nonlinear electrostatic pressure. An exponential function has been applied to show the continuous gradation of the properties along thickness. Nonlinear integro-differential-electro-mechanical equation based on Euler–Bernoulli beam theory has been derived. The governing equation in the static analysis has been solved using Step-by-Step Linearization Method and Finite Difference Method. Fixed points or equilibrium positions and singular points have been shown in the state control space. In order to find the response to a step DC voltage, the nonlinear equation of motion has been solved using Galerkin-based reduced-order model and time histories and phase portrait for different applied voltages have been shown. The effects of electrostatic pressure on stability of FGM micro-beams having various amounts of the ceramic constituent have been investigated.Keywords: FGM, MEMS, nonlinear vibration, electrical, dynamic pull-in voltage
Procedia PDF Downloads 4563914 Divergence Regularization Method for Solving Ill-Posed Cauchy Problem for the Helmholtz Equation
Authors: Benedict Barnes, Anthony Y. Aidoo
Abstract:
A Divergence Regularization Method (DRM) is used to regularize the ill-posed Helmholtz equation where the boundary deflection is inhomogeneous in a Hilbert space H. The DRM incorporates a positive integer scaler which homogenizes the inhomogeneous boundary deflection in Cauchy problem of the Helmholtz equation. This ensures the existence, as well as, uniqueness of solution for the equation. The DRM restores all the three conditions of well-posedness in the sense of Hadamard.Keywords: divergence regularization method, Helmholtz equation, ill-posed inhomogeneous Cauchy boundary conditions
Procedia PDF Downloads 1893913 Performance Evaluation of Dynamic Signal Control System for Mixed Traffic Conditions
Authors: Aneesh Babu, S. P. Anusha
Abstract:
A dynamic signal control system combines traditional traffic lights with an array of sensors to intelligently control vehicle and pedestrian traffic. The present study focus on evaluating the performance of dynamic signal control systems for mixed traffic conditions. Data collected from four different approaches to a typical four-legged signalized intersection at Trivandrum city in the Kerala state of India is used for the study. Performance of three other dynamic signal control methods, namely (i) Non-sequential method (ii) Webster design for consecutive signal cycle using flow as input, and (iii) dynamic signal control using RFID delay as input, were evaluated. The evaluation of the dynamic signal control systems was carried out using a calibrated VISSIM microsimulation model. Python programming was used to integrate the dynamic signal control algorithm through the COM interface in VISSIM. The intersection delay obtained from different dynamic signal control methods was compared with the delay obtained from fixed signal control. Based on the study results, it was observed that the intersection delay was reduced significantly by using dynamic signal control methods. The dynamic signal control method using delay from RFID sensors resulted in a higher percentage reduction in delay and hence is a suitable choice for implementation under mixed traffic conditions. The developed dynamic signal control strategies can be implemented in ITS applications under mixed traffic conditions.Keywords: dynamic signal control, intersection delay, mixed traffic conditions, RFID sensors
Procedia PDF Downloads 1063912 Numerical Treatment of Block Method for the Solution of Ordinary Differential Equations
Authors: A. M. Sagir
Abstract:
Discrete linear multistep block method of uniform order for the solution of first order Initial Value Problems (IVPs) in Ordinary Differential Equations (ODEs) is presented in this paper. The approach of interpolation and collocation approximation are adopted in the derivation of the method which is then applied to first order ordinary differential equations with associated initial conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. Furthermore, a stability analysis and efficiency of the block method are tested on ordinary differential equations, and the results obtained compared favorably with the exact solution.Keywords: block method, first order ordinary differential equations, hybrid, self-starting
Procedia PDF Downloads 4813911 Quintic Spline Solution of Fourth-Order Parabolic Equations Arising in Beam Theory
Authors: Reza Mohammadi, Mahdieh Sahebi
Abstract:
We develop a method based on polynomial quintic spline for numerical solution of fourth-order non-homogeneous parabolic partial differential equation with variable coefficient. By using polynomial quintic spline in off-step points in space and finite difference in time directions, we obtained two three level implicit methods. Stability analysis of the presented method has been carried out. We solve four test problems numerically to validate the derived method. Numerical comparison with other methods shows the superiority of presented scheme.Keywords: fourth-order parabolic equation, variable coefficient, polynomial quintic spline, off-step points
Procedia PDF Downloads 3523910 The Evaluation of Signal Timing Optimization and Implement of Transit Signal Priority in Intersections and Their Effect on Delay Reduction
Authors: Mohammad Reza Ramezani, Shahriyar Afandizadeh
Abstract:
Since the intersections play a crucial role in traffic delay, it is significant to evaluate them precisely. In this paper, three critical intersections in Tehran (Capital of Iran) had been simulated. The main purpose of this paper was to optimize the public transit delay. The simulation had three different phase in three intersections of Tehran. The first phase was about the current condition of intersection; the second phase was about optimized signal timing and the last phase was about prioritized public transit access. The Aimsun software was used to simulate all phases, and the Synchro software was used to optimization of signals as well. The result showed that the implement of optimization and prioritizing system would reduce about 50% of delay for public transit.Keywords: transit signal priority, intersection optimization, public transit, simulation
Procedia PDF Downloads 4733909 Series Solutions to Boundary Value Differential Equations
Authors: Armin Ardekani, Mohammad Akbari
Abstract:
We present a method of generating series solutions to large classes of nonlinear differential equations. The method is well suited to be adapted in mathematical software and unlike the available commercial solvers, we are capable of generating solutions to boundary value ODEs and PDEs. Many of the generated solutions converge to closed form solutions. Our method can also be applied to systems of ODEs or PDEs, providing all the solutions efficiently. As examples, we present results to many difficult differential equations in engineering fields.Keywords: computational mathematics, differential equations, engineering, series
Procedia PDF Downloads 3363908 Solution of the Nonrelativistic Radial Wave Equation of Hydrogen Atom Using the Green's Function Approach
Authors: F. U. Rahman, R. Q. Zhang
Abstract:
This work aims to develop a systematic numerical technique which can be easily extended to many-body problem. The Lippmann Schwinger equation (integral form of the Schrodinger wave equation) is solved for the nonrelativistic radial wave of hydrogen atom using iterative integration scheme. As the unknown wave function appears on both sides of the Lippmann Schwinger equation, therefore an approximate wave function is used in order to solve the equation. The Green’s function is obtained by the method of Laplace transform for the radial wave equation with excluded potential term. Using the Lippmann Schwinger equation, the product of approximate wave function, the Green’s function and the potential term is integrated iteratively. Finally, the wave function is normalized and plotted against the standard radial wave for comparison. The outcome wave function converges to the standard wave function with the increasing number of iteration. Results are verified for the first fifteen states of hydrogen atom. The method is efficient and consistent and can be applied to complex systems in future.Keywords: Green’s function, hydrogen atom, Lippmann Schwinger equation, radial wave
Procedia PDF Downloads 3943907 Impact of the Time Interval in the Numerical Solution of Incompressible Flows
Authors: M. Salmanzadeh
Abstract:
In paper, we will deal with incompressible Couette flow, which represents an exact analytical solution of the Navier-Stokes equations. Couette flow is perhaps the simplest of all viscous flows, while at the same time retaining much of the same physical characteristics of a more complicated boundary-layer flow. The numerical technique that we will employ for the solution of the Couette flow is the Crank-Nicolson implicit method. Parabolic partial differential equations lend themselves to a marching solution; in addition, the use of an implicit technique allows a much larger marching step size than would be the case for an explicit solution. Hence, in the present paper we will have the opportunity to explore some aspects of CFD different from those discussed in the other papers.Keywords: incompressible couette flow, numerical method, partial differential equation, Crank-Nicolson implicit
Procedia PDF Downloads 5363906 Estimation of Delay Due to Loading–Unloading of Passengers by Buses and Reduction of Number of Lanes at Selected Intersections in Dhaka City
Abstract:
One of the significant reasons that increase the delay time in the intersections at heterogeneous traffic condition is a sudden reduction of the capacity of the roads. In this study, the delay for this sudden capacity reduction is estimated. Two intersections at Dhaka city were brought in to thestudy, i.e., Kakrail intersection, and SAARC Foara intersection. At Kakrail intersection, the sudden reduction of capacity in the roads is seen at three downstream legs of the intersection, which are because of slowing down or stopping of buses for loading and unloading of passengers. At SAARC Foara intersection, sudden reduction of capacity was seen at two downstream legs. At one leg, it was due to loading and unloading of buses, and at another leg, it was for both loading and unloading of buses and reduction of the number of lanes. With these considerations, the delay due to intentional stoppage or slowing down of buses and reduction of the number of lanes for these two intersections are estimated. Here the delay was calculated by two approaches. The first approach came from the concept of shock waves in traffic streams. Here the delay was calculated by determining the flow, density, and speed before and after the sudden capacity reduction. The second approach came from the deterministic analysis of queues. Here the delay is calculated by determining the volume, capacity and reduced capacity of the road. After determining the delay from these two approaches, the results were compared. For this study, the video of each of the two intersections was recorded for one hour at the evening peak. Necessary geometric data were also taken to determine speed, flow, and density, etc. parameters. The delay was calculated for one hour with one-hour data at both intersections. In case of Kakrail intersection, the per hour delay for Kakrail circle leg was 5.79, and 7.15 minutes, for Shantinagar cross intersection leg they were 13.02 and 15.65 minutes, and for Paltan T intersection leg, they were 3 and 1.3 minutes for 1st and 2nd approaches respectively. In the case of SAARC Foara intersection, the delay at Shahbag leg was only due to intentional stopping or slowing down of busses, which were 3.2 and 3 minutes respectively for both approaches. For the Karwan Bazar leg, the delays for buses by both approaches were 5 and 7.5 minutes respectively, and for reduction of the number of lanes, the delays for both approaches were 2 and 1.78 minutes respectively. Measuring the delay per hour for the Kakrail leg at Kakrail circle, it is seen that, with consideration of the first approach of delay estimation, the intentional stoppage and lowering of speed by buses contribute to 26.24% of total delay at Kakrail circle. If the loading and unloading of buses at intersection is made forbidden near intersection, and any other measures for loading and unloading of passengers are established far enough from the intersections, then the delay at intersections can be reduced at significant scale, and the performance of the intersections can be enhanced.Keywords: delay, deterministic queue analysis, shock wave, passenger loading-unloading
Procedia PDF Downloads 1783905 A Proof of the N. Davydov Theorem for Douglis Algebra Valued Functions
Authors: Jean-Marie Vilaire, Ricardo Abreu-Blaya, Juan Bory-Reyes
Abstract:
The classical Beltrami system of elliptic equations generalizes the Cauchy Riemann equation in the complex plane and offers the possibility to consider homogeneous system with no terms of zero order. The theory of Douglis-valued functions, called Hyper-analytic functions, is special case of the above situation. In this note, we prove an analogue of the N. Davydov theorem in the framework of the theory of hyperanalytic functions. The used methodology contemplates characteristic methods of the hypercomplex analysis as well as the singular integral operators and elliptic systems of the partial differential equations theories.Keywords: Beltrami equation, Douglis algebra-valued function, Hypercomplex Cauchy type integral, Sokhotski-Plemelj formulae
Procedia PDF Downloads 2503904 Dependence of Autoignition Delay Period on Equivalence Ratio for i-Octane, Primary Reference Fuel
Authors: Sunil Verma
Abstract:
In today’s world non-renewable sources are depleting quickly, so there is a need to produce efficient and unconventional engines to minimize the use of fuel. Also, there are many fatal accidents happening every year during extraction, distillation, transportation and storage of fuel. Reason for explosions of gaseous fuel is unwanted autoignition. Autoignition characterstics of fuel are mandatory to study to build efficient engines and to avoid accidents. This report is concerned with study of autoignition delay characteristics of iso-octane by using rapid compression machine. The paper clearly explains the dependence of ignition delay characteristics on variation of equivalence ratios from lean to rich mixtures. The equivalence ratio is varied from 0.3 to 1.2.Keywords: autoignition, iso-octane, combustion, rapid compression machine, equivalence ratio, ignition delay
Procedia PDF Downloads 4463903 11-Round Impossible Differential Attack on Midori64
Authors: Zhan Chen, Wenquan Bi
Abstract:
This paper focuses on examining the strength of Midori against impossible differential attack. The Midori family of light weight block cipher orienting to energy-efficiency is proposed in ASIACRYPT2015. Using a 6-round property, the authors implement an 11-round impossible differential attack on Midori64 by extending two rounds on the top and three rounds on the bottom. There is enough key space to consider pre-whitening keys in this attack. An impossible differential path that minimises the key bits involved is used to reduce computational complexity. Several additional observations such as partial abort technique are used to further reduce data and time complexities. This attack has data complexity of 2 ⁶⁹·² chosen plaintexts, requires 2 ¹⁴·⁵⁸ blocks of memory and 2 ⁹⁴·⁷ 11- round Midori64 encryptions.Keywords: cryptanalysis, impossible differential, light weight block cipher, Midori
Procedia PDF Downloads 2763902 Number of Parametrization of Discrete-Time Systems without Unit-Delay Element: Single-Input Single-Output Case
Authors: Kazuyoshi Mori
Abstract:
In this paper, we consider the parametrization of the discrete-time systems without the unit-delay element within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters. We consider single-input single-output systems in this paper. By the investigation, we find, on the discrete-time systems without the unit-delay element, three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three.Keywords: factorization approach, discrete-time system, parameterization of stabilizing controllers, system without unit-delay
Procedia PDF Downloads 2403901 The Physics of Turbulence Generation in a Fluid: Numerical Investigation Using a 1D Damped-MNLS Equation
Authors: Praveen Kumar, R. Uma, R. P. Sharma
Abstract:
This study investigates the generation of turbulence in a deep-fluid environment using a damped 1D-modified nonlinear Schrödinger equation model. The well-known damped modified nonlinear Schrödinger equation (d-MNLS) is solved using numerical methods. Artificial damping is added to the MNLS equation, and turbulence generation is investigated through a numerical simulation. The numerical simulation employs a finite difference method for temporal evolution and a pseudo-spectral approach to characterize spatial patterns. The results reveal a recurring periodic pattern in both space and time when the nonlinear Schrödinger equation is considered. Additionally, the study shows that the modified nonlinear Schrödinger equation disrupts the localization of structure and the recurrence of the Fermi-Pasta-Ulam (FPU) phenomenon. The energy spectrum exhibits a power-law behavior, closely following Kolmogorov's spectra steeper than k⁻⁵/³ in the inertial sub-range.Keywords: water waves, modulation instability, hydrodynamics, nonlinear Schrödinger's equation
Procedia PDF Downloads 723900 Bound State Problems and Functional Differential Geometry
Authors: S. Srednyak
Abstract:
We study a class of functional partial differential equations(FPDEs). This class is suggested by Quantum Field Theory. We derive general properties of solutions to such equations. In particular, we demonstrate that they lead to systems of coupled integral equations with singular kernels. We show that solutions to such hierarchies can be sought among functions with regular singularities at a countable set of subvarieties of the physical space. We also develop a formal analogy of basic constructions of differential geometry on functional manifolds, as this is necessary for in depth study of FPDEs. We also consider the case of linear overdetermined systems of functional differential equations and show that it can be completely solved in terms of formal solutions of a functional equation that is a functional analogy of a system of determined algebraic equations. This development leads us to formally define the functional analogy of algebraic geometry, which we call functional algebraic geometry. We study basic properties of functional algebraic varieties. In particular, we investigate the case of a formally discrete set of solutions. We also define and study functional analogy of discriminants. In the case of fully determined systems such that the defining functionals have regular singularities, we demonstrate that formal solutions can be sought in the class of functions with regular singularities. This case provides a practical way to apply our results to physics problems.Keywords: functional equations, quantum field theory, holomorphic functions, Yang Mills mass gap problem, quantum chaos
Procedia PDF Downloads 703899 On the PTC Thermistor Model with a Hyperbolic Tangent Electrical Conductivity
Authors: M. O. Durojaye, J. T. Agee
Abstract:
This paper is on the one-dimensional, positive temperature coefficient (PTC) thermistor model with a hyperbolic tangent function approximation for the electrical conductivity. The method of asymptotic expansion was adopted to obtain the steady state solution and the unsteady-state response was obtained using the method of lines (MOL) which is a well-established numerical technique. The approach is to reduce the partial differential equation to a vector system of ordinary differential equations and solve numerically. Our analysis shows that the hyperbolic tangent approximation introduced is well suitable for the electrical conductivity. Numerical solutions obtained also exhibit correct physical characteristics of the thermistor and are in good agreement with the exact steady state solutions.Keywords: electrical conductivity, hyperbolic tangent function, PTC thermistor, method of lines
Procedia PDF Downloads 3223898 A Time Delay Neural Network for Prediction of Human Behavior
Authors: A. Hakimiyan, H. Namazi
Abstract:
Human behavior is defined as a range of behaviors exhibited by humans who are influenced by different internal or external sources. Human behavior is the subject of much research in different areas of psychology and neuroscience. Despite some advances in studies related to forecasting of human behavior, there are not many researches which consider the effect of the time delay between the presence of stimulus and the related human response. Analysis of EEG signal as a fractal time series is one of the major tools for studying the human behavior. In the other words, the human brain activity is reflected in his EEG signal. Artificial Neural Network has been proved useful in forecasting of different systems’ behavior especially in engineering areas. In this research, a time delay neural network is trained and tested in order to forecast the human EEG signal and subsequently human behavior. This neural network, by introducing a time delay, takes care of the lagging time between the occurrence of the stimulus and the rise of the subsequent action potential. The results of this study are useful not only for the fundamental understanding of human behavior forecasting, but shall be very useful in different areas of brain research such as seizure prediction.Keywords: human behavior, EEG signal, time delay neural network, prediction, lagging time
Procedia PDF Downloads 6633897 Chern-Simons Equation in Financial Theory and Time-Series Analysis
Authors: Ognjen Vukovic
Abstract:
Chern-Simons equation represents the cornerstone of quantum physics. The question that is often asked is if the aforementioned equation can be successfully applied to the interaction in international financial markets. By analysing the time series in financial theory, it is proved that Chern-Simons equation can be successfully applied to financial time-series. The aforementioned statement is based on one important premise and that is that the financial time series follow the fractional Brownian motion. All variants of Chern-Simons equation and theory are applied and analysed. Financial theory time series movement is, firstly, topologically analysed. The main idea is that exchange rate represents two-dimensional projections of three-dimensional Brownian motion movement. Main principles of knot theory and topology are applied to financial time series and setting is created so the Chern-Simons equation can be applied. As Chern-Simons equation is based on small particles, it is multiplied by the magnifying factor to mimic the real world movement. Afterwards, the following equation is optimised using Solver. The equation is applied to n financial time series in order to see if it can capture the interaction between financial time series and consequently explain it. The aforementioned equation represents a novel approach to financial time series analysis and hopefully it will direct further research.Keywords: Brownian motion, Chern-Simons theory, financial time series, econophysics
Procedia PDF Downloads 4733896 A Study on the Solutions of the 2-Dimensional and Forth-Order Partial Differential Equations
Abstract:
In this study, we will carry out a comparative study between the reduced differential transform method, the adomian decomposition method, the variational iteration method and the homotopy analysis method. These methods are used in many fields of engineering. This is been achieved by handling a kind of 2-Dimensional and forth-order partial differential equations called the Kuramoto–Sivashinsky equations. Three numerical examples have also been carried out to validate and demonstrate efficiency of the four methods. Furthermost, it is shown that the reduced differential transform method has advantage over other methods. This method is very effective and simple and could be applied for nonlinear problems which used in engineering.Keywords: reduced differential transform method, adomian decomposition method, variational iteration method, homotopy analysis method
Procedia PDF Downloads 4333895 Numerical Solution of Space Fractional Order Linear/Nonlinear Reaction-Advection Diffusion Equation Using Jacobi Polynomial
Authors: Shubham Jaiswal
Abstract:
During modelling of many physical problems and engineering processes, fractional calculus plays an important role. Those are greatly described by fractional differential equations (FDEs). So a reliable and efficient technique to solve such types of FDEs is needed. In this article, a numerical solution of a class of fractional differential equations namely space fractional order reaction-advection dispersion equations subject to initial and boundary conditions is derived. In the proposed approach shifted Jacobi polynomials are used to approximate the solutions together with shifted Jacobi operational matrix of fractional order and spectral collocation method. The main advantage of this approach is that it converts such problems in the systems of algebraic equations which are easier to be solved. The proposed approach is effective to solve the linear as well as non-linear FDEs. To show the reliability, validity and high accuracy of proposed approach, the numerical results of some illustrative examples are reported, which are compared with the existing analytical results already reported in the literature. The error analysis for each case exhibited through graphs and tables confirms the exponential convergence rate of the proposed method.Keywords: space fractional order linear/nonlinear reaction-advection diffusion equation, shifted Jacobi polynomials, operational matrix, collocation method, Caputo derivative
Procedia PDF Downloads 4453894 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Partitioned Solution Approach and an Exponential Model
Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino
Abstract:
The solution of the nonlinear dynamic equilibrium equations of base-isolated structures adopting a conventional monolithic solution approach, i.e. an implicit single-step time integration method employed with an iteration procedure, and the use of existing nonlinear analytical models, such as differential equation models, to simulate the dynamic behavior of seismic isolators can require a significant computational effort. In order to reduce numerical computations, a partitioned solution method and a one dimensional nonlinear analytical model are presented in this paper. A partitioned solution approach can be easily applied to base-isolated structures in which the base isolation system is much more flexible than the superstructure. Thus, in this work, the explicit conditionally stable central difference method is used to evaluate the base isolation system nonlinear response and the implicit unconditionally stable Newmark’s constant average acceleration method is adopted to predict the superstructure linear response with the benefit in avoiding iterations in each time step of a nonlinear dynamic analysis. The proposed mathematical model is able to simulate the dynamic behavior of seismic isolators without requiring the solution of a nonlinear differential equation, as in the case of widely used differential equation model. The proposed mixed explicit-implicit time integration method and nonlinear exponential model are adopted to analyze a three dimensional seismically isolated structure with a lead rubber bearing system subjected to earthquake excitation. The numerical results show the good accuracy and the significant computational efficiency of the proposed solution approach and analytical model compared to the conventional solution method and mathematical model adopted in this work. Furthermore, the low stiffness value of the base isolation system with lead rubber bearings allows to have a critical time step considerably larger than the imposed ground acceleration time step, thus avoiding stability problems in the proposed mixed method.Keywords: base-isolated structures, earthquake engineering, mixed time integration, nonlinear exponential model
Procedia PDF Downloads 2803893 Examining Procrastination and Delay among Individuals with and without Attention Deficit Hyperactivity Disorder
Authors: S. J. Taylor, S. Chowdhury, T. A. Pychyl
Abstract:
Attention Deficit Hyperactivity Disorder (ADHD) and procrastination are often discussed in relation to problems with self-regulation and executive functioning (EF). The small body of extant research that has explored the relations between these variables has many limitations particularly in terms of the samples used and the measurement of procrastination. In this study, we recruited a sample of undergraduate students with a confirmed clinical diagnosis of ADHD (n = 48, 66.7% females) as well as a sample of student volunteers without ADHD (n = 68, 75.8% females) to investigate the relations between ADHD subtypes, EF, procrastination and other forms of delay. We used the newly developed Multidimensional Measure of Academic Procrastination and Delay Questionnaire. As hypothesized, the results revealed that individuals with ADHD displayed significantly more irrational delay, general procrastination and academic procrastination compared to individuals without ADHD. This study contributed to the research literature indicating that individuals with ADHD struggle with procrastination as a result of symptoms of ADHD and EF deficits. Theses results provide support for adopting a new language when describing procrastination problems among individuals with ADHD, and they have implications for the nature of academic accommodations and interventions for individuals with ADHD.Keywords: ADHD, delay, executive functioning, procrastination, self-regulation
Procedia PDF Downloads 2293892 Optimal Price Points in Differential Pricing
Authors: Katerina Kormusheva
Abstract:
Pricing plays a pivotal role in the marketing discipline as it directly influences consumer perceptions, purchase decisions, and overall market positioning of a product or service. This paper seeks to expand current knowledge in the area of discriminatory and differential pricing, a main area of marketing research. The methodology includes developing a framework and a model for determining how many price points to implement in differential pricing. We focus on choosing the levels of differentiation, derive a function form of the model framework proposed, and lastly, test it empirically with data from a large-scale marketing pricing experiment of services in telecommunications.Keywords: marketing, differential pricing, price points, optimization
Procedia PDF Downloads 933891 Numerical Solution for Integro-Differential Equations by Using Quartic B-Spline Wavelet and Operational Matrices
Authors: Khosrow Maleknejad, Yaser Rostami
Abstract:
In this paper, semi-orthogonal B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of integro-differential equations.The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this function are presented to reduce the solution of integro-differential equations to the solution of algebraic equations. Here we compute B-spline scaling functions of degree 4 and their dual, then we will show that by using them we have better approximation results for the solution of integro-differential equations in comparison with less degrees of scaling functions.Keywords: ıntegro-differential equations, quartic B-spline wavelet, operational matrices, dual functions
Procedia PDF Downloads 4563890 Evaluation of Dual Polarization Rainfall Estimation Algorithm Applicability in Korea: A Case Study on Biseulsan Radar
Authors: Chulsang Yoo, Gildo Kim
Abstract:
Dual polarization radar provides comprehensive information about rainfall by measuring multiple parameters. In Korea, for the rainfall estimation, JPOLE and CSU-HIDRO algorithms are generally used. This study evaluated the local applicability of JPOLE and CSU-HIDRO algorithms in Korea by using the observed rainfall data collected on August, 2014 by the Biseulsan dual polarization radar data and KMA AWS. A total of 11,372 pairs of radar-ground rain rate data were classified according to thresholds of synthetic algorithms into suitable and unsuitable data. Then, evaluation criteria were derived by comparing radar rain rate and ground rain rate, respectively, for entire, suitable, unsuitable data. The results are as follows: (1) The radar rain rate equation including KDP, was found better in the rainfall estimation than the other equations for both JPOLE and CSU-HIDRO algorithms. The thresholds were found to be adequately applied for both algorithms including specific differential phase. (2) The radar rain rate equation including horizontal reflectivity and differential reflectivity were found poor compared to the others. The result was not improved even when only the suitable data were applied. Acknowledgments: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (NRF-2013R1A1A2011012).Keywords: CSU-HIDRO algorithm, dual polarization radar, JPOLE algorithm, radar rainfall estimation algorithm
Procedia PDF Downloads 2123889 Solutions of Fractional Reaction-Diffusion Equations Used to Model the Growth and Spreading of Biological Species
Authors: Kamel Al-Khaled
Abstract:
Reaction-diffusion equations are commonly used in population biology to model the spread of biological species. In this paper, we propose a fractional reaction-diffusion equation, where the classical second derivative diffusion term is replaced by a fractional derivative of order less than two. Based on the symbolic computation system Mathematica, Adomian decomposition method, developed for fractional differential equations, is directly extended to derive explicit and numerical solutions of space fractional reaction-diffusion equations. The fractional derivative is described in the Caputo sense. Finally, the recent appearance of fractional reaction-diffusion equations as models in some fields such as cell biology, chemistry, physics, and finance, makes it necessary to apply the results reported here to some numerical examples.Keywords: fractional partial differential equations, reaction-diffusion equations, adomian decomposition, biological species
Procedia PDF Downloads 375