Search results for: force measurements
4760 Atomic Force Microscopy Studies of DNA Binding Properties of the Archaeal Mini Chromosome Maintenance Complex
Authors: Amna Abdalla Mohammed Khalid, Pietro Parisse, Silvia Onesti, Loredana Casalis
Abstract:
Basic cellular processes as DNA replication are crucial to cell life. Understanding at the molecular level the mechanisms that govern DNA replication in proliferating cells is fundamental to understand disease connected to genomic instabilities, as a genetic disease and cancer. A key step for DNA replication to take place, is unwinding the DNA double helix and this carried out by proteins called helicases. The archaeal MCM (minichromosome maintenance) complex from Methanothermobacter thermautotrophicus have being studied using Atomic Force Microscopy (AFM), imaging in air and liquid (Physiological environment). The accurate analysis of AFM topographic images allowed to understand the static conformations as well the interaction dynamic of MCM and DNA double helix in the present of ATP.Keywords: DNA, protein-DNA interaction, MCM (mini chromosome manteinance) complex, atomic force microscopy (AFM)
Procedia PDF Downloads 3084759 Analysis of Delamination in Drilling of Composite Materials
Authors: Navid Zarif Karimi, Hossein Heidary, Giangiacomo Minak, Mehdi Ahmadi
Abstract:
In this paper analytical model based on the mechanics of oblique cutting, linear elastic fracture mechanics (LEFM) and bending plate theory has been presented to determine the critical feed rate causing delamination in drilling of composite materials. Most of the models in this area used LEFM and bending plate theory; hence, they can only determine the critical thrust force which is an incorporable parameter. In this model by adding cutting oblique mechanics to previous models, critical feed rate has been determined. Also instead of simplification in loading condition, actual thrust force induced by chisel edge and cutting lips on composite plate is modeled.Keywords: composite material, delamination, drilling, thrust force
Procedia PDF Downloads 5154758 Investigation of the Brake Force Distribution in Passenger Cars
Authors: Boukhris Lahouari, Bouchetara Mostefa
Abstract:
The active safety of a vehicle is mainly influenced by the properties of the installed braking system. With the increase in road traffic density and travel speeds, increasingly stringent requirements are placed on the vehicle's behaviour during braking. The achievable decelerations are limited by the physical aspect characterized by the coefficient of friction between the tires and the ground. As a result, it follows that an optimized distribution of braking forces becomes necessary for a better use of friction coefficients. This objective could only be achieved if sufficient knowledge is available on the theory of vehicle dynamics during braking and on current standards for the approval of braking systems. This will facilitate the development of a braking force calculation algorithm that will enable an optimized distribution of braking forces to be achieved. Operating safety is conditioned by the requirements of efficiency, progressiveness, regularity or fidelity of a braking system without obviously neglecting the recommendations imposed by the legislator.Keywords: brake force distribution, distribution diagram, friction coefficient, brake by wire
Procedia PDF Downloads 794757 Direct Displacement-Based Design Procedure for Performance-Based Seismic Design of Structures
Authors: Haleh Hamidpour
Abstract:
Since the seismic damageability of structures is controlled by the inelastic deformation capacities of structural elements, seismic design of structure based on force analogy methods is not appropriate. In recent year, the basic approach of design codes have been changed from force-based approach to displacement-based. In this regard, a Direct Displacement-Based Design (DDBD) and a Performance-Based Plastic Design (PBPD) method are proposed. In this study, the efficiency of these two methods on seismic performance of structures is evaluated through a sample 12-story reinforced concrete moment frame. The building is designed separately based on the DDBD and the PBPD methods. Once again the structure is designed by the traditional force analogy method according to the FEMA P695 regulation. Different design method results in different structural elements. Seismic performance of these three structures is evaluated through nonlinear static and nonlinear dynamic analysis. The results show that the displacement-based design methods accommodate the intended performance objectives better than the traditional force analogy method.Keywords: direct performance-based design, ductility demands, inelastic seismic performance, yield mechanism
Procedia PDF Downloads 3334756 The Effect Training Program on Mixed Contractions on Both the Maximum Force and Explosive Force of the Lower Limbs Conducted Study to the Football Players Under the Age of 17 Years-Tiaret, Algeria
Authors: Saidia Houari
Abstract:
The game of football is one of the global sports activities that have witnessed a remarkable development in recent years in the physical, technical, rhetorical and psychological aspects, so the modern play in different teams and international teams quickly and forcefully in the exact technical performance, and this is due to the interest of international coaches. The good training of the players during the youth stage at the level of various aspects to develop all the techniques that have a great effectiveness in competitions according to scientific methods studied. The muscle strength plays a very important role achieving the performance player during the game and it is clear the need for the player in many situations, especially when jumping to hit the ball head or the goal on the goal or long passes of different types and in the performance of various skills by force and speed appropriate to the possession of the ball or the control of the court of the court while overcoming the body weight during the game it is known that the stronger the muscles of the athlete and the reduced joints injuries, and the strength increases energy saving such as Latin phosphate and glycogen, and develop the player for a game football volitional qualities of the most important of courage, determination And self-confidence. There are also some skill movements that can not be performed without a certain level of strength, so the development of power may affect the effectiveness of the long-term training system.Keywords: trainning program, maximum force and expolosive force, lowers limbs, under 17 years
Procedia PDF Downloads 1044755 Controlled Growth of Charge Transfer Complex Nanowire by Physical Vapor Deposition Method Using Dielectrophoretic Force
Authors: Rabaya Basori, Arup K. Raychaudhuri
Abstract:
In recent years, a variety of semiconductor nanowires (NWs) has been synthesized and used as basic building blocks for the development of electronic and optoelectronic nanodevices. Dielectrophoresis (DEP) has been widely investigated as a scalable technique to trap and manipulate polarizable objects. This includes biological cells, nanoparticles, DNA molecules, organic or inorganic NWs and proteins using electric field gradients. In this article, we have used DEP force to localize nanowire growth by physical vapor deposition (PVD) method as well as control of NW diameter on field assisted growth of the NWs of CuTCNQ (Cu-tetracyanoquinodimethane); a metal-organic charge transfer complex material which is well known of resistive switching. We report a versatile analysis platform, based on a set of nanogap electrodes, for the controlled growth of nanowire. Non-uniform electric field and dielectrophoretic force is created in between two metal electrodes, patterned by electron beam lithography process. Suspended CuTCNQ nanowires have been grown laterally between two electrodes in the vicinity of electric field and dielectric force by applying external bias. Growth and diameter dependence of the nanowires on external bias has been investigated in the framework of these two forces by COMSOL Multiphysics simulation. This report will help successful in-situ nanodevice fabrication with constrained number of NW and diameter without any post treatment.Keywords: nanowire, dielectrophoretic force, confined growth, controlled diameter, comsol multiphysics simulation
Procedia PDF Downloads 1924754 Retrieving Iconometric Proportions of South Indian Sculptures Based on Statistical Analysis
Authors: M. Bagavandas
Abstract:
Introduction: South Indian stone sculptures are known for their elegance and history. They are available in large numbers in different monuments situated different parts of South India. These art pieces have been studied using iconography details, but this pioneering study introduces a novel method known as iconometry which is a quantitative study that deals with measurements of different parts of icons to find answers for important unanswered questions. The main aim of this paper is to compare iconometric measurements of the sculptures with canonical proportion to determine whether the sculptors of the past had followed any of the canonical proportions prescribed in the ancient text. If not, this study recovers the proportions used for carving sculptures which is not available to us now. Also, it will be interesting to see how these sculptural proportions of different monuments belonging to different dynasties differ from one another in terms these proportions. Methods and Materials: As Indian sculptures are depicted in different postures, one way of making measurements independent of size, is to decode on a suitable measurement and convert the other measurements as proportions with respect to the chosen measurement. Since in all canonical texts of Indian art, all different measurements are given in terms of face length, it is chosen as the required measurement for standardizing the measurements. In order to compare these facial measurements with measurements prescribed in Indian canons of Iconography, the ten facial measurements like face length, morphological face length, nose length, nose-to-chin length, eye length, lip length, face breadth, nose breadth, eye breadth and lip breadth were standardized using the face length and the number of measurements reduced to nine. Each measurement was divided by the corresponding face length and multiplied by twelve and given in angula unit used in the canonical texts. The reason for multiplying by twelve is that the face length is given as twelve angulas in the canonical texts for all figures. Clustering techniques were used to determine whether the sculptors of the past had followed any of the proportions prescribed in the canonical texts of the past to carve sculptures and also to compare the proportions of sculptures of different monuments. About one hundred twenty-seven stone sculptures from four monuments belonging to the Pallava, the Chola, the Pandya and the Vijayanagar dynasties were taken up for this study. These art pieces belong to a period ranging from the eighth to the sixteenth century A.D. and all of them adorning different monuments situated in different parts of Tamil Nadu State, South India. Anthropometric instruments were used for taking measurements and the author himself had measured all the sample pieces of this study. Result: Statistical analysis of sculptures of different centers of art from different dynasties shows a considerable difference in facial proportions and many of these proportions differ widely from the canonical proportions. The retrieved different facial proportions indicate that the definition of beauty has been changing from period to period and region to region.Keywords: iconometry, proportions, sculptures, statistics
Procedia PDF Downloads 1544753 Investigation on Unsteady Flow of a Turbine Stage with Negative Bowed Stator
Authors: Keke Gao, Tao Lin, Yonghui Xie, Di Zhang
Abstract:
Complicated unsteady flow in axial turbines produces high-frequency unsteady aerodynamic exciting force, which threatens the safe operation of turbines. This paper illustrates how negative-bowed stator reduces the rotor unsteady aerodynamic exciting force by unsteady flow field. With the support of three-dimensional viscous compressible Navier-Stokes equation, the single axial turbines with 0, -10 and -20 degree bowed stator are comparably investigated, aiming to identify the flow field structure difference caused by various negative-bowed degrees. The results show that negative-bowed stator strengthens the turbulence kinetic energy, which is further strengthened with the increase of negative-bowed degree. Meanwhile, the flow phenomenon including stator wakes and passage vortex is shown. In addition, the interaction of upstream negative-bowed wakes contributes to the reduction of unsteady blade load fluctuation. Furthermore, the aerodynamic exciting force decreases with the increasing negative bowed degree, while the efficiency is correspondingly reduced. This paper provides the reference for the alleviation of the harmful impact caused by unsteady interaction with the method of wake control.Keywords: unsteady flow, axial turbine, wake, aerodynamic force, loss
Procedia PDF Downloads 2954752 Investigation of Riders' Path on Horizontal Curves
Authors: Lemonakis Panagiotis, Eliou Nikos, Karakasidis Theodoros, Botzoris George
Abstract:
It is well known that trajectory along with speed are two of the most important contributing factors in road accidents. Trajectory is meant as the "line“, usually different from the center-line that a driver traverses through horizontal curves which depends on the characteristics of the road environment (especially the curvature), the vehicle and the driver himself. Drivers and especially riders, tend to broaden their paths in order to succeed greater path radiuses and hence, reduce the applied centrifugal force enhancing safety. The objective of the present research is to investigate riders’ path on horizontal curves. Within the context of the research, field measurements were conducted on a rural two lane highway, with the participation of eight riders and the use of an instrumented motorcycle. The research has shown that the trajectory of the riders is correlated to the radius and the length of the horizontal curve as well.Keywords: trajectory, path, riders, horizontal curves
Procedia PDF Downloads 3414751 Ratings of Hand Activity and Force Levels in Identical Hand-Intensive Work Tasks in Women and Men
Authors: Gunilla Dahlgren, Per Liv, Fredrik Öhberg, Lisbeth Slunga Järvholm, Mikael Forsman, Börje Rehn
Abstract:
Background: Accuracy of risk assessment tools in hand-repetitive work is important. This can support precision in the risk management process and for a sustainable working life for women and men equally. Musculoskeletal disorders, MSDs, from the hand, wrist, and forearm, are common in the working population. Women report a higher prevalence of MSDs in these regions. Objective: The objective of this study was to compare if women and men who performed the identical hand-intensive work task were rated equally using the Hand Activity Threshold Limit Value® (HA-TLV) when self-rated and observer-rated. Method: Fifty-six workers from eight companies participated, with various intensities in hand-repetitive work tasks. In total, 18 unique identical hand-intensive work tasks were executed in 28 pairs of a woman and a man. Hand activity and force levels were assessed. Each worker executed the work task for 15 minutes, which was also video recorded. Data was collected on workers who self-rated directly after the execution of the work task. Also, experienced observers performed ratings from videos of the same work tasks. For comparing means between women and men, paired samples t-tests were used. Results: The main results showed that there was no difference in self-ratings of hand activity level and force by women and men who executed the same work task. Further, there was no difference between observer ratings of hand activity level. However, the observer force ratings of women and men differed significantly (p=0.01). Conclusion: Hand activity and force levels are rated equally in women and men when self-rated, also by observers for hand activity. However, it is an observandum that observer force rating is rated higher for women and lower for men. This indicates the need of comparing force ratings with technical measures.Keywords: gender, equity, sex differences, repetitive strain injury, cumulative trauma disorders, upper extremity, exposure assessment, workload, health risk assessment, observation, psychophysics
Procedia PDF Downloads 1244750 Loading Forces following Addition of 5% Cu in Nickel-Titanium Alloy Used for Orthodontics
Authors: Aphinan Phukaoluan, Surachai Dechkunakorn, Niwat Anuwongnukroh, Anak Khantachawana, Pongpan Kaewtathip, Julathep Kajornchaiyakul, Wassana Wichai
Abstract:
Aims: This study aims to address the amount of force delivered by a NiTiCu orthodontic wire with a ternary composition ratio of 46.0 Ni: 49.0 Ti: 5.0 Cu and to compare the results with a commercial NiTiCu 35 °C orthodontic archwire. Materials and Methods: Nickel (purity 99.9%), Titanium (purity 99.9%), and Copper (purity 99.9%) were used in this study with the atomic weight ratio 46.0 Ni: 49.0 Ti: 5.0 Cu. The elements were melted to form an alloy using an electrolytic arc furnace in argon gas atmosphere and homogenized at 800 °C for 1 hr. The alloys were subsequently sliced into thin plates (1.5mm) by EDM wire cutting machine to obtain the specimens and were cold-rolled with 30% followed by heat treatment in a furnace at 400 °C for 1 hour. Then, the three newly fabricated NiTiCu specimens were cut in nearly identical wire sizes of 0.016 inch x0.022 inch. Commercial preformed Ormco NiTiCu35 °C archwire with size 0.016 inch x 0.022 inches were used for comparative purposes. Three-point bending test was performed using a Universal Testing Machine to investigate the force of the load-deflection curve at oral temperature (36 °C+ 1) with deflection points at 0.25, 0.5, 0.75, 1.0. 1.25, and 1.5 mm. Descriptive statistics was used to evaluate each variables and independent t-test was used to analyze the differences between the groups. Results: Both NiTiCu wires presented typical superelastic properties as observed from the load-deflection curve. The average force was 341.70 g for loading, and 264.18 g for unloading for 46.0 Ni: 49.0 Ti: 5.0 Cu wire. Similarly, the values were 299.88 g for loading, and 201.96 g for unloading of Ormco NiTiCu35°C. There were significant differences (p < 0.05) in mean loading and unloading forces between the two NiTiCu wires. The deflection forces in loading and unloading force for Ormco NiTiCu at each point were less than 46.0 Ni: 49.0 Ti: 5.0 Cu wire, except at the deflection point of 0.25mm. Regarding the force difference between each deflection point of loading and unloading force, Ormco NiTiCu35 °C exerted less force than 46.0 Ni: 49.0 Ti: 5.0 Cu wire, except at difference deflection at 1.5-1.25 mm of unloading force. However, there were still within the acceptable limits for orthodontic use. Conclusion: The fabricated ternary alloy of 46.0 Ni: 49.0 Ti: 5.0 Cu (atomic weight) with 30% reduction and heat treatment at 400°C for 1 hr. and Ormco 35 °C NiTiCu presented the characteristics of the shape memory in their wire form. The unloading forces of both NiTiCu wires were in the range of orthodontic use. This should be a good foundation for further studies towards development of new orthodontic NiTiCu archwires.Keywords: loading force, ternary alloy, NiTiCu, shape memory, orthodontic wire
Procedia PDF Downloads 2844749 Quartz Crystal Microbalance Holder Design for On-Line Sensing in Liquid Applications
Authors: M. A. Amer, J. A. Chávez, M. J. García-Hernández, J. Salazar, A. Turó
Abstract:
In this paper, the design of a QCM sensor for liquid media measurements in vertical position is described. A rugged and low-cost proof holder has been designed, the cost of which is significantly lower than those of traditional commercial holders. The crystal is not replaceable but it can be easily cleaned. Its small volume permits to be used by dipping it in the liquid with the desired location and orientation. The developed design has been experimentally validated by measuring changes in the resonance frequency and resistance of the QCM sensor immersed vertically in different calibrated aqueous glycerol solutions. The obtained results show a great agreement with the Kanazawa theoretical expression. Consequently, the designed QCM sensor would be appropriate for sensing applications in liquids, and might take part of a future on-line multichannel low-cost QCM-based measurement system.Keywords: holder design, liquid-media measurements, multi-channel measurements, QCM
Procedia PDF Downloads 3824748 Soft Exoskeleton Elastomer Pre-Tension Drive Control System
Authors: Andrey Yatsun, Andrei Malchikov
Abstract:
Exoskeletons are used to support and compensate for the load on the human musculoskeletal system. Elastomers are an important component of exoskeletons, providing additional support and compensating for the load. The algorithm of the active elastomer tension system provides the required auxiliary force depending on the angle of rotation and the tilt speed of the operator's torso. Feedback for the drive is provided by a force sensor integrated into the attachment of the exoskeleton vest. The use of direct force measurement ensures the required accuracy in all settings of the man-machine system. Non-adjustable elastic elements make it difficult to move without load, tilt forward and walk. A strategy for the organization of the auxiliary forces management system is proposed based on the allocation of 4 operating modes of the human-machine system.Keywords: soft exoskeleton, mathematical modeling, pre-tension elastomer, human-machine interaction
Procedia PDF Downloads 664747 Impact of Curvatures in the Dike Line on Wave Run-up and Wave Overtopping, ConDike-Project
Authors: Malte Schilling, Mahmoud M. Rabah, Sven Liebisch
Abstract:
Wave run-up and overtopping are the relevant parameters for the dimensioning of the crest height of dikes. Various experimental as well as numerical studies have investigated these parameters under different boundary conditions (e.g. wave conditions, structure type). Particularly for the dike design in Europe, a common approach is formulated where wave and structure properties are parameterized. However, this approach assumes equal run-up heights and overtopping discharges along the longitudinal axis. However, convex dikes have a heterogeneous crest by definition. Hence, local differences in a convex dike line are expected to cause wave-structure interactions different to a straight dike. This study aims to assess both run-up and overtopping at convexly curved dikes. To cast light on the relevance of curved dikes for the design approach mentioned above, physical model tests were conducted in a 3D wave basin of the Ludwig-Franzius-Institute Hannover. A dike of a slope of 1:6 (height over length) was tested under both regular waves and TMA wave spectra. Significant wave heights ranged from 7 to 10 cm and peak periods from 1.06 to 1.79 s. Both run-up and overtopping was assessed behind the curved and straight sections of the dike. Both measurements were compared to a dike with a straight line. It was observed that convex curvatures in the longitudinal dike line cause a redirection of incident waves leading to a concentration around the center point. Measurements prove that both run-up heights and overtopping rates are higher than on the straight dike. It can be concluded that deviations from a straight longitudinal dike line have an impact on design parameters and imply uncertainties within the design approach in force. Therefore, it is recommended to consider these influencing factors for such cases.Keywords: convex dike, longitudinal curvature, overtopping, run-up
Procedia PDF Downloads 2904746 Comparative Studies on Spontaneous Imbibition of Surfactant/Alkaline Solution in Carbonate Rocks
Authors: M. Asgari, N. Heydari, N. Shojai Kaveh, S. N. Ashrafizadeh
Abstract:
Chemical flooding methods are having importance in enhanced oil recovery to recover the trapped oil after conventional recovery, as conventional oil resources become scarce. The surfactant/alkaline process consists of injecting alkali and synthetic surfactant. The addition of surfactant to injected water reduces oil/water IFT and/or alters wettability. The alkali generates soap in situ by reaction between the alkali and naphthenic acids in the crude oil. Oil recovery in fractured reservoirs mostly depends on spontaneous imbibition (SI) of brine into matrix blocks. Thus far, few efforts have been made toward understanding the relative influence of capillary and gravity forces on the fluid flow. This paper studies the controlling mechanisms of spontaneous imbibition process in chalk formations by consideration of type and concentration of surfactants, CMC, pH and alkaline reagent concentration. Wetting properties of carbonate rock have been investigated by means of contact-angle measurements. Interfacial-tension measurements were conducted using spinning drop method. Ten imbibition experiments were conducted in atmospheric pressure and various temperatures from 30°C to 50°C. All experiments were conducted above the CMC of each surfactant. The experimental results were evaluated in terms of ultimate oil recovery and reveal that wettability alteration achieved by nonionic surfactant, which led to imbibition of brine sample containing the nonionic surfactant, while IFT value was not in range of ultra low. The displacement of oil was initially dominated by capillary forces. However, for cationic surfactant, gravity forces was the dominant force for oil production by surfactant solution to overcome the negative capillary pressure.Keywords: alkaline, capillary, gravity, imbibition, surfactant, wettability
Procedia PDF Downloads 2294745 Study on the Electrochemical Performance of Graphene Effect on Cadmium Oxide in Lithium Battery
Authors: Atef Y. Shenouda, Anton A. Momchilov
Abstract:
Graphene and CdO with different stoichiometric ratios of Cd(CH₃COO)₂ and graphene samples were prepared by hydrothermal reaction. The crystalline phases of pure CdO and 3CdO:1graphene were identified by X-ray diffraction (XRD). The particle morphology was studied with SEM. Furthermore, impedance measurements were applied. Galvanostatic measurements for the cells were carried out using potential limits between 0.01 and 3 V vs. Li/Li⁺. The current cycling intensity was 10⁻⁴ A. The specific discharge capacity of 3CdO-1G cell was about 450 Ah.Kg⁻¹ up to more than 100 cycles.Keywords: CdO, graphene, negative electrode, lithium battery
Procedia PDF Downloads 1614744 3D Simulation of Orthodontic Tooth Movement in the Presence of Horizontal Bone Loss
Authors: Azin Zargham, Gholamreza Rouhi, Allahyar Geramy
Abstract:
One of the most prevalent types of alveolar bone loss is horizontal bone loss (HBL) in which the bone height around teeth is reduced homogenously. In the presence of HBL the magnitudes of forces during orthodontic treatment should be altered according to the degree of HBL, in a way that without further bone loss, desired tooth movement can be obtained. In order to investigate the appropriate orthodontic force system in the presence of HBL, a three-dimensional numerical model capable of the simulation of orthodontic tooth movement was developed. The main goal of this research was to evaluate the effect of different degrees of HBL on a long-term orthodontic tooth movement. Moreover, the effect of different force magnitudes on orthodontic tooth movement in the presence of HBL was studied. Five three-dimensional finite element models of a maxillary lateral incisor with 0 mm, 1.5 mm, 3 mm, 4.5 mm and 6 mm of HBL were constructed. The long-term orthodontic tooth tipping movements were attained during a 4-weeks period in an iterative process through the external remodeling of the alveolar bone based on strains in periodontal ligament as the bone remodeling mechanical stimulus. To obtain long-term orthodontic tooth movement in each iteration, first the strains in periodontal ligament under a 1-N tipping force were calculated using finite element analysis. Then, bone remodeling and the subsequent tooth movement were computed in a post-processing software using a custom written program. Incisal edge, cervical, and apical area displacement in the models with different alveolar bone heights (0, 1.5, 3, 4.5, 6 mm bone loss) in response to a 1-N tipping force were calculated. Maximum tooth displacement was found to be 2.65 mm at the top of the crown of the model with a 6 mm bone loss. Minimum tooth displacement was 0.45 mm at the cervical level of the model with a normal bone support. Tooth tipping degrees of models in response to different tipping force magnitudes were also calculated for models with different degrees of HBL. Degrees of tipping tooth movement increased as force level was increased. This increase was more prominent in the models with smaller degrees of HBL. By using finite element method and bone remodeling theories, this study indicated that in the presence of HBL, under the same load, long-term orthodontic tooth movement will increase. The simulation also revealed that even though tooth movement increases with increasing the force, this increase was only prominent in the models with smaller degrees of HBL, and tooth models with greater degrees of HBL will be less affected by the magnitude of an orthodontic force. Based on our results, the applied force magnitude must be reduced in proportion of degree of HBL.Keywords: bone remodeling, finite element method, horizontal bone loss, orthodontic tooth movement.
Procedia PDF Downloads 3424743 The Political Economy of Police Corruption in Nigeria
Authors: Tosin Osasona
Abstract:
The Nigeria Police Force bears the constitutional mandate as the primary policing agency for the protection of life and property within Nigeria; however, the police have an historical ill-reputation for corruption, ineptitude and impunity. Using the institutional theory of police as the framework of analysis, the paper argues that the performance of the police in Nigeria mirrors the dominant political, social and economic institutions and the structural environment of the Nigerian state. The article puts in perspective the deliberate political decision to underfund the police, leaving officers of the force the extra task of foraging for funds to undertake the duty that the Nigeria state primarily exists for; the article further explores the nexus between corruption in the police in Nigeria and the issue of funding. The article finds that the Nigerian state, by deliberately under-funding the police, while expecting the agency to perform its duties, has indirectly sanctioned the corruption of the force and approved the cooption of the institution of police and policing for private use in Nigeria.Keywords: Police Corruption, Funding , Informal Taxation, POlice Checkpoint
Procedia PDF Downloads 1604742 Wheel Diameter and Width Influence in Variability of Brake Data Measurement at Ministry of Transport Facilities
Authors: Carolina Senabre, Sergio Valero, Emilio Velasco
Abstract:
The brake systems of vehicles are tested periodically by a “brake tester” at Ministry of Transport (MOT) stations. This tester measures the effectiveness of vehicle. This parameter is established by the International Committee of Vehicle Inspection (CITA). In this paper, we present an investigation of the influence of the tire size on the measurements of brake force on three MOT brake testers. We performed an analysis of the vehicle braking capacity test at MOT stations. The influence of varying wheel diameter and width on the measurement of braking at MOT stations has been analyzed. Thereby, the MOT brake tester as a verification system for a vehicle has been evaluated.Keywords: brake tester, ministry of transport facilities, wheel diameter, efficiency
Procedia PDF Downloads 3754741 A Gender Sensitive Labour Policy for Gilgit Baltistan
Authors: Ayesha Obaid, Abdur Rehman Cheema
Abstract:
This study is about understanding the role of the gender division of work that has been assigned to men and women in different societies and cultures and its impact on labour force participation through economic development. Development in Gilgit Baltistan has been challenging due to its geographical conditions and the human development indicators are lower than the rest of the Pakistan. Various socioeconomic factors are identified that play an important role in determining the choices and roles men and women undertake for contributing towards the labour force. Our research highlights the areas lagging behind in gender equality in the labour market. The availability and access of gender over these socioeconomic resources determine gender mainstreaming in the labour market. It is a need of time that gender gaps should be addressed at the grass root level by the policy makers to enhance the growth and improve human development indicators.Keywords: gender division of work, human development, indicators of socioeconomic factors, labour force
Procedia PDF Downloads 3544740 The Experimental Investigation of Temperature Influence on the Oscillations of Particles on Liquid Surfaces
Authors: Sathish K. Gurupatham, Farhad Sayedzada, Naji Dauk, Valmiki Sooklal, Laura Ruhala
Abstract:
It was shown recently that small particles and powders spontaneously disperse on liquid surfaces when they come into contact with the interface for the first time. This happens due to the combined effect of the capillary force, buoyant weight of the particle and the viscous drag that the particle experiences in the liquid. The particle undergoes oscillations normal to the interface before it comes to rest on the interface. These oscillations, in turn, induce a flow on the interface which disperses the particles radially outward. This phenomenon has a significant role in the pollination of sea plants such as Ruppia in which the formation of ‘pollen rafts’ is the first step. This paper investigates, experimentally, the influence of the temperature of the liquid on which this dispersion occurs. It was observed that the frequency of oscillations of the particles decreased with the increase in the temperature of the liquid. It is because the magnitude of capillary force also decreased when the temperature of the liquid increased.Keywords: particle dispersion, capillary force, viscous drag, oscillations
Procedia PDF Downloads 3694739 Comparison of Corneal Curvature Measurements Conducted with Tomey AO-2000® and the Current Standard Biometer IOL Master®
Authors: Mohd Radzi Hilmi, Khairidzan Mohd Kamal, Che Azemin Mohd Zulfaezal, Ariffin Azrin Esmady
Abstract:
Purpose: Corneal curvature (CC) is an important anterior segment parameter. This study compared CC measurements conducted with two optical devices in phakic eyes. Methods: Sixty phakic eyes of 30 patients were enrolled in this study. CC was measured three times with the optical biometer and topography-keratometer Tomey AO-2000 (Tomey Corporation, Nagoya, Japan), then with the standard partial optical coherence interferometry (PCI) IOL Master (Carl Zeiss Meditec, Dublin, CA) and data were statistically analysed. Results: The measurements resulted in a mean CC of 43.86 ± 1.57 D with Tomey AO-2000 and 43.84 ± 1.55 D with IOL Master. Distribution of data is normal, and no significance difference in CC values was detected (P = 0.952) between the two devices. Correlation between CC measurements was highly significant (r = 0. 99; P < 0.0001). The mean difference of CC values between devices was 0.017 D and 95% limit of agreement was -0.088 to 0.12. Duration taken for measurements with the standard biometer IOL Master was longer (55.17 ± 2.24 seconds) than with Tomey AO-2000 (39.88 ± 2.38 seconds) in automatic mode. Duration of manual measurement with Tomey AO-2000 in manual mode was the shortest (28.57 ± 2.71 seconds). Conclusion: In phakic eyes, CC measured with Tomey AO-2000 and IOL Master showed similar values, and high correlation was observed between these two devices. This shows that both devices can be used interchangeably. Tomey AO-2000 is better in terms of faster to operate and has its own topography systems.Keywords: corneal topography, corneal curvature, IOL Master, Tomey AO2000
Procedia PDF Downloads 3874738 Fundamental Theory of the Evolution Force: Gene Engineering utilizing Synthetic Evolution Artificial Intelligence
Authors: L. K. Davis
Abstract:
The effects of the evolution force are observable in nature at all structural levels ranging from small molecular systems to conversely enormous biospheric systems. However, the evolution force and work associated with formation of biological structures has yet to be described mathematically or theoretically. In addressing the conundrum, we consider evolution from a unique perspective and in doing so we introduce the “Fundamental Theory of the Evolution Force: FTEF”. We utilized synthetic evolution artificial intelligence (SYN-AI) to identify genomic building blocks and to engineer 14-3-3 ζ docking proteins by transforming gene sequences into time-based DNA codes derived from protein hierarchical structural levels. The aforementioned served as templates for random DNA hybridizations and genetic assembly. The application of hierarchical DNA codes allowed us to fast forward evolution, while dampening the effect of point mutations. Natural selection was performed at each hierarchical structural level and mutations screened using Blosum 80 mutation frequency-based algorithms. Notably, SYN-AI engineered a set of three architecturally conserved docking proteins that retained motion and vibrational dynamics of native Bos taurus 14-3-3 ζ.Keywords: 14-3-3 docking genes, synthetic protein design, time-based DNA codes, writing DNA code from scratch
Procedia PDF Downloads 1144737 Two Dimensional Steady State Modeling of Temperature Profile and Heat Transfer of Electrohydrodynamically Enhanced Micro Heat Pipe
Authors: H. Shokouhmand, M. Tajerian
Abstract:
A numerical investigation of laminar forced convection flows through a square cross section micro heat pipe by applying electrohydrodynamic (EHD) field has been studied. In the present study, pentane is selected as working fluid. Temperature and velocity profiles and heat transfer enhancement in the micro heat pipe by using EHD field at the two-dimensional and single phase fluid flow in steady state regime have been numerically calculated. At this model, only Coulomb force is considered. The study has been carried out for the Reynolds number 10 to 100 and EHD force field up to 8 KV. Coupled, non-linear equations governed on the model (continuity, momentum, and energy equations) have been solved simultaneously by CFD numerical methods. Steady state behavior of affecting parameters, e.g. friction factor, average temperature, Nusselt number and heat transfer enhancement criteria, have been evaluated. It has been observed that by increasing Reynolds number, the effect of EHD force became more significant and for smaller Reynolds numbers the rate of heat transfer enhancement criteria is increased. By obtaining and plotting the mentioned parameters, it has been shown that the EHD field enhances the heat transfer process. The numerical results show that by increasing EHD force field the absolute value of Nusselt number and friction factor increases and average temperature of fluid flow decreases. But the increasing rate of Nusselt number is greater than increasing value of friction factor, which makes applying EHD force field for heat transfer enhancement in micro heat pipes acceptable and applicable. The numerical results of model are in good agreement with the experimental results available in the literature.Keywords: micro heat pipe, electrohydrodynamic force, Nusselt number, average temperature, friction factor
Procedia PDF Downloads 2704736 Numerical and Experimental Approach to Evaluate Forming Coil of Electromagnetic Forming Process
Authors: H. G. Noh, H. G. Park, B. S. Kang, J. Kim
Abstract:
Electromagnetic forming process (EMF) is one of high-velocity forming processes using Lorentz force. Advantages of EMF are summarized as improvement of formability, reduction in wrinkling, non-contact forming. In this study, numerical simulations were conducted to determine the practical parameters for EMF process. A 2-D axis-symmetric electromagnetic model was considered based on the spiral type forming coil. In the numerical simulation, RLC circuit coupled with spiral coil was made to consider the design parameters such as system input current and electromagnetic force. In order to deform the sheet in the patter shape die, two types of spiral shape coil were considered to deform the pattern shape sheet. One is a spiral coil that has 6turns with dead zone at centre point. Another is a normal spiral coil without dead zone that has 8 turns. In the electric analysis, input current and magnetic force were compared and then plastic deformation was treated in the mechanical analysis for two coil cases. Deformation behaviour of dead zone coil case has good agreement with pattern shape die. As a result, deformation behaviour could be controlled by giving dead zone at centre of the coil in spiral shape coil case.Keywords: electromagnetic forming, spiral coil, Lorentz force, manufacturing
Procedia PDF Downloads 3064735 Automatic Measurement of Garment Sizes Using Deep Learning
Authors: Maulik Parmar, Sumeet Sandhu
Abstract:
The online fashion industry experiences high product return rates. Many returns are because of size/fit mismatches -the size scale on labels can vary across brands, the size parameters may not capture all fit measurements, or the product may have manufacturing defects. Warehouse quality check of garment sizes can be semi-automated to improve speed and accuracy. This paper presents an approach for automatically measuring garment sizes from a single image of the garment -using Deep Learning to learn garment keypoints. The paper focuses on the waist size measurement of jeans and can be easily extended to other garment types and measurements. Experimental results show that this approach can greatly improve the speed and accuracy of today’s manual measurement process.Keywords: convolutional neural networks, deep learning, distortion, garment measurements, image warping, keypoints
Procedia PDF Downloads 3084734 Gender Estimation by Means of Quantitative Measurements of Foramen Magnum: An Analysis of CT Head Images
Authors: Thilini Hathurusinghe, Uthpalie Siriwardhana, W. M. Ediri Arachchi, Ranga Thudugala, Indeewari Herath, Gayani Senanayake
Abstract:
The foramen magnum is more prone to protect than other skeletal remains during high impact and severe disruptive injuries. Therefore, it is worthwhile to explore whether these measurements can be used to determine the human gender which is vital in forensic and anthropological studies. The idea was to find out the ability to use quantitative measurements of foramen magnum as an anatomical indicator for human gender estimation and to evaluate the gender-dependent variations of foramen magnum using quantitative measurements. Randomly selected 113 subjects who underwent CT head scans at Sri Jayawardhanapura General Hospital of Sri Lanka within a period of six months, were included in the study. The sample contained 58 males (48.76 ± 14.7 years old) and 55 females (47.04 ±15.9 years old). Maximum length of the foramen magnum (LFM), maximum width of the foramen magnum (WFM), minimum distance between occipital condyles (MnD) and maximum interior distance between occipital condyles (MxID) were measured. Further, AreaT and AreaR were also calculated. The gender was estimated using binomial logistic regression. The mean values of all explanatory variables (LFM, WFM, MnD, MxID, AreaT, and AreaR) were greater among male than female. All explanatory variables except MnD (p=0.669) were statistically significant (p < 0.05). Significant bivariate correlations were demonstrated by AreaT and AreaR with the explanatory variables. The results evidenced that WFM and MxID were the best measurements in predicting gender according to binomial logistic regression. The estimated model was: log (p/1-p) =10.391-0.136×MxID-0.231×WFM, where p is the probability of being a female. The classification accuracy given by the above model was 65.5%. The quantitative measurements of foramen magnum can be used as a reliable anatomical marker for human gender estimation in the Sri Lankan context.Keywords: foramen magnum, forensic and anthropological studies, gender estimation, logistic regression
Procedia PDF Downloads 1514733 Experimental Investigation on Tsunami Acting on Bridges
Authors: Iman Mazinani, Zubaidah Ismail, Ahmad Mustafa Hashim, Amir Reza Saba
Abstract:
Two tragic tsunamis that devastated the west coast of Sumatra Island, Indonesia in 2004 and North East Japan in 2011 had damaged bridges to various extents. Tsunamis have resulted in the catastrophic deterioration of infrastructures i.e. coastal structures, utilities and transportation facilities. A bridge structure performs vital roles to enable people to perform activities related to their daily needs and for development. A damaged bridge needs to be repaired expeditiously. In order to understand the effects of tsunami forces on bridges, experimental tests are carried out to measure the characteristics of hydrodynamic force at various wave heights. Coastal bridge models designed at a 1:40 scale are used in a 24.0 m long hydraulic flume with a cross section of 1.5 m by 2.0 m. The horizontal forces and uplift forces in all cases show that forces increase nonlinearly with increasing wave amplitude.Keywords: tsunami, bridge, horizontal force, uplift force
Procedia PDF Downloads 3054732 Structural Identification for Layered Composite Structures through a Wave and Finite Element Methodology
Authors: Rilwan Kayode Apalowo, Dimitrios Chronopoulos
Abstract:
An approach for identifying the geometric and material characteristics of layered composite structures through an inverse wave and finite element methodology is proposed. These characteristics are obtained through multi-frequency single shot measurements. However, it is established that the frequency regime of the measurements does not matter, meaning that both ultrasonic and structural dynamics frequency spectra can be employed. Taking advantage of a full FE (finite elements) description of the periodic composite, the scheme is able to account for arbitrarily complex structures. In order to demonstrate the robustness of the presented scheme, it is applied to a sandwich composite panel and results are compared with that of experimental characterization techniques. Excellent agreement is obtained with the experimental measurements.Keywords: structural identification, non-destructive evaluation, finite elements, wave propagation, layered structures, ultrasound
Procedia PDF Downloads 1434731 Considering the Reliability of Measurements Issue in Distributed Adaptive Estimation Algorithms
Authors: Wael M. Bazzi, Amir Rastegarnia, Azam Khalili
Abstract:
In this paper we consider the issue of reliability of measurements in distributed adaptive estimation problem. To this aim, we assume a sensor network with different observation noise variance among the sensors and propose new estimation method based on incremental distributed least mean-square (IDLMS) algorithm. The proposed method contains two phases: I) Estimation of each sensors observation noise variance, and II) Estimation of the desired parameter using the estimated observation variances. To deal with the reliability of measurements, in the second phase of the proposed algorithm, the step-size parameter is adjusted for each sensor according to its observation noise variance. As our simulation results show, the proposed algorithm considerably improves the performance of the IDLMS algorithm in the same condition.Keywords: adaptive filter, distributed estimation, sensor network, IDLMS algorithm
Procedia PDF Downloads 633