Search results for: renewal mode
2020 Special Single Mode Fiber Tests of Polarization Mode Dispersion Changes in a Harsh Environment
Authors: Jan Bohata, Stanislav Zvanovec, Matej Komanec, Jakub Jaros, David Hruby
Abstract:
Even though there is a rapid development in new optical networks, still optical communication infrastructures remain composed of thousands of kilometers of aging optical cables. Many of them are located in a harsh environment which contributes to an increased attenuation or induced birefringence of the fibers leading to the increase of polarization mode dispersion (PMD). In this paper, we report experimental results from environmental optical cable tests and characterization in the climate chamber. We focused on the evaluation of optical network reliability in a harsh environment. For this purpose, a special thermal chamber was adopted, targeting to the large temperature changes between -60 °C and 160 C° with defined humidity. Single mode optical cable 230 meters long, having six tubes and a total number of 72 single mode optical fibers was spliced together forming one fiber link, which was afterward tested in the climate chamber. The main emphasis was put to the polarization mode dispersion (PMD) changes, which were evaluated by three different PMD measuring methods (general interferometry technique, scrambled state-of-polarization analysis and polarization optical time domain reflectometer) in order to fully validate obtained results. Moreover, attenuation and chromatic dispersion (CD), as well as the PMD, were monitored using 17 km long single mode optical cable. Results imply a strong PMD dependence on thermal changes, imposing the exceeding 200 % of its value during the exposure to extreme temperatures and experienced more than 20 dB insertion losses in the optical system. The derived statistic is provided in the paper together with an evaluation of such as optical system reliability, which could be a crucial tool for the optical network designers. The environmental tests are further taken in context to our previously published results from long-term monitoring of fundamental parameters within an optical cable placed in a harsh environment in a special outdoor testbed. Finally, we provide a correlation between short-term and long-term monitoring campaigns and statistics, which are necessary for optical network safety and reliability.Keywords: optical fiber, polarization mode dispersion, harsh environment, aging
Procedia PDF Downloads 3832019 A Problem with IFOC and a New PWM Based 180 Degree Conduction Mode
Authors: Usman Nasir, Minxiao Han, S. M. R. Kazmi
Abstract:
Three phase inverters being used today are based on field orientation control (FOC) and sine wave PWM (SPWM) techniques because 120 degree or 180 degree conduction methods produce high value of THD (total harmonic distortion) in the power system. The indirect field orientation control (IFOC) method is difficult to implement in real systems due to speed sensor accuracy issue. This paper discusses the problem with IFOC and a PWM based 180 degree conduction mode for the three phase inverter. The modified control method improves THD and this paper also compares the results obtained using modified control method with the conventional 180 degree conduction mode.Keywords: three phase inverters, IFOC, THD, sine wave PWM (SPWM)
Procedia PDF Downloads 4262018 Analysis of Vertical Hall Effect Device Using Current-Mode
Authors: Kim Jin Sup
Abstract:
This paper presents a vertical hall effect device using current-mode. Among different geometries that have been studied and simulated using COMSOL Multiphysics, optimized cross-shaped model displayed the best sensitivity. The cross-shaped model emerged as the optimum plate to fit the lowest noise and residual offset and the best sensitivity. The symmetrical cross-shaped hall plate is widely used because of its high sensitivity and immunity to alignment tolerances resulting from the fabrication process. The hall effect device has been designed using a 0.18-μm CMOS technology. The simulation uses the nominal bias current of 12μA. The applied magnetic field is from 0 mT to 20 mT. Simulation results achieved in COMSOL and validated with respect to the electrical behavior of equivalent circuit for Cadence. Simulation results of the one structure over the 13 available samples shows for the best geometry a current-mode sensitivity of 6.6 %/T at 20mT. Acknowledgment: This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. R7117-16-0165, Development of Hall Effect Semiconductor for Smart Car and Device).Keywords: vertical hall device, current-mode, crossed-shaped model, CMOS technology
Procedia PDF Downloads 2922017 Control of Spherical Robot with Sliding Mode
Authors: Roya Khajepour, Alireza B. Novinzadeh
Abstract:
A major issue with spherical robot is it surface shape, which is not always predictable. This means that given only the dynamic model of the robot, it is not possible to control the robot. Due to the fact that in certain conditions it is not possible to measure surface friction, control methods must be prepared for these conditions. Moreover, although spherical robot never becomes unstable or topples thanks to its special shape, since it moves by rolling it has a non-holonomic constraint at point of contact and therefore it is considered a non-holonomic system. Existence of such a point leads to complexity and non-linearity of robot's kinematic equations and makes the control problem difficult. Due to the non-linear dynamics and presence of uncertainty, the sliding-mode control is employed. The proposed method is based on Lyapunov Theory and guarantees system stability. This controller is insusceptible to external disturbances and un-modeled dynamics.Keywords: sliding mode, spherical robot, non-holomonic constraint, system stability
Procedia PDF Downloads 3882016 Effects of Front Porch and Loft on Indoor Ventilation in the Renewal of Beijing Courtyard
Authors: Zhongzhong Zeng, Zichen Liang
Abstract:
In recent years, Beijing courtyards have been facing the problem of renewal and renovation, and the residents are faced with the problems of small house areas, large household sizes, old and dangerous houses, etc. Among the many renovation methods, the authors note two more common practices of using the front porch to expand the floor area and adding a loft. Residents and architects, however, did not give the ventilation performance of the significant interior consideration before beginning the remodeling. The aim of this article is to explore the good or negative impacts of both front porch and loft structures on the manner of interior ventilation in the courtyard. Ventilation, in turn, is crucial to the indoor environmental quality of a home. The major method utilized in this study is the comparative analysis method, in which the authors create four alternative house models with or without a front porch and an attic as two variables and examine internal ventilation using the CFD(Computational Fluid Dynamics) technique. The authors compare the indoor ventilation of four different architectural models with or without front porches and lofts as two variables. The results obtained from the analysis of the sectional airflow and the plane 1.5m height cloud are the existence of the loft, to a certain extent, disrupts the airflow organization of the building and makes the rear wall high windows of the building less effective. Occupying the front porch to become the area of the house has no significant effect on ventilation, but try not to occupy the front porch and add the loft at the same time in the building renovation. The findings of this study led to the following recommendations: strive to preserve the courtyard building's original architectural design and make adjustments to only the inappropriate elements or constructions. The ventilation in the loft portion is inadequate, and the inhabitants typically use the loft as a living area. This may lead to the building relying more on air conditioning in the summer, which would raise energy demand. The front porch serves as a transition place as well as a source of shade, weather protection, and inside ventilation. In conclusion, the examination of interior environments in upcoming studies should concentrate on cross-disciplinary, multi-angle, and multi-level research topics.Keywords: Beijing courtyard renewal, CFD, indoor environment, ventilation analysis
Procedia PDF Downloads 812015 Low Complexity Deblocking Algorithm
Authors: Jagroop Singh Sidhu, Buta Singh
Abstract:
A low computational deblocking filter including three frequency related modes (smooth mode, intermediate mode, and non-smooth mode for low-frequency, mid-frequency, and high frequency regions, respectively) is proposed. The suggested approach requires zero additions, zero subtractions, zero multiplications (for intermediate region), no divisions (for non-smooth region) and no comparison. The suggested method thus keeps the computation lower and thus suitable for image coding systems based on blocks. Comparison of average number of operations for smooth, non-smooth, intermediate (per pixel vector for each block) using filter suggested by Chen and the proposed method filter suggests that the proposed filter keeps the computation lower and is thus suitable for fast processing algorithms.Keywords: blocking artifacts, computational complexity, non-smooth, intermediate, smooth
Procedia PDF Downloads 4622014 A Finite Element Model to Study the Behaviour of Corroded Reinforced Concrete Beams Repaired with near Surface Mounted Technique
Authors: B. Almassri, F. Almahmoud, R. Francois
Abstract:
Near surface mounted reinforcement (NSM) technique is one of the promising techniques used nowadays to strengthen reinforced concrete (RC) structures. In the NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. This paper studies the non-classical mode of failure ‘the separation of concrete cover’ according to experimental and numerical FE modelling results. Experimental results and numerical modelling results of a 3D finite element (FE) model using the commercial software Abaqus and 2D FE model FEMIX were obtained on two beams, one corroded (25 years of corrosion procedure) and one control (A1CL3-R and A1T-R) were each repaired in bending using NSM CFRP rod and were then tested up to failure. The results showed that the NSM technique increased the overall capacity of control and corroded beams despite a non-classical mode of failure with separation of the concrete cover occurring in the corroded beam due to damage induced by corrosion. Another FE model used external steel stirrups around the repaired corroded beam A1CL3-R which failed with the separation of concrete cover, this model showed a change in the mode of failure form a non-classical mode of failure by the separation of concrete cover to the same mode of failure of the repaired control beam by the crushing of compressed concrete.Keywords: corrosion, repair, Reinforced Concrete, FEM, CFRP, FEMIX
Procedia PDF Downloads 1642013 Statistical Shape Analysis of the Human Upper Airway
Authors: Ramkumar Gunasekaran, John Cater, Vinod Suresh, Haribalan Kumar
Abstract:
The main objective of this project is to develop a statistical shape model using principal component analysis that could be used for analyzing the shape of the human airway. The ultimate goal of this project is to identify geometric risk factors for diagnosis and management of Obstructive Sleep Apnoea (OSA). Anonymous CBCT scans of 25 individuals were obtained from the Otago Radiology Group. The airways were segmented between the hard-palate and the aryepiglottic fold using snake active contour segmentation. The point data cloud of the segmented images was then fitted with a bi-cubic mesh, and pseudo landmarks were placed to perform PCA on the segmented airway to analyze the shape of the airway and to find the relationship between the shape and OSA risk factors. From the PCA results, the first four modes of variation were found to be significant. Mode 1 was interpreted to be the overall length of the airway, Mode 2 was related to the anterior-posterior width of the retroglossal region, Mode 3 was related to the lateral dimension of the oropharyngeal region and Mode 4 was related to the anterior-posterior width of the oropharyngeal region. All these regions are subjected to the risk factors of OSA.Keywords: medical imaging, image processing, FEM/BEM, statistical modelling
Procedia PDF Downloads 5142012 Full-Spectrum Photo-thermal Conversion of Point-mode Cu₂O/TiN Plasmonic Nanofluids
Authors: Xiaoxiao Yu, Guodu He, Zihua Wu, Yuanyuan Wang, Huaqing Xie
Abstract:
Core-shell composite structure is a common method to regulate the spectral absorption of nanofluids, but there occur complex preparation processes, which limit the applications in some fields, such as photothermal utilization and catalysis. This work proposed point-mode Cu₂O/TiN plasmonic nanofluids to regulate the spectral capturing ability and simplify the preparation process. Non-noble TiN nanoparticles with the localized surface plasmon resonance effect are dispersed in Cu₂O nanoparticles for forming a multi-point resonance source to enhance the spectral absorption performance. The experimental results indicate that the multiple resonance effect of TiN effectively improves the optical absorption and expands the absorption region. When the radius of Cu₂O nanoparticles is equal to 150nm, the optical absorption of point-mode Cu₂O/TiN plasmonic nanoparticles is best. Moreover, the photothermal conversion efficiency of Cu₂O/TiN plasmonic nanofluid can reach 97.5% at a volume fraction of 0.015% and an optical depth of 10mm. The point-mode nanostructure effectively enhances the optical absorption properties and greatly simplifies the preparation process of the composite nanoparticles, which can promote the application of multi-component photonic nanoparticles in the field of solar energy.Keywords: solar energy, nanofluid, point-mode structure, Cu₂O/TiN, localized surface plasmon resonance effect
Procedia PDF Downloads 612011 Failure Criterion for Mixed Mode Fracture of Cracked Wood Specimens
Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi
Abstract:
Investigation of fracture of wood components can prevent from catastrophic failures. Created fracture process zone (FPZ) in crack tip vicinity has important effect on failure of cracked composite materials. In this paper, a failure criterion for fracture investigation of cracked wood specimens under mixed mode I/II loading is presented. This criterion is based on maximum strain energy release rate and material nonlinearity in the vicinity of crack tip due to presence of microcracks. Verification of results with available experimental data proves the coincidence of the proposed criterion with the nature of fracture of wood. To simplify the estimation of nonlinear properties of FPZ, a damage factor is also introduced for engineering and application purposes.Keywords: fracture criterion, mixed mode loading, damage zone, micro cracks
Procedia PDF Downloads 2982010 Numerical Simulation of Fiber Bragg Grating Spectrum for Mode-І Delamination Detection
Authors: O. Hassoon, M. Tarfoui, A. El Malk
Abstract:
Fiber Bragg optic sensor embedded in composite material to detect and monitor the damage which is occur in composite structure. In this paper we deal with the mode-Ι delamination to determine the resistance of material to crack propagation, and use the coupling mode theory and T-matrix method to simulating the FBGs spectrum for both uniform and non-uniform strain distribution. The double cantilever beam test which is modeling in FEM to determine the Longitudinal strain, there are two models which are used, the first is the global half model, and the second the sub-model to represent the FBGs with refine mesh. This method can simulate the damage in the composite structure and converting the strain to wavelength shifting of the FBG spectrum.Keywords: fiber bragg grating, delamination detection, DCB, FBG spectrum, structure health monitoring
Procedia PDF Downloads 3612009 Forecasting Amman Stock Market Data Using a Hybrid Method
Authors: Ahmad Awajan, Sadam Al Wadi
Abstract:
In this study, a hybrid method based on Empirical Mode Decomposition and Holt-Winter (EMD-HW) is used to forecast Amman stock market data. First, the data are decomposed by EMD method into Intrinsic Mode Functions (IMFs) and residual components. Then, all components are forecasted by HW technique. Finally, forecasting values are aggregated together to get the forecasting value of stock market data. Empirical results showed that the EMD- HW outperform individual forecasting models. The strength of this EMD-HW lies in its ability to forecast non-stationary and non- linear time series without a need to use any transformation method. Moreover, EMD-HW has a relatively high accuracy comparing with eight existing forecasting methods based on the five forecast error measures.Keywords: Holt-Winter method, empirical mode decomposition, forecasting, time series
Procedia PDF Downloads 1292008 Raman Scattering Broadband Spectrum Generation in Compact Yb-Doped Fiber Laser
Authors: Yanrong Song, Zikai Dong, Runqin Xu, Jinrong Tian, Kexuan Li
Abstract:
Nonlinear polarization rotation (NPR) technique has become one of the main techniques to achieve mode-locked fiber lasers for its compactness, implementation, and low cost. In this paper, we demonstrate a compact mode-locked Yb-doped fiber laser based on NPR technique in the all normal dispersion (ANDi) regime. In the laser cavity, there are no physical filter and polarization controller in laser cavity. Mode-locked pulse train is achieved in ANDi regime based on NPR technique. The fiber birefringence induced filtering effect is the mainly reason for mode-locking. After that, an extra 20 m long single-mode fiber is inserted in two different positions, dissipative soliton operation and noise like pulse operations are achieved correspondingly. The nonlinear effect is obviously enhanced in the noise like pulse regime and broadband spectrum generated owing to enhanced stimulated Raman scattering effect. When the pump power is 210 mW, the central wavelength is 1030 nm, and the corresponding 1st order Raman scattering stokes wave generates and locates at 1075 nm. When the pump power is 370 mW, the 1st and 2nd order Raman scattering stokes wave generate and locate at 1080 nm, 1126 nm respectively. When the pump power is 600 mW, the Raman continuum is generated with cascaded multi-order stokes waves, and the spectrum extends to 1188 nm. The total flat spectrum is from 1000nm to 1200nm. The maximum output average power and pulse energy are 18.0W and 14.75nJ, respectively.Keywords: fiber laser, mode-locking, nonlinear polarization rotation, Raman scattering
Procedia PDF Downloads 2212007 Root Cause Analysis of Excessive Vibration in a Feeder Pump of a Large Thermal Electric Power Plant: A Simulation Approach
Authors: Kavindan Balakrishnan
Abstract:
Root cause Identification of the Vibration phenomenon in a feedwater pumping station was the main objective of this research. First, the mode shapes of the pumping structure were investigated using numerical and analytical methods. Then the flow pressure and streamline distribution in the pump sump were examined using C.F.D. simulation, which was hypothesized can be a cause of vibration in the pumping station. As the problem specification of this research states, the vibration phenomenon in the pumping station, with four parallel pumps operating at the same time and heavy vibration recorded even after several maintenance steps. They also specified that a relatively large amplitude of vibration exited by pumps 1 and 4 while others remain normal. As a result, the focus of this research was on determining the cause of such a mode of vibration in the pump station with the assistance of Finite Element Analysis tools and Analytical methods. Major outcomes were observed in structural behavior which is favorable to the vibration pattern phenomenon in the pumping structure as a result of this research. Behaviors of the numerical and analytical models of the pump structure have similar characteristics in their mode shapes, particularly in their 2nd mode shape, which is considerably related to the exact cause of the research problem statement. Since this study reveals several possible points of flow visualization in the pump sump model that can be a favorable cause of vibration in the system, there is more room for improved investigation on flow conditions relating to pump vibrations.Keywords: vibration, simulation, analysis, Ansys, Matlab, mode shapes, pressure distribution, structure
Procedia PDF Downloads 1242006 Slip Suppression Sliding Mode Control with Various Chattering Functions
Authors: Shun Horikoshi, Tohru Kawabe
Abstract:
This study presents performance analysis results of SMC (Sliding mode control) with changing the chattering functions applied to slip suppression problem of electric vehicles (EVs). In SMC, chattering phenomenon always occurs through high frequency switching of the control inputs. It is undesirable phenomenon and degrade the control performance, since it causes the oscillations of the control inputs. Several studies have been conducted on this problem by introducing some general saturation function. However, study about whether saturation function was really best and the performance analysis when using the other functions, weren’t being done so much. Therefore, in this paper, several candidate functions for SMC are selected and control performance of candidate functions is analyzed. In the analysis, evaluation function based on the trade-off between slip suppression performance and chattering reduction performance is proposed. The analyses are conducted in several numerical simulations of slip suppression problem of EVs. Then, we can see that there is no difference of employed candidate functions in chattering reduction performance. On the other hand, in slip suppression performance, the saturation function is excellent overall. So, we conclude the saturation function is most suitable for slip suppression sliding mode control.Keywords: sliding mode control, chattering function, electric vehicle, slip suppression, performance analysis
Procedia PDF Downloads 3262005 Estimation of the State of Charge of the Battery Using EFK and Sliding Mode Observer in MATLAB-Arduino/Labview
Authors: Mouna Abarkan, Abdelillah Byou, Nacer M'Sirdi, El Hossain Abarkan
Abstract:
This paper presents the estimation of the state of charge of the battery using two types of observers. The battery model used is the combination of a voltage source, which is the open circuit battery voltage of a strength corresponding to the connection of resistors and electrolyte and a series of parallel RC circuits representing charge transfer phenomena and diffusion. An adaptive observer applied to this model is proposed, this observer to estimate the battery state of charge of the battery is based on EFK and sliding mode that is known for their robustness and simplicity implementation. The results are validated by simulation under MATLAB/Simulink and implemented in Arduino-LabView.Keywords: model of the battery, adaptive sliding mode observer, the EFK observer, estimation of state of charge, SOC, implementation in Arduino/LabView
Procedia PDF Downloads 3042004 Development of a Firmware Downloader for AVR Microcontrollers for Educational Purposes
Authors: Jungho Moon, Lae Jeong Park
Abstract:
This paper introduces the development of a firmware downloader for students attending microcontroller-related courses taught by the authors In the courses, AVR microcontroller experiment kits are used for programming exercise and the AVR microcontroller is programmed through a serial communication interface using a bootloader preinstalled on it. To use the bootloader, a matching firmware downloader that runs on a host computer and communicates with the bootloader is also required. When firmware downloading is completed, the serial port used for it needs to be closed. If the downloaded firmware uses serial communication, the serial port needs to be reopened in a serial terminal. As a result, the programmer of the AVR board switches from the downloader program and the serial terminal and vice versa. It is a simple task but quite a hassle to do each time new firmware needs downloading. To provide a more convenient programming environment for the courses, the authors developed a downloader program that includes a serial terminal in it. The program operates in downloader or terminal mode and the mode switching is performed automatically; therefore manual mode switching is not necessary. The feature provides a more convenient development environment by eliminating the need for manual mode switching each time firmware downloading is required.Keywords: bootloader, firmware downloader, microcontroller, serial communication
Procedia PDF Downloads 1942003 Design of a Sliding Controller for Optical Disk Drives
Authors: Yu-Sheng Lu, Chung-Hsin Cheng, Shuen-Shing Jan
Abstract:
This paper presents the design and implementation of a sliding-mod controller for tracking servo of optical disk drives. The tracking servo is majorly subject to two disturbance sources: radial run-out and shock. The lateral run-out disturbance is mostly repeatable, and a model of such disturbance is incorporated into the controller design to effectively compensate for it. Meanwhile, as a shock disturbance is usually non-repeatable and unpredictable, the sliding-mode controller is employed for its robustness to abrupt perturbations. As a result, a sliding-mode controller design based on the internal model principle is tailored for tracking servo of optical disk drives in order to deal with these two major disturbances. Experimental comparative studies are conducted to investigate the effectiveness of the specially designed controller.Keywords: mechatronics, optical disk drive, sliding-mode control, servo systems
Procedia PDF Downloads 3802002 Discursivity and Creativity: Implementing Pigrum's Multi-Mode Transitional Practices in Upper Division Creative Production Courses
Authors: Michael Filimowicz, Veronika Tzankova
Abstract:
This paper discusses the practical implementation of Derek Pigrum’s multi-mode model of transitional practices in the context of upper division production courses in an interaction design curriculum. The notion of teaching creativity directly was connected to a general notion of “discursivity” by which is meant students’ overall ability to discuss, describe, and engage in dialogue about their creative work. We present a study of how Pigrum’s transitional modes can be mapped onto a variety of course activities, and discuss challenges and outcomes of directly engaging student discursivity in their creative output.Keywords: teaching creativity, multi-mode transitional practices, discursivity, rich dialogue, art and design education, pedagogy
Procedia PDF Downloads 5022001 Empirical Mode Decomposition Based Denoising by Customized Thresholding
Authors: Wahiba Mohguen, Raïs El’hadi Bekka
Abstract:
This paper presents a denoising method called EMD-Custom that was based on Empirical Mode Decomposition (EMD) and the modified Customized Thresholding Function (Custom) algorithms. EMD was applied to decompose adaptively a noisy signal into intrinsic mode functions (IMFs). Then, all the noisy IMFs got threshold by applying the presented thresholding function to suppress noise and to improve the signal to noise ratio (SNR). The method was tested on simulated data and real ECG signal, and the results were compared to the EMD-Based signal denoising methods using the soft and hard thresholding. The results showed the superior performance of the proposed EMD-Custom denoising over the traditional approach. The performances were evaluated in terms of SNR in dB, and Mean Square Error (MSE).Keywords: customized thresholding, ECG signal, EMD, hard thresholding, soft-thresholding
Procedia PDF Downloads 3022000 Spectral Properties of Fiber Bragg Gratings
Authors: Y. Hamaizi, H. Triki, A. El-Akrmi
Abstract:
In this paper, the reflection spectra, group delay and dispersion of a uniform fiber Bragg grating (FBG) are obtained. FBGs with two types of apodized variations of the refractive index were modeled to show how the side-lobes can be suppressed. Apodization techniques are used to get optimized reflection spectra. The simulation is based on solving coupled mode equations together with the transfer matrix method.Keywords: fiber bragg gratings, coupled-mode theory, reflectivity, apodization
Procedia PDF Downloads 7041999 Multi-Scaled Non-Local Means Filter for Medical Images Denoising: Empirical Mode Decomposition vs. Wavelet Transform
Authors: Hana Rabbouch
Abstract:
In recent years, there has been considerable growth of denoising techniques mainly devoted to medical imaging. This important evolution is not only due to the progress of computing techniques, but also to the emergence of multi-resolution analysis (MRA) on both mathematical and algorithmic bases. In this paper, a comparative study is conducted between the two best-known MRA-based decomposition techniques: the Empirical Mode Decomposition (EMD) and the Discrete Wavelet Transform (DWT). The comparison is carried out in a framework of multi-scale denoising, where a Non-Local Means (NLM) filter is performed scale-by-scale to a sample of benchmark medical images. The results prove the effectiveness of the multiscaled denoising, especially when the NLM filtering is coupled with the EMD.Keywords: medical imaging, non local means, denoising, multiscaled analysis, empirical mode decomposition, wavelets
Procedia PDF Downloads 1411998 Power Control of DFIG in WECS Using Backstipping and Sliding Mode Controller
Authors: Abdellah Boualouch, Ahmed Essadki, Tamou Nasser, Ali Boukhriss, Abdellatif Frigui
Abstract:
This paper presents a power control for a Doubly Fed Induction Generator (DFIG) using in Wind Energy Conversion System (WECS) connected to the grid. The proposed control strategy employs two nonlinear controllers, Backstipping (BSC) and sliding-mode controller (SMC) scheme to directly calculate the required rotor control voltage so as to eliminate the instantaneous errors of active and reactive powers. In this paper the advantages of BSC and SMC are presented, the performance and robustness of this two controller’s strategy are compared between them. First, we present a model of wind turbine and DFIG machine, then a synthesis of the controllers and their application in the DFIG power control. Simulation results on a 1.5MW grid-connected DFIG system are provided by MATLAB/Simulink.Keywords: backstipping, DFIG, power control, sliding-mode, WESC
Procedia PDF Downloads 5941997 Application of Matrix Converter for the Power Control of a DFIG-Based Wind Turbine
Authors: E. Bounadja, M. O. Mahmoudi, A. Djahbar, Z. Boudjema
Abstract:
This paper presents a control approach of the doubly fed induction generator (DFIG) in conjunction with a direct AC-AC matrix converter used in generating mode. This device is intended to be implemented in a variable speed wind energy conversion system connected to the grid. Firstly, we developed a model of matrix converter, controlled by the Venturini modulation technique. In order to control the power exchanged between the stator of the DFIG and the grid, a control law is synthesized using a high order sliding mode controller. The use of this method provides very satisfactory performance for the DFIG control. The overall strategy has been validated on a 2-MW wind turbine driven a DFIG using the Matlab/Simulink.Keywords: doubly fed induction generator (DFIG), matrix converter, high-order sliding mode controller, wind energy
Procedia PDF Downloads 5231996 Co-Participation: Towards the Sustainable Micro-Rural Complex in China
Authors: Danhua Xu, Zhenlan Qian, Zhu Wang, Jiayan Fu, Ling Wang
Abstract:
A new business mode called rural complex is proposed by the China’s government to promote the development the economy in the rural area. However, for the sake of current national conditions including the great number of labor farmers owning the small scale farmlands and the uncertain enthusiasm from the enterprises, it is challenging to develop the big scale rural complex. To react to the dilemmas, this paper puts forward the micro-rural complex to boost the small scale farms by co-participation from a bottom-up mode. By analyzing the potential opportunities to find the suitable mode, exploring the interdisciplinary and interdepartmental co-participation way beyond architecture design and spatial planning between different actors, the paper tries to find a complete process towards the sustainable micro-rural complex and conducts an ongoing practice to optimize it, to bring new insights and reference to the rural development. According to the transformation of the economy, the micro-rural complex will develop into two phases, both of which can be discussed in three parts, the economic mode, the spatial support, and the Cooperating mechanism. The first stage is the agriculture co-participation based on the rise of Community supported agriculture (CSA) in which the consumers buy the products planted in an organic way from the farmers directly with a higher price to support the small-scale agriculture and overcome the food safety issues. The following stage sets up the agritourism catering the citizens with the restaurants, inns and other tourist service facilities to be planned and designed. In the whole process, the interdisciplinary co-participation will play an important role to provide the guidelines and consultation from the agronomists, architects and rural planners to the farmers. This mode has been applied to an on-going farm project, from which to explore the mode in a more practical way. In conclusion, the micro-rural complex aims at creating a balanced urban-rural relationship by co-participation taking advantage of the different actors. The spatial development is considered from the economic mode and social organization. The integration of the mode based on the small-scale agriculture will contribute to a sustainable growth and realize the long run development in the rural area.Keywords: micro-rural complex, co-participation, sustainable development, China
Procedia PDF Downloads 2631995 Vertically Coupled III-V/Silicon Single Mode Laser with a Hybrid Grating Structure
Abstract:
Silicon photonics has gained much interest and extensive research for a promising aspect for fabricating compact, high-speed and low-cost photonic devices compatible with complementary metal-oxide-semiconductor (CMOS) process. Despite the remarkable progress made on the development of silicon photonics, high-performance, cost-effective, and reliable silicon laser sources are still missing. In this work, we present a 1550 nm III-V/silicon laser design with stable single-mode lasing property and robust and high-efficiency vertical coupling. The InP cavity consists of two uniform Bragg grating sections at sides for mode selection and feedback, as well as a central second-order grating for surface emission. A grating coupler is etched on the SOI waveguide by which the light coupling between the parallel III-V and SOI is reached vertically rather than by evanescent wave coupling. Laser characteristic is simulated and optimized by the traveling-wave model (TWM) and a Green’s function analysis as well as a 2D finite difference time domain (FDTD) method for the coupling process. The simulation results show that single-mode lasing with SMSR better than 48dB is achievable, and the threshold current is less than 15mA with a slope efficiency of around 0.13W/A. The coupling efficiency is larger than 42% and possesses a high tolerance with less than 10% reduction for 10 um horizontal or 15 um vertical dislocation. The design can be realized by standard flip-chip bonding techniques without co-fabrication of III-V and silicon or precise alignment.Keywords: III-V/silicon integration, silicon photonics, single mode laser, vertical coupling
Procedia PDF Downloads 1561994 A Study on the Different Components of a Typical Back-Scattered Chipless RFID Tag Reflection
Authors: Fatemeh Babaeian, Nemai Chandra Karmakar
Abstract:
Chipless RFID system is a wireless system for tracking and identification which use passive tags for encoding data. The advantage of using chipless RFID tag is having a planar tag which is printable on different low-cost materials like paper and plastic. The printed tag can be attached to different items in the labelling level. Since the price of chipless RFID tag can be as low as a fraction of a cent, this technology has the potential to compete with the conventional optical barcode labels. However, due to the passive structure of the tag, data processing of the reflection signal is a crucial challenge. The captured reflected signal from a tag attached to an item consists of different components which are the reflection from the reader antenna, the reflection from the item, the tag structural mode RCS component and the antenna mode RCS of the tag. All these components are summed up in both time and frequency domains. The effect of reflection from the item and the structural mode RCS component can distort/saturate the frequency domain signal and cause difficulties in extracting the desired component which is the antenna mode RCS. Therefore, it is required to study the reflection of the tag in both time and frequency domains to have a better understanding of the nature of the captured chipless RFID signal. The other benefits of this study can be to find an optimised encoding technique in tag design level and to find the best processing algorithm the chipless RFID signal in decoding level. In this paper, the reflection from a typical backscattered chipless RFID tag with six resonances is analysed, and different components of the signal are separated in both time and frequency domains. Moreover, the time domain signal corresponding to each resonator of the tag is studied. The data for this processing was captured from simulation in CST Microwave Studio 2017. The outcome of this study is understanding different components of a measured signal in a chipless RFID system and a discovering a research gap which is a need to find an optimum detection algorithm for tag ID extraction.Keywords: antenna mode RCS, chipless RFID tag, resonance, structural mode RCS
Procedia PDF Downloads 2001993 Fixed-Frequency Pulse Width Modulation-Based Sliding Mode Controller for Switching Multicellular Converter
Authors: Rihab Hamdi, Amel Hadri Hamida, Ouafae Bennis, Fatima Babaa, Sakina Zerouali
Abstract:
This paper features a sliding mode controller (SMC) for closed-loop voltage control of DC-DC three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM). To maintain the switching frequency, the approach is to incorporate a pulse-width modulation that utilizes an equivalent control, inferred by applying the SM control method, to produce a control sign to be contrasted and the fixed-frequency within the modulator. Detailed stability and transient performance analysis have been conducted using Lyapunov stability criteria to restrict the switching frequency variation facing wide variations in output load, input changes, and set-point changes. The results obtained confirm the effectiveness of the proposed control scheme in achieving an enhanced output transient performance while faithfully realizing its control objective in the event of abrupt and uncertain parameter variations. Simulations studies in MATLAB/Simulink environment are performed to confirm the idea.Keywords: DC-DC converter, pulse width modulation, power electronics, sliding mode control
Procedia PDF Downloads 1471992 The Modality of Multivariate Skew Normal Mixture
Authors: Bader Alruwaili, Surajit Ray
Abstract:
Finite mixtures are a flexible and powerful tool that can be used for univariate and multivariate distributions, and a wide range of research analysis has been conducted based on the multivariate normal mixture and multivariate of a t-mixture. Determining the number of modes is an important activity that, in turn, allows one to determine the number of homogeneous groups in a population. Our work currently being carried out relates to the study of the modality of the skew normal distribution in the univariate and multivariate cases. For the skew normal distribution, the aims are associated with studying the modality of the skew normal distribution and providing the ridgeline, the ridgeline elevation function, the $\Pi$ function, and the curvature function, and this will be conducive to an exploration of the number and location of mode when mixing the two components of skew normal distribution. The subsequent objective is to apply these results to the application of real world data sets, such as flow cytometry data.Keywords: mode, modality, multivariate skew normal, finite mixture, number of mode
Procedia PDF Downloads 4881991 Broadband Platinum Disulfide Based Saturable Absorber Used for Optical Fiber Mode Locking Lasers
Authors: Hui Long, Chun Yin Tang, Ping Kwong Cheng, Xin Yu Wang, Wayesh Qarony, Yuen Hong Tsang
Abstract:
Two dimensional (2D) materials have recently attained substantial research interest since the discovery of graphene. However, the zero-bandgap feature of the graphene limits its nonlinear optical applications, e.g., saturable absorption for these applications require strong light-matter interaction. Nevertheless, the excellent optoelectronic properties, such as broad tunable bandgap energy and high carrier mobility of Group 10 transition metal dichalcogenides 2D materials, e.g., PtS2 introduce new degree of freedoms in the optoelectronic applications. This work reports our recent research findings regarding the saturable absorption property of PtS2 layered 2D material and its possibility to be used as saturable absorber (SA) for ultrafast mode locking fiber laser. The demonstration of mode locking operation by using the fabricated PtS2 as SA will be discussed. The PtS2/PVA SA used in this experiment is made up of some few layered PtS2 nanosheets fabricated via a simple ultrasonic liquid exfoliation. The operational wavelength located at ~1 micron is demonstrated from Yb-doped mode locking fiber laser ring cavity by using the PtS2 SA. The fabricated PtS2 saturable absorber offers strong nonlinear properties, and it is capable of producing regular mode locking laser pulses with pulse to pulse duration matched with the round-trip cavity time. The results confirm successful mode locking operation achieved by the fabricated PtS2 material. This work opens some new opportunities for these PtS2 materials for the ultrafast laser generation. Acknowledgments: This work is financially supported by Shenzhen Science and Technology Innovation Commission (JCYJ20170303160136888) and the Research Grants Council of Hong Kong, China (GRF 152109/16E, PolyU code: B-Q52T).Keywords: platinum disulfide, PtS2, saturable absorption, saturable absorber, mode locking laser
Procedia PDF Downloads 188