Search results for: illumination invariance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 219

Search results for: illumination invariance

39 TiO₂ Deactivation Process during Photocatalytic Ethanol Degradation in the Gas Phase

Authors: W. El-Alami, J. Araña, O. González Díaz, J. M. Doña Rodríguez

Abstract:

The efficiency of the semiconductor TiO₂ needs to be improved to be an effective tool for pollutant removal. To improve the efficiency of this semiconductor, it is necessary to deepen the knowledge of the processes that take place on its surface. In this sense, the deactivation of the catalyst is one of the aspects considered relevant. In order to study this point, the processes of deactivation of TiO₂ during the gas phase degradation of ethanol have been studied. For this, catalysts with only the anatase phase (SA and PC100) and catalysts with anatase and rutile phases (P25 and P90) have been selected. In order to force the deactivation processes, different cycles have been performed, adding ethanol gas but avoiding the degradation of acetates to determine their effect on the process. The surface concentration of fluorine on the catalysts was semi-quantitatively determined by EDAX analysis. The photocatalytic experiments were done with four commercial catalysts (P25, SA, P90, and PC100) and the two fluoride catalysts indicated above. The interaction and photocatalytic degradation of ethanol were followed by Fourier transform infrared spectroscopy (FTIR). EDAX analysis has revealed the presence of sodium on the surface of fluorinated catalysts. In FTIR studies, it has been observed that the acetates adsorbed on the anatase phase in P25 and P90 give rise to electron transfer to surface traps that modify the electronic states of the semiconductor. These deactivation studies have also been carried out with fluorinated P25 and SA catalysts (F-P25 and F-SA) which have observed similar electron transfers but in the opposite direction during illumination. In these materials, it has been observed that the electrons present in the surface traps, as a consequence of the interaction Ti-F, react with the holes, causing a change in the electronic states of the semiconductor. In this way, deactivated states of these materials have been detected by different electron transfer routes. It has been identified that acetates produced from the degradation of ethanol in P25 and P90 are probably hydrated on the surface of the rutile phase. In the catalysts with only the anatase phase (SA and PC100), the deactivation is immediate if the acetates are not removed before adsorbing ethanol again. In F-P25 and F-SA has been observed that the acetates formed react with the sodium ions present on the surface and not with the Ti atoms because they are interacting with the fluorine.

Keywords: photocatalytic degradation, ethanol, TiO₂, deactivation process, F-P25

Procedia PDF Downloads 74
38 Antioxidant Capacity, Proximate Biomass Composition and Fatty Acid Profile of Five Marine Microalgal Species with Potential as Aquaculture Feed

Authors: Vasilis Andriopoulos, Maria D. Gkioni, Elena Koutra, Savvas G. Mastropetros, Fotini N. Lamari, Sofia Hatziantoniou, Michalis Kornaros

Abstract:

In the present study, the antioxidant activity of aqueous and methanolic extracts of Chlorella minutissima, Dunaliella salina, Isochrysis galbana, Nannochloropsis oculata and Tisohrysis lutea, as well as the proximate composition and fatty acid profile were evaluated, with the aim to select species suitable for co-production of antioxidants and aquaculture feed. Batch cultivation was performed at 25oC in a modified f/2 medium under continuous illumination and aeration with ambient air. Biomass was collected via centrifugation and extracted first with H2O and subsequently with methanol at two growth phases (early and late stationary). Total phenolic content and antioxidant and reducing activity of the extracts were evaluated. The highest phenolic content was found in the methanolic extract of C. minutissima at the early stationary phase (9.04±0.68 mg Gallic Acid Equivalent g-1 dry weight), and the aqueous extract of D. salina at the late stationary phase (8.78±1.49 mg Gallic Acid Equivalent g-1 Dry weight). Antioxidant activity, measured as 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and Ferric reducing antioxidant power assay of methanolic extracts were comparable to the literature and correlated to Total phenolic content and Chlorophyll content of the biomass. No such correlation was found in the aqueous extracts. N. oculata and T. lutea were high in protein (39.88±1.72% Dry weight and 43.30±1.33% Dry weight, respectively) and carotenoids (0.64±0.13% and 0.92±0.02%, respectively). Additionally, they presented high eicosapentaenoic acid and docosahexaenoic acid levels (33.74±9.98 mg eicosapentaenoic acid g-1 DW and 31.31±2.92 mg docosahexaenoic acid g-1 dry weight, respectively). N. oculata and T. lutea are promising candidates for the co-production of antioxidants and aquaculture feed, while C. minutissima and D. salina showed promise due to their higher antioxidant content.

Keywords: aquaculture fee, antioxidant activity, fatty acids, microalgae, total phenolic content

Procedia PDF Downloads 169
37 Design and Development of a Safety Equipment and Accessory for Bicycle Users

Authors: Francine Siy, Stephen Buñi

Abstract:

Safety plays a significant role in everyone’s life on a day-to-day basis. We wish ourselves and our loved ones their safety as we all venture out on our daily commute. The road is undeniably dangerous and unpredictable, with abundant traffic collisions and pedestrians experiencing various injuries. For bicycle users, the risk of accidents is even more exacerbated, and injuries may be severe. Even when cyclists try their best to be safe and protected, the possibility of encountering danger is always there. Despite being equipped with protective gear, safety is never guaranteed. Cyclists often settle for helmets and standard reflector vests to establish a presence on the road. There are different types of vests available, depending on the profession. However, traditional reflector vests, mostly seen on construction workers and traffic enforcers, were not designed for riders and their protection from injuries. With insufficient protection for riders, they need access to ergonomically designed equipment and accessories that suit the riders and cater to their needs. This research aimed to offer a protective vest with safety features for riders that is comfortable, effective, durable, and intuitive. This sheds light and addresses the safety of the biker population, which continuously grows through the years. The product was designed and developed by gathering data and using the cognitive mapping method to ensure that all qualitative and quantitative data were considered in this study to improve other existing products that do not have the proper design considerations. It is known that available equipment for cyclists is often sold separately or lacks the safety features for cyclists traversing open roads. Each safety feature like the headlights, reflectors, signal or rear lights, zipper pouch, body camera attachment, and wireless remote control all play a particular role in helping cyclists embark on their daily commute. These features aid in illumination, visibility, easy maneuvering, convenience, and security, allowing cyclists to go for a safer ride that is of use throughout the day. The product is designed and produced effectively and inexpensively without sacrificing the quality and purpose of its usage.

Keywords: bicycle accessory, protective gear, safety, transport, visibility

Procedia PDF Downloads 83
36 Cognitivism in Classical Japanese Art and Literature: The Cognitive Value of Haiku and Zen Painting

Authors: Benito Garcia-Valero

Abstract:

This paper analyses the cognitivist value of traditional Japanese theories about aesthetics, art, and literature. These reflections were developed several centuries before actual Cognitive Studies, which started in the seventies of the last century. A comparative methodology is employed to shed light on the similarities between traditional Japanese conceptions about art and current cognitivist principles. The Japanese texts to be compared are Zeami’s treatise on noh art, Okura Toraaki’s Waranbe-gusa on kabuki theatre, and several Buddhist canonical texts about wisdom and knowledge, like the Prajnaparamitahrdaya or Heart Sutra. Japanese contemporary critical sources on these works are also referred, like Nishida Kitaro’s reflections on Zen painting or Ichikawa Hiroshi’s analysis of body/mind dualism in Japanese physical practices. Their ideas are compared with cognitivist authors like George Lakoff, Mark Johnson, Mark Turner and Margaret Freeman. This comparative review reveals the anticipatory ideas of Japanese thinking on body/mind interrelationship, which agrees with cognitivist criticism against dualism, since both elucidate the physical grounds acting upon the formation of concepts and schemes during the production of knowledge. It also highlights the necessity of recovering ancient Japanese treatises on cognition to continue enlightening current research on art and literature. The artistic examples used to illustrate the theory are Sesshu’s Zen paintings and Basho’s classical haiku poetry. Zen painting is an excellent field to demonstrate how monk artists conceived human perception and guessed the active role of beholders during the contemplation of art. On the other hand, some haikus by Matsuo Basho aim at factoring subjectivity out from artistic praxis, which constitutes an ideal of illumination that cannot be achieved using art, due to the embodied nature of perception; a constraint consciously explored by the poet himself. These ideas consolidate the conclusions drawn today by cognitivism about the interrelation between subject and object and the concept of intersubjectivity.

Keywords: cognitivism, dualism, haiku, Zen painting

Procedia PDF Downloads 142
35 Intentional Cultivation of Non-toxic Filamentous Cyanobacteria Tolypothrix as an Approach to Treat Eutrophic Waters

Authors: Simona Lucakova, Irena Branyikova

Abstract:

Eutrophication, a condition when water becomes over-enriched with nutrients (P, N), can lead to undesirable excessive growth of phytoplankton, so-called algal bloom. This process results in the accumulation of toxin-producing cyanobacteria and oxygen depletion, both possibly leading to the collapse of the whole ecosystem. In real conditions, the limiting nutrient, which determines the possible growth of harmful algal bloom, is usually phosphorus. Algicides or flocculants have been applied in the eutrophicated waterbody in order to reduce the phytoplankton growth, which leads to the introduction of toxic chemicals into the water. In our laboratory, the idea of the prevention of harmful phytoplankton growth by the intentional cultivation of non-toxic cyanobacteria Tolypothrix tenuis in semi-open floating photobioreactors directly on the surface of phosphorus-rich waterbody is examined. During the process of cultivation, redundant phosphorus is incorporated into cyanobacterial biomass, which can be subsequently used for the production of biofuels, cosmetics, pharmaceuticals, or biostimulants for agricultural use. To determine the ability of phosphorus incorporation, batch-cultivation of Tolypothrix biomass in media simulating eutrophic water (10% BG medium) and in effluent from municipal wastewater treatment plant, both with the initial phosphorus concentration in the range 0.5-1.0 mgP/L was performed in laboratory-scale models of floating photobioreactors. After few hours of cultivation, the phosphorus content was decreased below the target limit of 0.035 mgP/L, which was given as a borderline for the algal bloom formation. Under laboratory conditions, the effect of several parameters on the rate of phosphorus decrease was tested (illumination, temperature, stirring speed/aeration gas flow, biomass to medium ratio). Based on the obtained results, a bench-scale floating photobioreactor was designed and will be tested for Tolypothrix growth in real conditions. It was proved that intentional cultivation of cyanobacteria Tolypothrix could be a suitable approach for extracting redundant phosphorus from eutrophic waters as prevention of algal bloom formation.

Keywords: cyanobacteria, eutrophication, floating photobioreactor, Tolypothrix

Procedia PDF Downloads 165
34 Design of a Backlight Hyperspectral Imaging System for Enhancing Image Quality in Artificial Vision Food Packaging Online Inspections

Authors: Ferran Paulí Pla, Pere Palacín Farré, Albert Fornells Herrera, Pol Toldrà Fernández

Abstract:

Poor image acquisition is limiting the promising growth of industrial vision in food control. In recent years, the food industry has witnessed a significant increase in the implementation of automation in quality control through artificial vision, a trend that continues to grow. During the packaging process, some defects may appear, compromising the proper sealing of the products and diminishing their shelf life, sanitary conditions and overall properties. While failure to detect a defective product leads to major losses, food producers also aim to minimize over-rejection to avoid unnecessary waste. Thus, accuracy in the evaluation of the products is crucial, and, given the large production volumes, even small improvements have a significant impact. Recently, efforts have been focused on maximizing the performance of classification neural networks; nevertheless, their performance is limited by the quality of the input data. Monochrome linear backlight systems are most commonly used for online inspections of food packaging thermo-sealing zones. These simple acquisition systems fit the high cadence of the production lines imposed by the market demand. Nevertheless, they provide a limited amount of data, which negatively impacts classification algorithm training. A desired situation would be one where data quality is maximized in terms of obtaining the key information to detect defects while maintaining a fast working pace. This work presents a backlight hyperspectral imaging system designed and implemented replicating an industrial environment to better understand the relationship between visual data quality and spectral illumination range for a variety of packed food products. Furthermore, results led to the identification of advantageous spectral bands that significantly enhance image quality, providing clearer detection of defects.

Keywords: artificial vision, food packaging, hyperspectral imaging, image acquisition, quality control

Procedia PDF Downloads 22
33 Interaction of Steel Slag and Zeolite on Ammonium Nitrogen Removal and Its Illumination on a New Carrier Filling Configuration for Constructed Wetlands

Authors: Hongtao Zhu, Dezhi Sun

Abstract:

Nitrogen and phosphorus are essential nutrients for biomass growth. But excessive nitrogen and phosphorus can contribute to accelerated eutrophication of lakes and rivers. Constructed wetland is an efficient and eco-friendly wastewater treatment technology with low operating cost and low-energy consumption. Because of high affinity with ammonium ion, zeolite, as a common substrate, is applied in constructed wetlands worldwide. Another substrate seen commonly for constructed wetlands is steel slag, which has high contents of Ca, Al, or Fe, and possesses a strong affinity with phosphate. Due to the excellent ammonium removal ability of zeolite and phosphate removal ability of steel slag, they were considered to be combined in the substrate bed of a constructed wetland in order to enhance the simultaneous removal efficiencies of nitrogen and phosphorus. In our early tests, zeolite and steel slag were combined with each other in order to simultaneously achieve a high removal efficiency of ammonium-nitrogen and phosphate-phosphorus. However, compared with the results when only zeolite was used, the removal efficiency of ammonia was sharply decreased when zeolite and steel slag were used together. The main objective of this study was to establish an overview of the interaction of steel slag and zeolite on ammonium nitrogen removal. The CaO dissolution from slag, as well as the effects of influencing parameters (i.e. pH and Ca2+ concentration) on the ammonium adsorption onto zeolite, was systematically studied. Modeling results of Ca2+ and OH- release from slag indicated that pseudo-second order reaction had a better fitness than pseudo-first order reaction. Changing pH value from 7 to 12 would result in a drastic reduction of the ammonium adsorption capacity on zeolite, from the peak at pH7. High Ca2+ concentration in solution could also inhibit the adsorption of ammonium onto zeolite. The mechanism for steel slag inhibiting the ammonium adsorption capacity of zeolite includes: on one hand, OH- released from steel slag can react with ammonium ions to produce molecular form ammonia (NH3∙H2O), which would cause the dissociation of NH4+ from zeolite. On the other hand, Ca2+ could replace the NH4+ ions to adhere onto the surface of zeolite. An innovative substrate filling configuration that zeolite and steel slag are placed sequentially was proposed to eliminate the disadvantageous effects of steel slag. Experimental results showed that the novel filling configuration was superior to the other two contrast filling configurations in terms of ammonium removal.

Keywords: ammonium nitrogen, constructed wetlands, steel slag, zeolite

Procedia PDF Downloads 254
32 The Impacts of Foreign Culture on Yoruba Crime Films

Authors: Alonge Isaac Olusola

Abstract:

This paper focuses on the evolution and development of Yoruba theatre during the pre-colonial, colonial and post-colonial years and how Yoruba crime films have been influenced by foreign culture. It emphasizes on the transition of theatre from the ground to the stage and from the stage to the screen with emphasis on the contribution of late Chief Hubert Ogunde who is regarded as the doyen of Yoruba and the entire Nigerian theatre. Using the Theory of Post-colonialism, two modern Yoruba crime films are carefully selected from the numerous available ones to highlight and explain the various aspects of Yoruba films that have been greatly influenced by the foreign cultural practices. The questions to be answered here include 'Which attitudes or cultural practices are widely believed to be that of Yoruba?', 'To what extent are they projected in the selected Yoruba crime films?', 'Which attitudes or cultural practices are widely believed to be foreign among the Yoruba people?', 'To what extent are they projected in the selected Yoruba crime films?'. Although, the British colonial masters granted political independence to Nigeria on October 1, 1960, but a seed of multi-culture and counterculture had been sown into the lives of the Yoruba people. Under the literature review, there is an intensive illumination on some scholars’ ideas and views on what constitutes Yoruba culture, the evolution and development of drama, theatre and films in the Yoruba society and the nature of criminals and criminalities in the Yoruba society and the western world in the pre-colonial and post-colonial times. Furthermore, the processes of interaction between man, his values and his thoughts are also highlighted – a situation that procreates criminal or benevolent acts. Consequently, the paper dwells on how colonialism, despite its so-called merits put the gradual process of urbanization and civilization among the originally rustic, cohesive and moralistic Yoruba society on a supersonic speed that culminated in acquisition of attitudes that are alien to the Yoruba culture. Since a drama is nothing but the theatrical replication of what occurs in the real life, the paper then focuses on the submission that Yoruba crime films have experienced a serious foreign influence in form and content as a result of this encounter. In conclusion, the findings of the impact of foreign cultural practices on Yoruba crime films are highlighted and expatiated with a view to recommending a few steps that could be taken to retain the projection of the original Yoruba cultural practices in Yoruba films, especially the ones that have crime as a theme.

Keywords: culture, films, theatre, Yoruba

Procedia PDF Downloads 303
31 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach

Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar

Abstract:

The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.

Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group

Procedia PDF Downloads 116
30 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery

Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong

Abstract:

The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.

Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition

Procedia PDF Downloads 289
29 Two-Component Biocompartible Material for Reconstruction of Articular Hyaline Cartilage

Authors: Alena O. Stepanova, Vera S. Chernonosova, Tatyana S. Godovikova, Konstantin A. Bulatov, Andrey Y. Patrushev, Pavel P. Laktionov

Abstract:

Trauma and arthrosis, not to mention cartilage destruction in overweight and elders put hyaline cartilage lesion among the most frequent diseases of locomotor system. These problems combined with low regeneration potential of the cartilage make regeneration of articular cartilage a high-priority task of tissue engineering. Many types of matrices, the procedures of their installation and autologous chondrocyte implantation protocols were offered, but certain aspects including adhesion of the implant with surrounding cartilage/bone, prevention of the ossification and fibrosis were not resolved. Simplification and acceleration of the procedures resulting in restoration of normal cartilage are also required. We have demonstrated that human chondroblasts can be successfully cultivated at the surface of electrospun scaffolds and produce extracellular matrix components in contrast to chondroblasts grown in homogeneous hydrogels. To restore cartilage we offer to use stacks of electrospun scaffolds fixed with photopolymerized solution of prepared from gelatin and chondroitin-4-sulfate both modified by glycidyl methacrylate and non-toxic photoinitator Darocur 2959. Scaffolds were prepared from nylon 6, polylactide-co-glicolide and their mixtures with modified gelatin. Illumination of chondroblasts in photopolymerized solution using 365 nm LED light had no effect on cell viability at compressive strength of the gel less than0,12 MPa. Stacks of electrospun scaffolds provide good compressive strength and have the potential for substitution with cartilage when biodegradable scaffolds are used. Vascularization can be prevented by introduction of biostable scaffolds in the layers contacting the subchondral bone. Studies of two-component materials (2-3 sheets of electrospun scaffold) implanted in the knee-joints of rabbits and fixed by photopolymerization demonstrated good crush resistance, biocompatibility and good adhesion of the implant with surrounding cartilage. Histological examination of the implants 3 month after implantation demonstrates absence of any inflammation and signs of replacement of the biodegradable scaffolds with normal cartilage. The possibility of intraoperative population of the implants with autologous cells is being investigated.

Keywords: chondroblasts, electrospun scaffolds, hyaline cartilage, photopolymerized gel

Procedia PDF Downloads 283
28 Best-Performing Color Space for Land-Sea Segmentation Using Wavelet Transform Color-Texture Features and Fusion of over Segmentation

Authors: Seynabou Toure, Oumar Diop, Kidiyo Kpalma, Amadou S. Maiga

Abstract:

Color and texture are the two most determinant elements for perception and recognition of the objects in an image. For this reason, color and texture analysis find a large field of application, for example in image classification and segmentation. But, the pioneering work in texture analysis was conducted on grayscale images, thus discarding color information. Many grey-level texture descriptors have been proposed and successfully used in numerous domains for image classification: face recognition, industrial inspections, food science medical imaging among others. Taking into account color in the definition of these descriptors makes it possible to better characterize images. Color texture is thus the subject of recent work, and the analysis of color texture images is increasingly attracting interest in the scientific community. In optical remote sensing systems, sensors measure separately different parts of the electromagnetic spectrum; the visible ones and even those that are invisible to the human eye. The amounts of light reflected by the earth in spectral bands are then transformed into grayscale images. The primary natural colors Red (R) Green (G) and Blue (B) are then used in mixtures of different spectral bands in order to produce RGB images. Thus, good color texture discrimination can be achieved using RGB under controlled illumination conditions. Some previous works investigate the effect of using different color space for color texture classification. However, the selection of the best performing color space in land-sea segmentation is an open question. Its resolution may bring considerable improvements in certain applications like coastline detection, where the detection result is strongly dependent on the performance of the land-sea segmentation. The aim of this paper is to present the results of a study conducted on different color spaces in order to show the best-performing color space for land-sea segmentation. In this sense, an experimental analysis is carried out using five different color spaces (RGB, XYZ, Lab, HSV, YCbCr). For each color space, the Haar wavelet decomposition is used to extract different color texture features. These color texture features are then used for Fusion of Over Segmentation (FOOS) based classification; this allows segmentation of the land part from the sea one. By analyzing the different results of this study, the HSV color space is found as the best classification performance while using color and texture features; which is perfectly coherent with the results presented in the literature.

Keywords: classification, coastline, color, sea-land segmentation

Procedia PDF Downloads 247
27 High Efficiency Solar Thermal Collectors Utilization in Process Heat: A Case Study of Textile Finishing Industry

Authors: Gökçen A. Çiftçioğlu, M. A. Neşet Kadırgan, Figen Kadırgan

Abstract:

Solar energy, since it is available every day, is seen as one of the most valuable renewable energy resources. Thus, the energy of sun should be efficiently used in various applications. The most known applications that use solar energy are heating water and spaces. High efficiency solar collectors need appropriate selective surfaces to absorb the heat. Selective surfaces (Selektif-Sera) used in this study are applied to flat collectors, which are produced by a roll to roll cost effective coating of nano nickel layers, developed in Selektif Teknoloji Co. Inc. Efficiency of flat collectors using Selektif-Sera absorbers are calculated in collaboration with Institute for Solar Technik Rapperswil, Switzerland. The main cause of high energy consumption in industry is mostly caused from low temperature level processes. There is considerable effort in research to minimize the energy use by renewable energy sources such as solar energy. A feasibility study will be presented to obtain the potential of solar thermal energy utilization in the textile industry using these solar collectors. For the feasibility calculations presented in this study, textile dyeing and finishing factory located at Kahramanmaras is selected since the geographic location was an important factor. Kahramanmaras is located in the south east part of Turkey thus has a great potential to have solar illumination much longer. It was observed that, the collector area is limited by the available area in the factory, thus a hybrid heating generating system (lignite/solar thermal) was preferred in the calculations of this study to be more realistic. During the feasibility work, the calculations took into account the preheating process, where well waters heated from 15 °C to 30-40 °C by using the hot waters in heat exchangers. Then the preheated water was heated again by high efficiency solar collectors. Economic comparison between the lignite use and solar thermal collector use was provided to determine the optimal system that can be used efficiently. The optimum design of solar thermal systems was studied depending on the optimum collector area. It was found that the solar thermal system is more economic and efficient than the merely lignite use. Return on investment time is calculated as 5.15 years.

Keywords: energy, renewable energy, selective surface, solar collector

Procedia PDF Downloads 206
26 Detecting Tomato Flowers in Greenhouses Using Computer Vision

Authors: Dor Oppenheim, Yael Edan, Guy Shani

Abstract:

This paper presents an image analysis algorithm to detect and count yellow tomato flowers in a greenhouse with uneven illumination conditions, complex growth conditions and different flower sizes. The algorithm is designed to be employed on a drone that flies in greenhouses to accomplish several tasks such as pollination and yield estimation. Detecting the flowers can provide useful information for the farmer, such as the number of flowers in a row, and the number of flowers that were pollinated since the last visit to the row. The developed algorithm is designed to handle the real world difficulties in a greenhouse which include varying lighting conditions, shadowing, and occlusion, while considering the computational limitations of the simple processor in the drone. The algorithm identifies flowers using an adaptive global threshold, segmentation over the HSV color space, and morphological cues. The adaptive threshold divides the images into darker and lighter images. Then, segmentation on the hue, saturation and volume is performed accordingly, and classification is done according to size and location of the flowers. 1069 images of greenhouse tomato flowers were acquired in a commercial greenhouse in Israel, using two different RGB Cameras – an LG G4 smartphone and a Canon PowerShot A590. The images were acquired from multiple angles and distances and were sampled manually at various periods along the day to obtain varying lighting conditions. Ground truth was created by manually tagging approximately 25,000 individual flowers in the images. Sensitivity analyses on the acquisition angle of the images, periods throughout the day, different cameras and thresholding types were performed. Precision, recall and their derived F1 score were calculated. Results indicate better performance for the view angle facing the flowers than any other angle. Acquiring images in the afternoon resulted with the best precision and recall results. Applying a global adaptive threshold improved the median F1 score by 3%. Results showed no difference between the two cameras used. Using hue values of 0.12-0.18 in the segmentation process provided the best results in precision and recall, and the best F1 score. The precision and recall average for all the images when using these values was 74% and 75% respectively with an F1 score of 0.73. Further analysis showed a 5% increase in precision and recall when analyzing images acquired in the afternoon and from the front viewpoint.

Keywords: agricultural engineering, image processing, computer vision, flower detection

Procedia PDF Downloads 329
25 Evaluating Daylight Performance in an Office Environment in Malaysia, Using Venetian Blind Systems

Authors: Fatemeh Deldarabdolmaleki, Mohamad Fakri Zaky Bin Ja'afar

Abstract:

This paper presents fenestration analysis to study the balance between utilizing daylight and eliminating the disturbing parameters in a private office room with interior venetian blinds taking into account different slat angles. Mean luminance of the scene and window, luminance ratio of the workplane and window, work plane illumination and daylight glare probability(DGP) were calculated as a function of venetian blind design properties. Recently developed software, analyzing High Dynamic Range Images (HDRI captured by CCD camera), such as radiance based evalglare and hdrscope help to investigate luminance-based metrics. A total of Eight-day measurement experiment was conducted to investigate the impact of different venetian blind angles in an office environment under daylight condition in Serdang, Malaysia. Detailed result for the selected case study showed that artificial lighting is necessary during the morning session for Malaysian buildings with southwest windows regardless of the venetian blind’s slat angle. However, in some conditions of afternoon session the workplane illuminance level exceeds the maximum illuminance of 2000 lx such as 10° and 40° slat angles. Generally, a rising trend is discovered toward mean window luminance level during the day. All the conditions have less than 10% of the pixels exceeding 2000 cd/m² before 1:00 P.M. However, 40% of the selected hours have more than 10% of the scene pixels higher than 2000 cd/m² after 1:00 P.M. Surprisingly in no blind condition, there is no extreme case of window/task ratio, However, the extreme cases happen for 20°, 30°, 40° and 50° slat angles. As expected mean window luminance level is higher than 2000 cd/m² after 2:00 P.M for most cases except 60° slat angle condition. Studying the daylight glare probability, there is not any DGP value higher than 0.35 in this experiment, due to the window’s direction, location of the building and studied workplane. Specifically, this paper reviews different blind angle’s response to the suggested metrics by the previous standards, and finally conclusions and knowledge gaps are summarized and suggested next steps for research are provided. Addressing these gaps is critical for the continued progress of the energy efficiency movement.

Keywords: daylighting, office environment, energy simulation, venetian blind

Procedia PDF Downloads 228
24 The High Precision of Magnetic Detection with Microwave Modulation in Solid Spin Assembly of NV Centres in Diamond

Authors: Zongmin Ma, Shaowen Zhang, Yueping Fu, Jun Tang, Yunbo Shi, Jun Liu

Abstract:

Solid-state quantum sensors are attracting wide interest because of their high sensitivity at room temperature. In particular, spin properties of nitrogen–vacancy (NV) color centres in diamond make them outstanding sensors of magnetic fields, electric fields and temperature under ambient conditions. Much of the work on NV magnetic sensing has been done so as to achieve the smallest volume, high sensitivity of NV ensemble-based magnetometry using micro-cavity, light-trapping diamond waveguide (LTDW), nano-cantilevers combined with MEMS (Micro-Electronic-Mechanical System) techniques. Recently, frequency-modulated microwaves with continuous optical excitation method have been proposed to achieve high sensitivity of 6 μT/√Hz using individual NV centres at nanoscale. In this research, we built-up an experiment to measure static magnetic field through continuous wave optical excitation with frequency-modulated microwaves method under continuous illumination with green pump light at 532 nm, and bulk diamond sample with a high density of NV centers (1 ppm). The output of the confocal microscopy was collected by an objective (NA = 0.7) and detected by a high sensitivity photodetector. We design uniform and efficient excitation of the micro strip antenna, which is coupled well with the spin ensembles at 2.87 GHz for zero-field splitting of the NV centers. Output of the PD signal was sent to an LIA (Lock-In Amplifier) modulated signal, generated by the microwave source by IQ mixer. The detected signal is received by the photodetector, and the reference signal enters the lock-in amplifier to realize the open-loop detection of the NV atomic magnetometer. We can plot ODMR spectra under continuous-wave (CW) microwave. Due to the high sensitivity of the lock-in amplifier, the minimum detectable value of the voltage can be measured, and the minimum detectable frequency can be made by the minimum and slope of the voltage. The magnetic field sensitivity can be derived from η = δB√T corresponds to a 10 nT minimum detectable shift in the magnetic field. Further, frequency analysis of the noise in the system indicates that at 10Hz the sensitivity less than 10 nT/√Hz.

Keywords: nitrogen-vacancy (NV) centers, frequency-modulated microwaves, magnetic field sensitivity, noise density

Procedia PDF Downloads 438
23 Deep Learning for SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network

Procedia PDF Downloads 67
22 Deep Learning Based Polarimetric SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry

Procedia PDF Downloads 90
21 Analyzing Electromagnetic and Geometric Characterization of Building Insulation Materials Using the Transient Radar Method (TRM)

Authors: Ali Pourkazemi

Abstract:

The transient radar method (TRM) is one of the non-destructive methods that was introduced by authors a few years ago. The transient radar method can be classified as a wave-based non destructive testing (NDT) method that can be used in a wide frequency range. Nevertheless, it requires a narrow band, ranging from a few GHz to a few THz, depending on the application. As a time-of-flight and real-time method, TRM can measure the electromagnetic properties of the sample under test not only quickly and accurately, but also blindly. This means that it requires no prior knowledge of the sample under test. For multi-layer structures, TRM is not only able to detect changes related to any parameter within the multi-layer structure but can also measure the electromagnetic properties of each layer and its thickness individually. Although the temperature, humidity, and general environmental conditions may affect the sample under test, they do not affect the accuracy of the Blind TRM algorithm. In this paper, the electromagnetic properties as well as the thickness of the individual building insulation materials - as a single-layer structure - are measured experimentally. Finally, the correlation between the reflection coefficients and some other technical parameters such as sound insulation, thermal resistance, thermal conductivity, compressive strength, and density is investigated. The sample to be studied is 30 cm x 50 cm and the thickness of the samples varies from a few millimeters to 6 centimeters. This experiment is performed with both biostatic and differential hardware at 10 GHz. Since it is a narrow-band system, high-speed computation for analysis, free-space application, and real-time sensor, it has a wide range of potential applications, e.g., in the construction industry, rubber industry, piping industry, wind energy industry, automotive industry, biotechnology, food industry, pharmaceuticals, etc. Detection of metallic, plastic pipes wires, etc. through or behind the walls are specific applications for the construction industry.

Keywords: transient radar method, blind electromagnetic geometrical parameter extraction technique, ultrafast nondestructive multilayer dielectric structure characterization, electronic measurement systems, illumination, data acquisition performance, submillimeter depth resolution, time-dependent reflected electromagnetic signal blind analysis method, EM signal blind analysis method, time domain reflectometer, microwave, milimeter wave frequencies

Procedia PDF Downloads 69
20 The Emergence of Memory at the Nanoscale

Authors: Victor Lopez-Richard, Rafael Schio Wengenroth Silva, Fabian Hartmann

Abstract:

Memcomputing is a computational paradigm that combines information processing and storage on the same physical platform. Key elements for this topic are devices with an inherent memory, such as memristors, memcapacitors, and meminductors. Despite the widespread emergence of memory effects in various solid systems, a clear understanding of the basic microscopic mechanisms that trigger them is still a puzzling task. We report basic ingredients of the theory of solid-state transport, intrinsic to a wide range of mechanisms, as sufficient conditions for a memristive response that points to the natural emergence of memory. This emergence should be discernible under an adequate set of driving inputs, as highlighted by our theoretical prediction and general common trends can be thus listed that become a rule and not the exception, with contrasting signatures according to symmetry constraints, either built-in or induced by external factors at the microscopic level. Explicit analytical figures of merit for the memory modulation of the conductance are presented, unveiling very concise and accessible correlations between general intrinsic microscopic parameters such as relaxation times, activation energies, and efficiencies (encountered throughout various fields in Physics) with external drives: voltage pulses, temperature, illumination, etc. These building blocks of memory can be extended to a vast universe of materials and devices, with combinations of parallel and independent transport channels, providing an efficient and unified physical explanation for a wide class of resistive memory devices that have emerged in recent years. Its simplicity and practicality have also allowed a direct correlation with reported experimental observations with the potential of pointing out the optimal driving configurations. The main methodological tools used to combine three quantum transport approaches, Drude-like model, Landauer-Buttiker formalism, and field-effect transistor emulators, with the microscopic characterization of nonequilibrium dynamics. Both qualitative and quantitative agreements with available experimental responses are provided for validating the main hypothesis. This analysis also shades light on the basic universality of complex natural impedances of systems out of equilibrium and might help pave the way for new trends in the area of memory formation as well as in its technological applications.

Keywords: memories, memdevices, memristors, nonequilibrium states

Procedia PDF Downloads 97
19 The Influence of Morphology and Interface Treatment on Organic 6,13-bis (triisopropylsilylethynyl)-Pentacene Field-Effect Transistors

Authors: Daniel Bülz, Franziska Lüttich, Sreetama Banerjee, Georgeta Salvan, Dietrich R. T. Zahn

Abstract:

For the development of electronics, organic semiconductors are of great interest due to their adjustable optical and electrical properties. Especially for spintronic applications they are interesting because of their weak spin scattering, which leads to longer spin life times compared to inorganic semiconductors. It was shown that some organic materials change their resistance if an external magnetic field is applied. Pentacene is one of the materials which exhibit the so called photoinduced magnetoresistance which results in a modulation of photocurrent when varying the external magnetic field. Also the soluble derivate of pentacene, the 6,13-bis (triisopropylsilylethynyl)-pentacene (TIPS-pentacene) exhibits the same negative magnetoresistance. Aiming for simpler fabrication processes, in this work, we compare TIPS-pentacene organic field effect transistors (OFETs) made from solution with those fabricated by thermal evaporation. Because of the different processing, the TIPS-pentacene thin films exhibit different morphologies in terms of crystal size and homogeneity of the substrate coverage. On the other hand, the interface treatment is known to have a high influence on the threshold voltage, eliminating trap states of silicon oxide at the gate electrode and thereby changing the electrical switching response of the transistors. Therefore, we investigate the influence of interface treatment using octadecyltrichlorosilane (OTS) or using a simple cleaning procedure with acetone, ethanol, and deionized water. The transistors consist of a prestructured OFET substrates including gate, source, and drain electrodes, on top of which TIPS-pentacene dissolved in a mixture of tetralin and toluene is deposited by drop-, spray-, and spin-coating. Thereafter we keep the sample for one hour at a temperature of 60 °C. For the transistor fabrication by thermal evaporation the prestructured OFET substrates are also kept at a temperature of 60 °C during deposition with a rate of 0.3 nm/min and at a pressure below 10-6 mbar. The OFETs are characterized by means of optical microscopy in order to determine the overall quality of the sample, i.e. crystal size and coverage of the channel region. The output and transfer characteristics are measured in the dark and under illumination provided by a white light LED in the spectral range from 450 nm to 650 nm with a power density of (8±2) mW/cm2.

Keywords: organic field effect transistors, solution processed, surface treatment, TIPS-pentacene

Procedia PDF Downloads 447
18 Enhancing Photocatalytic Hydrogen Production: Modification of TiO₂ by Coupling with Semiconductor Nanoparticles

Authors: Saud Hamdan Alshammari

Abstract:

Photocatalytic water splitting to produce hydrogen (H₂) has obtained significant attention as an environmentally friendly technology. This process, which produces hydrogen from water and sunlight, represents a renewable energy source. Titanium dioxide (TiO₂) plays a critical role in photocatalytic hydrogen production due to its chemical stability, availability, and low cost. Nevertheless, TiO₂'s wide band gap (3.2 eV) limits its visible light absorption and might affect the effectiveness of the photocatalytic. Coupling TiO₂ with other semiconductors is a strategy that can enhance TiO₂ by narrowing its band gap and improving visible light absorption. This paper studies the modification of TiO₂ by coupling it with another semiconductor such as CdS nanoparticles using a reflux reactor and autoclave reactor that helps form a core-shell structure. Characterization techniques, including TEM and UV-Vis spectroscopy, confirmed successful coating of TiO₂ on CdS core, reduction of the band gap from 3.28 eV to 3.1 eV, and enhanced light absorption in the visible region. These modifications are attributed to the heterojunction structure between TiO₂ and CdS.The essential goal of this study is to improve TiO₂ for use in photocatalytic water splitting to enhance hydrogen production. The core-shell TiO₂@CdS nanoparticles exhibited promising results, due to band gap narrowing and improved light absorption. Future work will involve adding Pt as a co-catalyst, which is known to increase surface reaction activity by enhancing proton adsorption. Evaluation of the TiO₂@CdS@Pt catalyst will include performance assessments and hydrogen productivity tests, considering factors such as effective shapes and material ratios. Moreover, the study could be enhanced by studying further modifications to the catalyst and displaying additional performance evaluations. For instance, doping TiO₂ with metals such as nickel (Ni), iron (Fe), and cobalt (Co) and non-metals such as nitrogen (N), carbon (C), and sulfur (S) could positively influence the catalyst by reducing the band gap, enhancing the separation of photogenerated electron-hole pairs, and increasing the surface area, respectively. Additionally, to further improve catalytic performance, examining different catalyst morphologies, such as nanorods, nanowires, and nanosheets, in hydrogen production could be highly beneficial. Optimizing photoreactor design for efficient photon delivery and illumination will further enhance the photocatalytic process. These strategies collectively aim to overcome current challenges and improve the efficiency of hydrogen production via photocatalysis.

Keywords: hydrogen production, photocatalytic, water spliiting, semiconductor, nanoparticles

Procedia PDF Downloads 21
17 Ergonomic Assessment of Workplace Environment of Flour Mill Workers

Authors: Jayshree P. Zend, Ashatai B. Pawar

Abstract:

The study was carried out in Parbhani district of Maharashtra state, India with the objectives to study environmental problems faced by flour mill workers, prevalence of work-related health hazards and the physiological cost of workers while performing work in flour mill in traditional method as well as improved method. The use of flour presser, dust controlling bag and noise and dust controlling mask developed by AICRP College of Home Science, VNMKV, Parbhani was considered as an improved method. This investigation consisted survey and experiment which was conducted in the respective locations of flour mills. Healthy, non-smoking 30 flour mill workers ranged between the age group of 20-50 yrs comprising 16 female and 14 male working at flour mill for 4-8 hrs/ day and 6 days/ week and had minimum five years experience of work in flour mill were selected for the study. Pulmonary function test of flour mill workers was carried out by trained technician at Dr. ShankarraoChavan Government Medical College, Nanded by using Electronic Spirometer. The data regarding heart rate (resting, working and recovery), energy expenditure, musculoskeletal problems and occupational health hazards and accidents were recorded by using pretested questionnaire. Scientific equipment used in the experiment were polar sport test heart rate monitor, Hygrometer, Goniometer, Dialed Thermometer, Sound Level Meter, Lux Meter, Ambient Air Sampler and Air Quality Monitor. The collected data were subjected to appropriate statistical analysis such as 't' test and correlation coefficient test. Results indicated that improved method i.e. use of noise and dust controlling mask, flour presser and dust controlling bag were effective in reducing physiological cost of work of flour mill workers. Lung function test of flour mill workers showed decreased values of all parameters, hence the results of present study support paying attention to use of personal protective noise and dust controlling mask by flour mill workers and also to the working conditions in flour mill especially ventilation and illumination level needs to be enhanced in flour mill. The study also emphasizes the need to develop some mechanism for lifting load of grains and unloading in the hopper. It is also suggested that the flour mill workers should use flour presser suitable to their height to avoid frequent bending and should use dust controlling bag to flour outlet of machine to reduce inhalable flour dust level in the flour mill.

Keywords: physiological cost, energy expenditure, musculoskeletal problems

Procedia PDF Downloads 401
16 Density Interaction in Determinate and Indeterminate Faba Bean Types

Authors: M. Abd El Hamid Ezzat

Abstract:

Two field trials were conducted to study the effect of plant densities i.e., 190, 222, 266, 330 and 440 10³ plants ha⁻¹ on morphological characters, physiological and yield attributes of two faba bean types viz. determinate (FLIP-87 -117 strain) and indeterminate (c.v. Giza-461). The results showed that the indeterminate plants significantly surpassed the determinate plants in plant height at 75 and 90 days from sowing, number of leaves at all growth stages and dry matter accumulation at 45 and 90 days from sowing. Determinate plants possessed greater number of side branches than that of the indeterminate plants, but it was only significant at 90 days from sowing. Greater number of flowers were produced by the indeterminate plants than that of the determinate plants at 75 and 90 days from sowing, and although shedding was obvious in both types, it was greater in the determinate plants as compared with the indeterminate one at 90 days from sowing. Increasing plant density resulted in reductions in number of leaves, branches flowers and dry matter accumulation per plant of both faba bean types. However, plant height criteria took a reversible magnitude. Moreover, under all rates of plant densities the indeterminate type plants surpassed the determinate plants in all growth characters studied except for number of branches per plant at 90 days from sowing. The indeterminate plant leaves significantly contained greater concentrations of photosynthetic pigments i.e., chl. a, b and carotenoids than those found in the determinate plant leaves. Also, the data showed significant reduction in photosynthetic pigments concentration as planting density increases. Light extinction coefficient (K) values reached their maximum level at 60 days from sowing, then it declined sharply at 75 days from sowing. The data showed that the illumination inside the determinate faba bean canopies was better than the indeterminate plants. (K) values tended to increase as planting density increases, meanwhile, significant interactions were reported between faba bean type as planting density on (K) at all growth stages. Both of determinate and indeterminate faba bean plant leaves reached their maximum expansion at 75 days from sowing reflecting the highest LAI values, then their declined in the subsequent growth stage. The indeterminate faba bean plants significantly surpassed the determinate plants in LAI up to 75 days from sowing. Growth analysis showed that NAR, RGR and CGR reached their maximum rates at (60-75 days growth stage). Faba bean types did not differ significantly in NAR at the early growth stage. The indeterminate plants were able to grow faster with significant CGR values than the determinate plants. The indeterminate faba bean plants surpassed the determinate ones in number of seeds/pod and per plant, 100-seed weight, seed yield per plant and per hectare at all rates of plant density. Seed yield increased with increasing plant densities of both types. The highest seed yield was attained for both types 440 103 plants ha⁻¹.

Keywords: determinate, indeterminate faba bean, Physiological attributes, yield attributes

Procedia PDF Downloads 236
15 Evaluating Daylight Performance in an Office Environment in Malaysia, Using Venetian Blind System: Case Study

Authors: Fatemeh Deldarabdolmaleki, Mohamad Fakri Zaky Bin Ja'afar

Abstract:

Having a daylit space together with view results in a pleasant and productive environment for office employees. A daylit space is a space which utilizes daylight as a basic source of illumination to fulfill user’s visual demands and minimizes the electric energy consumption. Malaysian weather is hot and humid all over the year because of its location in the equatorial belt. however, because most of the commercial buildings in Malaysia are air-conditioned, huge glass windows are normally installed in order to keep the physical and visual relation between inside and outside. As a result of climatic situation and mentioned new trend, an ordinary office has huge heat gain, glare, and discomfort for occupants. Balancing occupant’s comfort and energy conservation in a tropical climate is a real challenge. This study concentrates on evaluating a venetian blind system using per pixel analyzing tools based on the suggested cut-out metrics by the literature. Workplace area in a private office room has been selected as a case study. Eight-day measurement experiment was conducted to investigate the effect of different venetian blind angles in an office area under daylight conditions in Serdang, Malaysia. The study goal was to explore daylight comfort of a commercially available venetian blind system, its’ daylight sufficiency and excess (8:00 AM to 5 PM) as well as Glare examination. Recently developed software, analyzing High Dynamic Range Images (HDRI captured by CCD camera), such as radiance based Evalglare and hdrscope help to investigate luminance-based metrics. The main key factors are illuminance and luminance levels, mean and maximum luminance, daylight glare probability (DGP) and luminance ratio of the selected mask regions. The findings show that in most cases, morning session needs artificial lighting in order to achieve daylight comfort. However, in some conditions (e.g. 10° and 40° slat angles) in the second half of day the workplane illuminance level exceeds the maximum of 2000 lx. Generally, a rising trend is discovered toward mean window luminance and the most unpleasant cases occur after 2 P.M. Considering the luminance criteria rating, the uncomfortable conditions occur in the afternoon session. Surprisingly in no blind condition, extreme case of window/task ratio is not common. Studying the daylight glare probability, there is not any DGP value higher than 0.35 in this experiment.

Keywords: daylighting, energy simulation, office environment, Venetian blind

Procedia PDF Downloads 255
14 Quantitative Evaluation of Efficiency of Surface Plasmon Excitation with Grating-Assisted Metallic Nanoantenna

Authors: Almaz R. Gazizov, Sergey S. Kharintsev, Myakzyum Kh. Salakhov

Abstract:

This work deals with background signal suppression in tip-enhanced near-field optical microscopy (TENOM). The background appears because an optical signal is detected not only from the subwavelength area beneath the tip but also from a wider diffraction-limited area of laser’s waist that might contain another substance. The background can be reduced by using a taper probe with a grating on its lateral surface where an external illumination causes surface plasmon excitation. It requires the grating with parameters perfectly matched with a given incident light for effective light coupling. This work is devoted to an analysis of the light-grating coupling and a quest of grating parameters to enhance a near-field light beneath the tip apex. The aim of this work is to find the figure of merit of plasmon excitation depending on grating period and location of grating in respect to the apex. In our consideration the metallic grating on the lateral surface of the tapered plasmonic probe is illuminated by a plane wave, the electric field is perpendicular to the sample surface. Theoretical model of efficiency of plasmon excitation and propagation toward the apex is tested by fdtd-based numerical simulation. An electric field of the incident light is enhanced on the grating by every single slit due to lightning rod effect. Hence, grating causes amplitude and phase modulation of the incident field in various ways depending on geometry and material of grating. The phase-modulating grating on the probe is a sort of metasurface that provides manipulation by spatial frequencies of the incident field. The spatial frequency-dependent electric field is found from the angular spectrum decomposition. If one of the components satisfies the phase-matching condition then one can readily calculate the figure of merit of plasmon excitation, defined as a ratio of the intensities of the surface mode and the incident light. During propagation towards the apex, surface wave undergoes losses in probe material, radiation losses, and mode compression. There is an optimal location of the grating in respect to the apex. One finds the value by matching quadratic law of mode compression and the exponential law of light extinction. Finally, performed theoretical analysis and numerical simulations of plasmon excitation demonstrate that various surface waves can be effectively excited by using the overtones of a period of the grating or by phase modulation of the incident field. The gratings with such periods are easy to fabricate. Tapered probe with the grating effectively enhances and localizes the incident field at the sample.

Keywords: angular spectrum decomposition, efficiency, grating, surface plasmon, taper nanoantenna

Procedia PDF Downloads 283
13 Semiconductor Properties of Natural Phosphate Application to Photodegradation of Basic Dyes in Single and Binary Systems

Authors: Y. Roumila, D. Meziani, R. Bagtache, K. Abdmeziem, M. Trari

Abstract:

Heterogeneous photocatalysis over semiconductors has proved its effectiveness in the treatment of wastewaters since it works under soft conditions. It has emerged as a promising technique, giving rise to less toxic effluents and offering the opportunity of using sunlight as a sustainable and renewable source of energy. Many compounds have been used as photocatalysts. Though synthesized ones are intensively used, they remain expensive, and their synthesis involves special conditions. We thus thought of implementing a natural material, a phosphate ore, due to its low cost and great availability. Our work is devoted to the removal of hazardous organic pollutants, which cause several environmental problems and health risks. Among them, dye pollutants occupy a large place. This work relates to the study of the photodegradation of methyl violet (MV) and rhodamine B (RhB), in single and binary systems, under UV light and sunlight irradiation. Methyl violet is a triarylmethane dye, while RhB is a heteropolyaromatic dye belonging to the Xanthene family. In the first part of this work, the natural compound was characterized using several physicochemical and photo-electrochemical (PEC) techniques: X-Ray diffraction, chemical, and thermal analyses scanning electron microscopy, UV-Vis diffuse reflectance measurements, and FTIR spectroscopy. The electrochemical and photoelectrochemical studies were performed with a Voltalab PGZ 301 potentiostat/galvanostat at room temperature. The structure of the phosphate material was well characterized. The photo-electrochemical (PEC) properties are crucial for drawing the energy band diagram, in order to suggest the formation of radicals and the reactions involved in the dyes photo-oxidation mechanism. The PEC characterization of the natural phosphate was investigated in neutral solution (Na₂SO₄, 0.5 M). The study revealed the semiconducting behavior of the phosphate rock. Indeed, the thermal evolution of the electrical conductivity was well fitted by an exponential type law, and the electrical conductivity increases with raising the temperature. The Mott–Schottky plot and current-potential J(V) curves recorded in the dark and under illumination clearly indicate n-type behavior. From the results of photocatalysis, in single solutions, the changes in MV and RhB absorbance in the function of time show that practically all of the MV was removed after 240 mn irradiation. For RhB, the complete degradation was achieved after 330 mn. This is due to its complex and resistant structure. In binary systems, it is only after 120 mn that RhB begins to be slowly removed, while about 60% of MV is already degraded. Once nearly all of the content of MV in the solution has disappeared (after about 250 mn), the remaining RhB is degraded rapidly. This behaviour is different from that observed in single solutions where both dyes are degraded since the first minutes of irradiation.

Keywords: environment, organic pollutant, phosphate ore, photodegradation

Procedia PDF Downloads 132
12 Myanmar Consonants Recognition System Based on Lip Movements Using Active Contour Model

Authors: T. Thein, S. Kalyar Myo

Abstract:

Human uses visual information for understanding the speech contents in noisy conditions or in situations where the audio signal is not available. The primary advantage of visual information is that it is not affected by the acoustic noise and cross talk among speakers. Using visual information from the lip movements can improve the accuracy and robustness of automatic speech recognition. However, a major challenge with most automatic lip reading system is to find a robust and efficient method for extracting the linguistically relevant speech information from a lip image sequence. This is a difficult task due to variation caused by different speakers, illumination, camera setting and the inherent low luminance and chrominance contrast between lip and non-lip region. Several researchers have been developing methods to overcome these problems; the one is lip reading. Moreover, it is well known that visual information about speech through lip reading is very useful for human speech recognition system. Lip reading is the technique of a comprehensive understanding of underlying speech by processing on the movement of lips. Therefore, lip reading system is one of the different supportive technologies for hearing impaired or elderly people, and it is an active research area. The need for lip reading system is ever increasing for every language. This research aims to develop a visual teaching method system for the hearing impaired persons in Myanmar, how to pronounce words precisely by identifying the features of lip movement. The proposed research will work a lip reading system for Myanmar Consonants, one syllable consonants (င (Nga)၊ ည (Nya)၊ မ (Ma)၊ လ (La)၊ ၀ (Wa)၊ သ (Tha)၊ ဟ (Ha)၊ အ (Ah) ) and two syllable consonants ( က(Ka Gyi)၊ ခ (Kha Gway)၊ ဂ (Ga Nge)၊ ဃ (Ga Gyi)၊ စ (Sa Lone)၊ ဆ (Sa Lain)၊ ဇ (Za Gwe) ၊ ဒ (Da Dway)၊ ဏ (Na Gyi)၊ န (Na Nge)၊ ပ (Pa Saug)၊ ဘ (Ba Gone)၊ ရ (Ya Gaug)၊ ဠ (La Gyi) ). In the proposed system, there are three subsystems, the first one is the lip localization system, which localizes the lips in the digital inputs. The next one is the feature extraction system, which extracts features of lip movement suitable for visual speech recognition. And the final one is the classification system. In the proposed research, Two Dimensional Discrete Cosine Transform (2D-DCT) and Linear Discriminant Analysis (LDA) with Active Contour Model (ACM) will be used for lip movement features extraction. Support Vector Machine (SVM) classifier is used for finding class parameter and class number in training set and testing set. Then, experiments will be carried out for the recognition accuracy of Myanmar consonants using the only visual information on lip movements which are useful for visual speech of Myanmar languages. The result will show the effectiveness of the lip movement recognition for Myanmar Consonants. This system will help the hearing impaired persons to use as the language learning application. This system can also be useful for normal hearing persons in noisy environments or conditions where they can find out what was said by other people without hearing voice.

Keywords: feature extraction, lip reading, lip localization, Active Contour Model (ACM), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Two Dimensional Discrete Cosine Transform (2D-DCT)

Procedia PDF Downloads 286
11 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach

Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal

Abstract:

Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.

Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol

Procedia PDF Downloads 108
10 Deep Convolutional Neural Network for Detection of Microaneurysms in Retinal Fundus Images at Early Stage

Authors: Goutam Kumar Ghorai, Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, G. Sarkar, Ashis K. Dhara

Abstract:

Diabetes mellitus is one of the most common chronic diseases in all countries and continues to increase in numbers significantly. Diabetic retinopathy (DR) is damage to the retina that occurs with long-term diabetes. DR is a major cause of blindness in the Indian population. Therefore, its early diagnosis is of utmost importance towards preventing progression towards imminent irreversible loss of vision, particularly in the huge population across rural India. The barriers to eye examination of all diabetic patients are socioeconomic factors, lack of referrals, poor access to the healthcare system, lack of knowledge, insufficient number of ophthalmologists, and lack of networking between physicians, diabetologists and ophthalmologists. A few diabetic patients often visit a healthcare facility for their general checkup, but their eye condition remains largely undetected until the patient is symptomatic. This work aims to focus on the design and development of a fully automated intelligent decision system for screening retinal fundus images towards detection of the pathophysiology caused by microaneurysm in the early stage of the diseases. Automated detection of microaneurysm is a challenging problem due to the variation in color and the variation introduced by the field of view, inhomogeneous illumination, and pathological abnormalities. We have developed aconvolutional neural network for efficient detection of microaneurysm. A loss function is also developed to handle severe class imbalance due to very small size of microaneurysms compared to background. The network is able to locate the salient region containing microaneurysms in case of noisy images captured by non-mydriatic cameras. The ground truth of microaneurysms is created by expert ophthalmologists for MESSIDOR database as well as private database, collected from Indian patients. The network is trained from scratch using the fundus images of MESSIDOR database. The proposed method is evaluated on DIARETDB1 and the private database. The method is successful in detection of microaneurysms for dilated and non-dilated types of fundus images acquired from different medical centres. The proposed algorithm could be used for development of AI based affordable and accessible system, to provide service at grass root-level primary healthcare units spread across the country to cater to the need of the rural people unaware of the severe impact of DR.

Keywords: retinal fundus image, deep convolutional neural network, early detection of microaneurysms, screening of diabetic retinopathy

Procedia PDF Downloads 141