Search results for: error pointing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2033

Search results for: error pointing

1853 Integrating Blogging into Peer Assessment on College Students’ English Writing

Authors: Su-Lien Liao

Abstract:

Most of college students in Taiwan do not have sufficient English proficiency to express themselves in written English. Teachers spent a lot of time correcting students’ English writing, but the results are not satisfactory. This study aims to use blogs as a teaching and learning tool in written English. Before applying peer assessment, students should be trained to be good reviewers. The teacher starts the course by posting the error analysis of students’ first English composition on blogs as the comment models for students. Then the students will go through the process of drafting, composing, peer response and last revision on blogs. Evaluation Questionnaires and interviews will be conducted at the end of the course to see the impact and students’ perception for the course.

Keywords: blog, peer assessment, English writing, error analysis

Procedia PDF Downloads 422
1852 EEG Correlates of Trait and Mathematical Anxiety during Lexical and Numerical Error-Recognition Tasks

Authors: Alexander N. Savostyanov, Tatiana A. Dolgorukova, Elena A. Esipenko, Mikhail S. Zaleshin, Margherita Malanchini, Anna V. Budakova, Alexander E. Saprygin, Tatiana A. Golovko, Yulia V. Kovas

Abstract:

EEG correlates of mathematical and trait anxiety level were studied in 52 healthy Russian-speakers during execution of error-recognition tasks with lexical, arithmetic and algebraic conditions. Event-related spectral perturbations were used as a measure of brain activity. The ERSP plots revealed alpha/beta desynchronizations within a 500-3000 ms interval after task onset and slow-wave synchronization within an interval of 150-350 ms. Amplitudes of these intervals reflected the accuracy of error recognition, and were differently associated with the three conditions. The correlates of anxiety were found in theta (4-8 Hz) and beta2 (16-20 Hz) frequency bands. In theta band the effects of mathematical anxiety were stronger expressed in lexical, than in arithmetic and algebraic condition. The mathematical anxiety effects in theta band were associated with differences between anterior and posterior cortical areas, whereas the effects of trait anxiety were associated with inter-hemispherical differences. In beta1 and beta2 bands effects of trait and mathematical anxiety were directed oppositely. The trait anxiety was associated with increase of amplitude of desynchronization, whereas the mathematical anxiety was associated with decrease of this amplitude. The effect of mathematical anxiety in beta2 band was insignificant for lexical condition but was the strongest in algebraic condition. EEG correlates of anxiety in theta band could be interpreted as indexes of task emotionality, whereas the reaction in beta2 band is related to tension of intellectual resources.

Keywords: EEG, brain activity, lexical and numerical error-recognition tasks, mathematical and trait anxiety

Procedia PDF Downloads 561
1851 Basic Study of Mammographic Image Magnification System with Eye-Detector and Simple EEG Scanner

Authors: Aika Umemuro, Mitsuru Sato, Mizuki Narita, Saya Hori, Saya Sakurai, Tomomi Nakayama, Ayano Nakazawa, Toshihiro Ogura

Abstract:

Mammography requires the detection of very small calcifications, and physicians search for microcalcifications by magnifying the images as they read them. The mouse is necessary to zoom in on the images, but this can be tiring and distracting when many images are read in a single day. Therefore, an image magnification system combining an eye-detector and a simple electroencephalograph (EEG) scanner was devised, and its operability was evaluated. Two experiments were conducted in this study: the measurement of eye-detection error using an eye-detector and the measurement of the time required for image magnification using a simple EEG scanner. Eye-detector validation showed that the mean distance of eye-detection error ranged from 0.64 cm to 2.17 cm, with an overall mean of 1.24 ± 0.81 cm for the observers. The results showed that the eye detection error was small enough for the magnified area of the mammographic image. The average time required for point magnification in the verification of the simple EEG scanner ranged from 5.85 to 16.73 seconds, and individual differences were observed. The reason for this may be that the size of the simple EEG scanner used was not adjustable, so it did not fit well for some subjects. The use of a simple EEG scanner with size adjustment would solve this problem. Therefore, the image magnification system using the eye-detector and the simple EEG scanner is useful.

Keywords: EEG scanner, eye-detector, mammography, observers

Procedia PDF Downloads 215
1850 Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines

Authors: Xiaogang Li, Jieqiong Miao

Abstract:

As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square error

Keywords: Grey prediction model, trigonometric functions, support vector machines, genetic algorithms, root mean square error

Procedia PDF Downloads 461
1849 Vector Quantization Based on Vector Difference Scheme for Image Enhancement

Authors: Biji Jacob

Abstract:

Vector quantization algorithm which uses minimum distance calculation for codebook generation, a time consuming calculation performed on each pixel values leads to computation complexity. The codebook is updated by comparing the distance of each vector to their centroid vector and measure for their closeness. In this paper vector quantization is modified based on vector difference algorithm for image enhancement purpose. In the proposed scheme, vector differences between the vectors are considered as the new generation vectors or new codebook vectors. The codebook is updated by comparing the new generation vector with a threshold value having minimum error with the parent vector. The minimum error decides the fitness of each newly generated vector. Thus the codebook is generated in an adaptive manner and the fitness value is determined for the suppression of the degraded portion of the image and thereby leads to the enhancement of the image through the adaptive searching capability of the vector quantization through vector difference algorithm. Experimental results shows that the vector difference scheme efficiently modifies the vector quantization algorithm for enhancing the image with peak signal to noise ratio (PSNR), mean square error (MSE), Euclidean distance (E_dist) as the performance parameters.

Keywords: codebook, image enhancement, vector difference, vector quantization

Procedia PDF Downloads 267
1848 Least Squares Solution for Linear Quadratic Gaussian Problem with Stochastic Approximation Approach

Authors: Sie Long Kek, Wah June Leong, Kok Lay Teo

Abstract:

Linear quadratic Gaussian model is a standard mathematical model for the stochastic optimal control problem. The combination of the linear quadratic estimation and the linear quadratic regulator allows the state estimation and the optimal control policy to be designed separately. This is known as the separation principle. In this paper, an efficient computational method is proposed to solve the linear quadratic Gaussian problem. In our approach, the Hamiltonian function is defined, and the necessary conditions are derived. In addition to this, the output error is defined and the least-square optimization problem is introduced. By determining the first-order necessary condition, the gradient of the sum squares of output error is established. On this point of view, the stochastic approximation approach is employed such that the optimal control policy is updated. Within a given tolerance, the iteration procedure would be stopped and the optimal solution of the linear-quadratic Gaussian problem is obtained. For illustration, an example of the linear-quadratic Gaussian problem is studied. The result shows the efficiency of the approach proposed. In conclusion, the applicability of the approach proposed for solving the linear quadratic Gaussian problem is highly demonstrated.

Keywords: iteration procedure, least squares solution, linear quadratic Gaussian, output error, stochastic approximation

Procedia PDF Downloads 188
1847 Application of Neural Network on the Loading of Copper onto Clinoptilolite

Authors: John Kabuba

Abstract:

The study investigated the implementation of the Neural Network (NN) techniques for prediction of the loading of Cu ions onto clinoptilolite. The experimental design using analysis of variance (ANOVA) was chosen for testing the adequacy of the Neural Network and for optimizing of the effective input parameters (pH, temperature and initial concentration). Feed forward, multi-layer perceptron (MLP) NN successfully tracked the non-linear behavior of the adsorption process versus the input parameters with mean squared error (MSE), correlation coefficient (R) and minimum squared error (MSRE) of 0.102, 0.998 and 0.004 respectively. The results showed that NN modeling techniques could effectively predict and simulate the highly complex system and non-linear process such as ion-exchange.

Keywords: clinoptilolite, loading, modeling, neural network

Procedia PDF Downloads 416
1846 Shoulder Range of Motion Measurements using Computer Vision Compared to Hand-Held Goniometric Measurements

Authors: Lakshmi Sujeesh, Aaron Ramzeen, Ricky Ziming Guo, Abhishek Agrawal

Abstract:

Introduction: Range of motion (ROM) is often measured by physiotherapists using hand-held goniometer as part of mobility assessment for diagnosis. Due to the nature of hand-held goniometer measurement procedure, readings often tend to have some variations depending on the physical therapist taking the measurements (Riddle et al.). This study aims to validate computer vision software readings against goniometric measurements for quick and consistent ROM measurements to be taken by clinicians. The use of this computer vision software hopes to improve the future of musculoskeletal space with more efficient diagnosis from recording of patient’s ROM with minimal human error across different physical therapists. Methods: Using the hand-held long arm goniometer measurements as the “gold-standard”, healthy study participants (n = 20) were made to perform 4 exercises: Front elevation, Abduction, Internal Rotation, and External Rotation, using both arms. Assessment of active ROM using computer vision software at different angles set by goniometer for each exercise was done. Interclass Correlation Coefficient (ICC) using 2-way random effects model, Box-Whisker plots, and Root Mean Square error (RMSE) were used to find the degree of correlation and absolute error measured between set and recorded angles across the repeated trials by the same rater. Results: ICC (2,1) values for all 4 exercises are above 0.9, indicating excellent reliability. Lowest overall RMSE was for external rotation (5.67°) and highest for front elevation (8.00°). Box-whisker plots showed have showed that there is a potential zero error in the measurements done by the computer vision software for abduction, where absolute error for measurements taken at 0 degree are shifted away from the ideal 0 line, with its lowest recorded error being 8°. Conclusion: Our results indicate that the use of computer vision software is valid and reliable to use in clinical settings by physiotherapists for measuring shoulder ROM. Overall, computer vision helps improve accessibility to quality care provided for individual patients, with the ability to assess ROM for their condition at home throughout a full cycle of musculoskeletal care (American Academy of Orthopaedic Surgeons) without the need for a trained therapist.

Keywords: physiotherapy, frozen shoulder, joint range of motion, computer vision

Procedia PDF Downloads 107
1845 On the Cluster of the Families of Hybrid Polynomial Kernels in Kernel Density Estimation

Authors: Benson Ade Eniola Afere

Abstract:

Over the years, kernel density estimation has been extensively studied within the context of nonparametric density estimation. The fundamental components of kernel density estimation are the kernel function and the bandwidth. While the mathematical exploration of the kernel component has been relatively limited, its selection and development remain crucial. The Mean Integrated Squared Error (MISE), serving as a measure of discrepancy, provides a robust framework for assessing the effectiveness of any kernel function. A kernel function with a lower MISE is generally considered to perform better than one with a higher MISE. Hence, the primary aim of this article is to create kernels that exhibit significantly reduced MISE when compared to existing classical kernels. Consequently, this article introduces a cluster of hybrid polynomial kernel families. The construction of these proposed kernel functions is carried out heuristically by combining two kernels from the classical polynomial kernel family using probability axioms. We delve into the analysis of error propagation within these kernels. To assess their performance, simulation experiments, and real-life datasets are employed. The obtained results demonstrate that the proposed hybrid kernels surpass their classical kernel counterparts in terms of performance.

Keywords: classical polynomial kernels, cluster of families, global error, hybrid Kernels, Kernel density estimation, Monte Carlo simulation

Procedia PDF Downloads 94
1844 Application of Adaptive Neuro Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel AASTM A516 Grade 70

Authors: Omar Al Denali, Abdelaziz Badi

Abstract:

The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of post-weld heat treatment (PWHT) experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556 %, which confirms the high accuracy of the model.

Keywords: prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, mean absolute percentage error

Procedia PDF Downloads 154
1843 Estimating X-Ray Spectra for Digital Mammography by Using the Expectation Maximization Algorithm: A Monte Carlo Simulation Study

Authors: Chieh-Chun Chang, Cheng-Ting Shih, Yan-Lin Liu, Shu-Jun Chang, Jay Wu

Abstract:

With the widespread use of digital mammography (DM), radiation dose evaluation of breasts has become important. X-ray spectra are one of the key factors that influence the absorbed dose of glandular tissue. In this study, we estimated the X-ray spectrum of DM using the expectation maximization (EM) algorithm with the transmission measurement data. The interpolating polynomial model proposed by Boone was applied to generate the initial guess of the DM spectrum with the target/filter combination of Mo/Mo and the tube voltage of 26 kVp. The Monte Carlo N-particle code (MCNP5) was used to tally the transmission data through aluminum sheets of 0.2 to 3 mm. The X-ray spectrum was reconstructed by using the EM algorithm iteratively. The influence of the initial guess for EM reconstruction was evaluated. The percentage error of the average energy between the reference spectrum inputted for Monte Carlo simulation and the spectrum estimated by the EM algorithm was -0.14%. The normalized root mean square error (NRMSE) and the normalized root max square error (NRMaSE) between both spectra were 0.6% and 2.3%, respectively. We conclude that the EM algorithm with transmission measurement data is a convenient and useful tool for estimating x-ray spectra for DM in clinical practice.

Keywords: digital mammography, expectation maximization algorithm, X-Ray spectrum, X-Ray

Procedia PDF Downloads 731
1842 Definite Article Errors and Effect of L1 Transfer

Authors: Bimrisha Mali

Abstract:

The present study investigates the type of errors English as a second language (ESL) learners produce using the definite article ‘the’. The participants were provided a questionnaire on the learner's ability test. The questionnaire consists of three cloze tests and two free composition tests. Each participant's response was received in the form of written data. A total of 78 participants from three government schools participated in the study. The participants are high-school students from Rural Assam. Assam is a north-eastern state of India. Their age ranged between 14-15. The medium of instruction and the communication among the students take place in the local language, i.e., Assamese. Pit Corder’s steps for conducting error analysis have been followed for the analysis procedure. Four types of errors were found (1) deletion of the definite article, (2) use of the definite article as modifiers as adjectives, (3) incorrect use of the definite article with singular proper nouns, (4) substitution of the definite article by the indefinite article ‘a’. Classifiers in Assamese that express definiteness is used with nouns, adjectives, and numerals. It is found that native language (L1) transfer plays a pivotal role in the learners’ errors. The analysis reveals the learners' inability to acquire the semantic connotation of definiteness in English due to native language (L1) interference.

Keywords: definite article error, l1 transfer, error analysis, ESL

Procedia PDF Downloads 122
1841 Error Analysis of English Inflection among Thai University Students

Authors: Suwaree Yordchim, Toby J. Gibbs

Abstract:

The linguistic competence of Thai university students majoring in Business English was examined in the context of knowledge of English language inflection, and also various linguistic elements. Errors analysis was applied to the results of the testing. Levels of errors in inflection, tense and linguistic elements were shown to be significantly high for all noun, verb and adjective inflections. Findings suggest that students do not gain linguistic competence in their use of English language inflection, because of interlanguage interference. Implications for curriculum reform and treatment of errors in the classroom are discussed.

Keywords: interlanguage, error analysis, inflection, second language acquisition, Thai students

Procedia PDF Downloads 467
1840 Design and Test a Robust Bearing-Only Target Motion Analysis Algorithm Based on Modified Gain Extended Kalman Filter

Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy

Abstract:

Passive sonar is a method for detecting acoustic signals in the ocean. It detects the acoustic signals emanating from external sources. With passive sonar, we can determine the bearing of the target only, no information about the range of the target. Target Motion Analysis (TMA) is a process to estimate the position and speed of a target using passive sonar information. Since bearing is the only available information, the TMA technique called Bearing-only TMA. Many TMA techniques have been developed. However, until now, there is not a very effective method that could be used to always track an unknown target and extract its moving trace. In this work, a design of effective Bearing-only TMA Algorithm is done. The measured bearing angles are very noisy. Moreover, for multi-beam sonar, the measurements is quantized due to the sonar beam width. To deal with this, modified gain extended Kalman filter algorithm is used. The algorithm is fine-tuned, and many modules are added to improve the performance. A special validation gate module is used to insure stability of the algorithm. Many indicators of the performance and confidence level measurement are designed and tested. A new method to detect if the target is maneuvering is proposed. Moreover, a reactive optimal observer maneuver based on bearing measurements is proposed, which insure converging to the right solution all of the times. To test the performance of the proposed TMA algorithm a simulation is done with a MATLAB program. The simulator program tries to model a discrete scenario for an observer and a target. The simulator takes into consideration all the practical aspects of the problem such as a smooth transition in the speed, a circular turn of the ship, noisy measurements, and a quantized bearing measurement come for multi-beam sonar. The tests are done for a lot of given test scenarios. For all the tests, full tracking is achieved within 10 minutes with very little error. The range estimation error was less than 5%, speed error less than 5% and heading error less than 2 degree. For the online performance estimator, it is mostly aligned with the real performance. The range estimation confidence level gives a value equal to 90% when the range error less than 10%. The experiments show that the proposed TMA algorithm is very robust and has low estimation error. However, the converging time of the algorithm is needed to be improved.

Keywords: target motion analysis, Kalman filter, passive sonar, bearing-only tracking

Procedia PDF Downloads 402
1839 Numerical Analysis of a Reaction Diffusion System of Lambda-Omega Type

Authors: Hassan J. Al Salman, Ahmed A. Al Ghafli

Abstract:

In this study, we consider a nonlinear in time finite element approximation of a reaction diffusion system of lambda-omega type. We use a fixed-point theorem to prove existence of the approximations at each time level. Then, we derive some essential stability estimates and discuss the uniqueness of the approximations. In addition, we employ Nochetto mathematical framework to prove an optimal error bound in time for d= 1, 2 and 3 space dimensions. Finally, we present some numerical experiments to verify the obtained theoretical results.

Keywords: reaction diffusion system, finite element approximation, stability estimates, error bound

Procedia PDF Downloads 430
1838 Comparison of the Distillation Curve Obtained Experimentally with the Curve Extrapolated by a Commercial Simulator

Authors: Lívia B. Meirelles, Erika C. A. N. Chrisman, Flávia B. de Andrade, Lilian C. M. de Oliveira

Abstract:

True Boiling Point distillation (TBP) is one of the most common experimental techniques for the determination of petroleum properties. This curve provides information about the performance of petroleum in terms of its cuts. The experiment is performed in a few days. Techniques are used to determine the properties faster with a software that calculates the distillation curve when a little information about crude oil is known. In order to evaluate the accuracy of distillation curve prediction, eight points of the TBP curve and specific gravity curve (348 K and 523 K) were inserted into the HYSYS Oil Manager, and the extended curve was evaluated up to 748 K. The methods were able to predict the curve with the accuracy of 0.6%-9.2% error (Software X ASTM), 0.2%-5.1% error (Software X Spaltrohr).

Keywords: distillation curve, petroleum distillation, simulation, true boiling point curve

Procedia PDF Downloads 442
1837 Mathematical and Numerical Analysis of a Reaction Diffusion System of Lambda-Omega Type

Authors: Hassan Al Salman, Ahmed Al Ghafli

Abstract:

In this study we consider a nonlinear in time finite element approximation of a reaction diffusion system of lambda-omega type. We use a fixed point theorem to prove existence of the approximations. Then, we derive some essential stability estimates and discuss the uniqueness of the approximations. Also, we prove an optimal error bound in time for d=1, 2 and 3 space dimensions. Finally, we present some numerical experiments to verify the theoretical results.

Keywords: reaction diffusion system, finite element approximation, fixed point theorem, an optimal error bound

Procedia PDF Downloads 534
1836 Improvement of Parallel Compressor Model in Dealing Outlet Unequal Pressure Distribution

Authors: Kewei Xu, Jens Friedrich, Kevin Dwinger, Wei Fan, Xijin Zhang

Abstract:

Parallel Compressor Model (PCM) is a simplified approach to predict compressor performance with inlet distortions. In PCM calculation, it is assumed that the sub-compressors’ outlet static pressure is uniform and therefore simplifies PCM calculation procedure. However, if the compressor’s outlet duct is not long and straight, such assumption frequently induces error ranging from 10% to 15%. This paper provides a revised calculation method of PCM that can correct the error. The revised method employs energy equation, momentum equation and continuity equation to acquire needed parameters and replace the equal static pressure assumption. Based on the revised method, PCM is applied on two compression system with different blades types. The predictions of their performance in non-uniform inlet conditions are yielded through the revised calculation method and are employed to evaluate the method’s efficiency. Validating the results by experimental data, it is found that although little deviation occurs, calculated result agrees well with experiment data whose error ranges from 0.1% to 3%. Therefore, this proves the revised calculation method of PCM possesses great advantages in predicting the performance of the distorted compressor with limited exhaust duct.

Keywords: parallel compressor model (pcm), revised calculation method, inlet distortion, outlet unequal pressure distribution

Procedia PDF Downloads 331
1835 Aggregate Supply Response of Some Livestock Commodities in Algeria: Cointegration- Vector Error Correction Model Approach

Authors: Amine M. Benmehaia, Amine Oulmane

Abstract:

The supply response of agricultural commodities to changes in price incentives is an important issue for the success of any policy reform in the agricultural sector. This study aims to quantify the responsiveness of producers of some livestock commodities to price incentives in Algerian context. Time series analysis is used on annual data for a period of 52 years (1966-2018). Both co-integration and vector error correction model (VECM) are used through the Nerlove model of partial adjustment. The study attempts to determine the long-run and short-run relationships along with the magnitudes of disequilibria in the selected commodities. Results show that the short-run price elasticities are low in cow and sheep meat sectors (8.7 and 8% respectively), while their respective long-run elasticities are 16.5 and 10.5, whereas eggs and milk have very high short-run price elasticities (82 and 90% respectively) with long-run elasticities of 40 and 46 respectively. The error correction coefficient, reflecting the speed of adjustment towards the long-run equilibrium, is statistically significant and have the expected negative sign. Its estimates are 12.7 for cow meat, 33.5 for sheep meat, 46.7 for eggs and 8.4 for milk. It seems that cow meat and milk producers have a weak feedback of about 12.7% and 8.4% respectively of the previous year's disequilibrium from the long-run price elasticity, whereas sheep meat and eggs producers adjust to correct long run disequilibrium with a high speed of adjustment (33.5% and 46.7 % respectively). The implication of this is that much more in-depth research is needed to identify those factors that affect agricultural supply and to describe the effect of factors that shift supply in response to price incentives. This could provide valuable information for government in the use of appropriate policy measures.

Keywords: Algeria, cointegration, livestock, supply response, vector error correction model

Procedia PDF Downloads 141
1834 Continuous Differential Evolution Based Parameter Estimation Framework for Signal Models

Authors: Ammara Mehmood, Aneela Zameer, Muhammad Asif Zahoor Raja, Muhammad Faisal Fateh

Abstract:

In this work, the strength of bio-inspired computational intelligence based technique is exploited for parameter estimation for the periodic signals using Continuous Differential Evolution (CDE) by defining an error function in the mean square sense. Multidimensional and nonlinear nature of the problem emerging in sinusoidal signal models along with noise makes it a challenging optimization task, which is dealt with robustness and effectiveness of CDE to ensure convergence and avoid trapping in local minima. In the proposed scheme of Continuous Differential Evolution based Signal Parameter Estimation (CDESPE), unknown adjustable weights of the signal system identification model are optimized utilizing CDE algorithm. The performance of CDESPE model is validated through statistics based various performance indices on a sufficiently large number of runs in terms of estimation error, mean squared error and Thiel’s inequality coefficient. Efficacy of CDESPE is examined by comparison with the actual parameters of the system, Genetic Algorithm based outcomes and from various deterministic approaches at different signal-to-noise ratio (SNR) levels.

Keywords: parameter estimation, bio-inspired computing, continuous differential evolution (CDE), periodic signals

Procedia PDF Downloads 302
1833 Cellular Traffic Prediction through Multi-Layer Hybrid Network

Authors: Supriya H. S., Chandrakala B. M.

Abstract:

Deep learning based models have been recently successful adoption for network traffic prediction. However, training a deep learning model for various prediction tasks is considered one of the critical tasks due to various reasons. This research work develops Multi-Layer Hybrid Network (MLHN) for network traffic prediction and analysis; MLHN comprises the three distinctive networks for handling the different inputs for custom feature extraction. Furthermore, an optimized and efficient parameter-tuning algorithm is introduced to enhance parameter learning. MLHN is evaluated considering the “Big Data Challenge” dataset considering the Mean Absolute Error, Root Mean Square Error and R^2as metrics; furthermore, MLHN efficiency is proved through comparison with a state-of-art approach.

Keywords: MLHN, network traffic prediction

Procedia PDF Downloads 89
1832 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model

Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David

Abstract:

The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an artificial neural network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study includes granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R²), Root mean square error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.

Keywords: national development, granite, profitability assessment, ANN models

Procedia PDF Downloads 101
1831 Improved Performance Scheme for Joint Transmission in Downlink Coordinated Multi-Point Transmission

Authors: Young-Su Ryu, Su-Hyun Jung, Myoung-Jin Kim, Hyoung-Kyu Song

Abstract:

In this paper, improved performance scheme for joint transmission is proposed in downlink (DL) coordinated multi-point(CoMP) in case of constraint transmission power. This scheme is that serving transmission point (TP) request a joint transmission to inter-TP and selects one pre-coding technique according to channel state information(CSI) from user equipment(UE). The simulation results show that the bit error rate(BER) and throughput performances of the proposed scheme provide high spectral efficiency and reliable data at the cell edge.

Keywords: CoMP, joint transmission, minimum mean square error, zero-forcing, zero-forcing dirty paper coding

Procedia PDF Downloads 553
1830 Identification of Architectural Design Error Risk Factors in Construction Projects Using IDEF0 Technique

Authors: Sahar Tabarroki, Ahad Nazari

Abstract:

The design process is one of the most key project processes in the construction industry. Although architects have the responsibility to produce complete, accurate, and coordinated documents, architectural design is accompanied by many errors. A design error occurs when the constraints and requirements of the design are not satisfied. Errors are potentially costly and time-consuming to correct if not caught early during the design phase, and they become expensive in either construction documents or in the construction phase. The aim of this research is to identify the risk factors of architectural design errors, so identification of risks is necessary. First, a literature review in the design process was conducted and then a questionnaire was designed to identify the risks and risk factors. The questions in the form of the questionnaire were based on the “similar service description of study and supervision of architectural works” published by “Vice Presidency of Strategic Planning & Supervision of I.R. Iran” as the base of architects’ tasks. Second, the top 10 risks of architectural activities were identified. To determine the positions of possible causes of risks with respect to architectural activities, these activities were located in a design process modeled by the IDEF0 technique. The research was carried out by choosing a case study, checking the design drawings, interviewing its architect and client, and providing a checklist in order to identify the concrete examples of architectural design errors. The results revealed that activities such as “defining the current and future requirements of the project”, “studies and space planning,” and “time and cost estimation of suggested solution” has a higher error risk than others. Moreover, the most important causes include “unclear goals of a client”, “time force by a client”, and “lack of knowledge of architects about the requirements of end-users”. For error detecting in the case study, lack of criteria, standards and design criteria, and lack of coordination among them, was a barrier, anyway, “lack of coordination between architectural design and electrical and mechanical facility”, “violation of the standard dimensions and sizes in space designing”, “design omissions” were identified as the most important design errors.

Keywords: architectural design, design error, risk management, risk factor

Procedia PDF Downloads 130
1829 Feature Location Restoration for Under-Sampled Photoplethysmogram Using Spline Interpolation

Authors: Hangsik Shin

Abstract:

The purpose of this research is to restore the feature location of under-sampled photoplethysmogram using spline interpolation and to investigate feasibility for feature shape restoration. We obtained 10 kHz-sampled photoplethysmogram and decimated it to generate under-sampled dataset. Decimated dataset has 5 kHz, 2.5 k Hz, 1 kHz, 500 Hz, 250 Hz, 25 Hz and 10 Hz sampling frequency. To investigate the restoration performance, we interpolated under-sampled signals with 10 kHz, then compared feature locations with feature locations of 10 kHz sampled photoplethysmogram. Features were upper and lower peak of photplethysmography waveform. Result showed that time differences were dramatically decreased by interpolation. Location error was lesser than 1 ms in both feature types. In 10 Hz sampled cases, location error was also deceased a lot, however, they were still over 10 ms.

Keywords: peak detection, photoplethysmography, sampling, signal reconstruction

Procedia PDF Downloads 368
1828 Maximum Initial Input Allowed to Iterative Learning Control Set-up Using Singular Values

Authors: Naser Alajmi, Ali Alobaidly, Mubarak Alhajri, Salem Salamah, Muhammad Alsubaie

Abstract:

Iterative Learning Control (ILC) known to be a controlling tool to overcome periodic disturbances for repetitive systems. This technique is required to let the error signal tends to zero as the number of operation increases. The learning process that lies within this context is strongly dependent on the initial input which if selected properly tends to let the learning process be more effective compared to the case where a system starts from blind. ILC uses previous recorded execution data to update the following execution/trial input such that a reference trajectory is followed to a high accuracy. Error convergence in ILC is generally highly dependent on the input applied to a plant for trial $1$, thus a good choice of initial starting input signal would make learning faster and as a consequence the error tends to zero faster as well. In the work presented within, an upper limit based on the Singular Values Principle (SV) is derived for the initial input signal applied at trial $1$ such that the system follow the reference in less number of trials without responding aggressively or exceeding the working envelope where a system is required to move within in a robot arm, for example. Simulation results presented illustrate the theory introduced within this paper.

Keywords: initial input, iterative learning control, maximum input, singular values

Procedia PDF Downloads 241
1827 The Non-Existence of Perfect 2-Error Correcting Lee Codes of Word Length 7 over Z

Authors: Catarina Cruz, Ana Breda

Abstract:

Tiling problems have been capturing the attention of many mathematicians due to their real-life applications. In this study, we deal with tilings of Zⁿ by Lee spheres, where n is a positive integer number, being these tilings related with error correcting codes on the transmission of information over a noisy channel. We focus our attention on the question ‘for what values of n and r does the n-dimensional Lee sphere of radius r tile Zⁿ?’. It seems that the n-dimensional Lee sphere of radius r does not tile Zⁿ for n ≥ 3 and r ≥ 2. Here, we prove that is not possible to tile Z⁷ with Lee spheres of radius 2 presenting a proof based on a combinatorial method and faithful to the geometric idea of the problem. The non-existence of such tilings has been studied by several authors being considered the most difficult cases those in which the radius of the Lee spheres is equal to 2. The relation between these tilings and error correcting codes is established considering the center of a Lee sphere as a codeword and the other elements of the sphere as words which are decoded by the central codeword. When the Lee spheres of radius r centered at elements of a set M ⊂ Zⁿ tile Zⁿ, M is a perfect r-error correcting Lee code of word length n over Z, denoted by PL(n, r). Our strategy to prove the non-existence of PL(7, 2) codes are based on the assumption of the existence of such code M. Without loss of generality, we suppose that O ∈ M, where O = (0, ..., 0). In this sense and taking into account that we are dealing with Lee spheres of radius 2, O covers all words which are distant two or fewer units from it. By the definition of PL(7, 2) code, each word which is distant three units from O must be covered by a unique codeword of M. These words have to be covered by codewords which dist five units from O. We prove the non-existence of PL(7, 2) codes showing that it is not possible to cover all the referred words without superposition of Lee spheres whose centers are distant five units from O, contradicting the definition of PL(7, 2) code. We achieve this contradiction by combining the cardinality of particular subsets of codewords which are distant five units from O. There exists an extensive literature on codes in the Lee metric. Here, we present a new approach to prove the non-existence of PL(7, 2) codes.

Keywords: Golomb-Welch conjecture, Lee metric, perfect Lee codes, tilings

Procedia PDF Downloads 160
1826 Assessment of Time-variant Work Stress for Human Error Prevention

Authors: Hyeon-Kyo Lim, Tong-Il Jang, Yong-Hee Lee

Abstract:

For an operator in a nuclear power plant, human error is one of the most dreaded factors that may result in unexpected accidents. The possibility of human errors may be low, but the risk of them would be unimaginably enormous. Thus, for accident prevention, it is quite indispensable to analyze the influence of any factors which may raise the possibility of human errors. During the past decades, not a few research results showed that performance of human operators may vary over time due to lots of factors. Among them, stress is known to be an indirect factor that may cause human errors and result in mental illness. Until now, not a few assessment tools have been developed to assess stress level of human workers. However, it still is questionable to utilize them for human performance anticipation which is related with human error possibility, because they were mainly developed from the viewpoint of mental health rather than industrial safety. Stress level of a person may go up or down with work time. In that sense, if they would be applicable in the safety aspect, they should be able to assess the variation resulted from work time at least. Therefore, this study aimed to compare their applicability for safety purpose. More than 10 kinds of work stress tools were analyzed with reference to assessment items, assessment and analysis methods, and follow-up measures which are known to close related factors with work stress. The results showed that most tools mainly focused their weights on some common organizational factors such as demands, supports, and relationships, in sequence. Their weights were broadly similar. However, they failed to recommend practical solutions. Instead, they merely advised to set up overall counterplans in PDCA cycle or risk management activities which would be far from practical human error prevention. Thus, it was concluded that application of stress assessment tools mainly developed for mental health seemed to be impractical for safety purpose with respect to human performance anticipation, and that development of a new assessment tools would be inevitable if anyone wants to assess stress level in the aspect of human performance variation and accident prevention. As a consequence, as practical counterplans, this study proposed a new scheme for assessment of work stress level of a human operator that may vary over work time which is closely related with the possibility of human errors.

Keywords: human error, human performance, work stress, assessment tool, time-variant, accident prevention

Procedia PDF Downloads 673
1825 Banking Sector Development and Economic Growth: Evidence from the State of Qatar

Authors: Fekri Shawtari

Abstract:

The banking sector plays a very crucial role in the economic development of the country. As a financial intermediary, it has assigned a great role in the economic growth and stability. This paper aims to examine the empirically the relationship between banking industry and economic growth in state of Qatar. We adopt the VAR vector error correction model (VECM) along with Granger causality to address the issue over the long-run and short-run between the banking sector and economic growth. It is expected that the results will give policy directions to the policymakers to make strategies that are conducive toward boosting development to achieve the targeted economic growth in current situation.

Keywords: economic growth, banking sector, Qatar, vector error correction model, VECM

Procedia PDF Downloads 170
1824 Virtual Assessment of Measurement Error in the Fractional Flow Reserve

Authors: Keltoum Chahour, Mickael Binois

Abstract:

Due to a lack of standardization during the invasive fractional flow reserve (FFR) procedure, the index is subject to many sources of uncertainties. In this paper, we investigate -through simulation- the effect of the (FFR) device position and configuration on the obtained value of the (FFR) fraction. For this purpose, we use computational fluid dynamics (CFD) in a 3D domain corresponding to a diseased arterial portion. The (FFR) pressure captor is introduced inside it with a given length and coefficient of bending to capture the (FFR) value. To get over the computational limitations, basically, the time of the simulation is about 2h 15min for one (FFR) value; we generate a Gaussian Process (GP) model for (FFR) prediction. The (GP) model indicates good accuracy and demonstrates the effective error in the measurement created by the random configuration of the pressure captor.

Keywords: fractional flow reserve, Gaussian processes, computational fluid dynamics, drift

Procedia PDF Downloads 136