Search results for: detection efficiency determination
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11354

Search results for: detection efficiency determination

11174 Performance of Environmental Efficiency of Energy Consumption in OPEC Countries

Authors: Bahram Fathi, Mahdi Khodaparast Mashhadi, Masuod Homayounifar

Abstract:

Global awareness on energy security and climate change has created much interest in assessing energy efficiency performance. A number of previous studies have contributed to evaluate energy efficiency performance using different analytical techniques among which data envelopment analysis (DEA) has recently received increasing attention. Most of DEA-related energy efficiency studies do not consider undesirable outputs such as CO2 emissions in their modeling framework, which may lead to biased energy efficiency values. Within a joint production frame work of desirable and undesirable outputs, in this paper we construct energy efficiency performance index for measuring energy efficiency performance by using environmental DEA model with CO2 emissions. We finally apply the index proposed to assess the energy efficiency performance in OPEC over time.

Keywords: energy efficiency, environmental, OPEC, data envelopment analysis

Procedia PDF Downloads 386
11173 Efficiency and Factors Affecting Inefficiency in the Previous Enclaves of Northern Region of Bangladesh: An Analysis of SFA and DEA Approach

Authors: Md. Mazharul Anwar, Md. Samim Hossain Molla, Md. Akkas Ali, Mian Sayeed Hassan

Abstract:

After 68 years, the agreement between Bangladesh and India was ratified on 6 June 2015 and Bangladesh received 111 Indian enclaves. Millions of farm household lived in these previous enclaves, being detached from the mainland of the country, they were socially, economically and educationally deprived people in the world. This study was undertaken to compare of the Stochastic Frontier Analysis (SFA) and the constant returns to scale (CRS) and variable returns to scale (VRS) output-oriented DEA models, based on a sample of 300 farms from the three largest enclaves of Bangladesh in 2017. However, the aim of the study was not only to compare estimates of technical efficiency obtained from the two approaches, but also to examine the determinants of inefficiency. The results from both the approaches indicated that there is a potential for increasing farm production through efficiency improvement and that farmers' age, educational level, new technology dissemination and training on crop production technology have a significant effect on efficiency. The detection and measurement of technical inefficiency and its determinants can be used as a basis of policy recommendations.

Keywords: DEA approach, previous enclaves, SFA approach, technical inefficiency

Procedia PDF Downloads 127
11172 Fabrication of Poly(Ethylene Oxide)/Chitosan/Indocyanine Green Nanoprobe by Co-Axial Electrospinning Method for Early Detection

Authors: Zeynep R. Ege, Aydin Akan, Faik N. Oktar, Betul Karademir, Oguzhan Gunduz

Abstract:

Early detection of cancer could save human life and quality in insidious cases by advanced biomedical imaging techniques. Designing targeted detection system is necessary in order to protect of healthy cells. Electrospun nanofibers are efficient and targetable nanocarriers which have important properties such as nanometric diameter, mechanical properties, elasticity, porosity and surface area to volume ratio. In the present study, indocyanine green (ICG) organic dye was stabilized and encapsulated in polymer matrix which polyethylene oxide (PEO) and chitosan (CHI) multilayer nanofibers via co-axial electrospinning method at one step. The co-axial electrospun nanofibers were characterized as morphological (SEM), molecular (FT-IR), and entrapment efficiency of Indocyanine Green (ICG) (confocal imaging). Controlled release profile of PEO/CHI/ICG nanofiber was also evaluated up to 40 hours.

Keywords: chitosan, coaxial electrospinning, controlled releasing, drug delivery, indocyanine green, polyethylene oxide

Procedia PDF Downloads 169
11171 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost

Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku

Abstract:

Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.

Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost

Procedia PDF Downloads 109
11170 Fault Detection and Isolation in Attitude Control Subsystem of Spacecraft Formation Flying Using Extended Kalman Filters

Authors: S. Ghasemi, K. Khorasani

Abstract:

In this paper, the problem of fault detection and isolation in the attitude control subsystem of spacecraft formation flying is considered. In order to design the fault detection method, an extended Kalman filter is utilized which is a nonlinear stochastic state estimation method. Three fault detection architectures, namely, centralized, decentralized, and semi-decentralized are designed based on the extended Kalman filters. Moreover, the residual generation and threshold selection techniques are proposed for these architectures.

Keywords: component, formation flight of satellites, extended Kalman filter, fault detection and isolation, actuator fault

Procedia PDF Downloads 433
11169 Self-Determination Needs, Coping Strategies and Quality of Life Among Chronic Non-Specific Lower Back Pain Patients

Authors: Zubana Afzal, Afsheen Massod

Abstract:

This quantitative study was carried out in order to explore the role of coping strategies as an explanatory mechanism in the relationship between self-determination needs and quality of life. A cross-sectional survey research design was conducted using scales such as the Basic Psychological Needs Scale (Deci&Ryan, 2000) to measure self-determination-based needs, Pain Coping Strategies Questionnaire (Harland &Georgieff, 2003), and Quality of Life Brief (The WHOQOL Group, 1998), in translated form in addition to a demographic information sheet. The sample comprised 120 (Women=63, Men=57), taken from different hospitals in Lahore, Multan, and Gojra. Descriptive and Inferential analyses were executed through SPSS version 23.00. All self-determination needs were found in result to be significantly and positively correlated with diversion and cognitive pain coping strategies, physical, psychological, social, and environmental quality of life, and significantly negatively correlated with catastrophizing and reinterpreting pain coping strategies. Cognitive and diversion pain coping strategies were found to be significantly and positively associated with all physical, psychological, social, and environmental quality of life. The regression analyses revealed that the strongest predictors were autonomy, cognitive and diversion pain coping strategies in predicting quality of life. All coping strategies except reinterpreting played a mediating role between self-determination needs and quality of life. The findings can lead to a better understanding of the role of self-determination needs and pain coping strategies in determining the quality of life among chronic non-specific lower back pain patients.

Keywords: quality of life, chronic lower back pain, coping strategies, self determination needs

Procedia PDF Downloads 100
11168 Functional Variants Detection by RNAseq

Authors: Raffaele A. Calogero

Abstract:

RNAseq represents an attractive methodology for the detection of functional genomic variants. RNAseq results obtained from polyA+ RNA selection protocol (POLYA) and from exonic regions capturing protocol (ACCESS) indicate that ACCESS detects 10% more coding SNV/INDELs with respect to POLYA. ACCESS requires less reads for coding SNV detection with respect to POLYA. However, if the analysis aims at identifying SNV/INDELs also in the 5’ and 3’ UTRs, POLYA is definitively the preferred method. No particular advantage comes from ACCESS or POLYA in the detection of fusion transcripts.

Keywords: fusion transcripts, INDEL, RNA-seq, WES, SNV

Procedia PDF Downloads 285
11167 Towards Integrating Statistical Color Features for Human Skin Detection

Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani

Abstract:

Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.

Keywords: color space, neural network, random forest, skin detection, statistical feature

Procedia PDF Downloads 461
11166 An Earth Mover’s Distance Algorithm Based DDoS Detection Mechanism in SDN

Authors: Yang Zhou, Kangfeng Zheng, Wei Ni, Ren Ping Liu

Abstract:

Software-defined networking (SDN) provides a solution for scalable network framework with decoupled control and data plane. However, this architecture also induces a particular distributed denial-of-service (DDoS) attack that can affect or even overwhelm the SDN network. DDoS attack detection problem has to date been mostly researched as entropy comparison problem. However, this problem lacks the utilization of SDN, and the results are not accurate. In this paper, we propose a DDoS attack detection method, which interprets DDoS detection as a signature matching problem and is formulated as Earth Mover’s Distance (EMD) model. Considering the feasibility and accuracy, we further propose to define the cost function of EMD to be a generalized Kullback-Leibler divergence. Simulation results show that our proposed method can detect DDoS attacks by comparing EMD values with the ones computed in the case without attacks. Moreover, our method can significantly increase the true positive rate of detection.

Keywords: DDoS detection, EMD, relative entropy, SDN

Procedia PDF Downloads 337
11165 Maximizing the Efficiency of Knowledge Management Systems

Authors: Tori Reddy Dodla, Laura Ann Jones

Abstract:

The objective of this study was to propose strategies to improve the efficiency of Knowledge Management Systems (KMS). This study highlights best practices from various industries to create an overall summary of Knowledge Management (KM) and efficiency in organizational performance. Results indicated eleven best practices for maximizing the efficiency of organizational KMS that can be divided into four categories: Designing the KMS, Identifying Case Studies, Implementing the KMS, and Promoting adoption and usage. Our findings can be used as a foundation for scholars to conduct further research on KMS efficiency.

Keywords: artificial intelligence, knowledge management efficiency, knowledge management systems, organizational performance

Procedia PDF Downloads 112
11164 Subjective Evaluation of Mathematical Morphology Edge Detection on Computed Tomography (CT) Images

Authors: Emhimed Saffor

Abstract:

In this paper, the problem of edge detection in digital images is considered. Three methods of edge detection based on mathematical morphology algorithm were applied on two sets (Brain and Chest) CT images. 3x3 filter for first method, 5x5 filter for second method and 7x7 filter for third method under MATLAB programming environment. The results of the above-mentioned methods are subjectively evaluated. The results show these methods are more efficient and satiable for medical images, and they can be used for different other applications.

Keywords: CT images, Matlab, medical images, edge detection

Procedia PDF Downloads 334
11163 Determination of Unknown Radionuclides Using High Purity Germanium Detectors

Authors: O. G. Onuk, L. S. Taura, C. M. Eze, S. M. Ngaram

Abstract:

The decay chain of radioactive elements in the laboratory and the verification of natural radioactivity of the human body was investigated using the High Purity Germanium (HPGe) detector. Properties of the HPGe detectors were also investigated. The efficiency and energy resolution of HPGe detector used in the laboratory was found to be excellent. The detector was calibrated three times so as to cover a wider energy range. Also the Centroid C of the detector was found to have a linear relationship with the energies of the known gamma-rays. Using the three calibrations of the detector, the energy of an unknown radionuclide was found to follow the decay chain of thorium-232 (232Th) and it was also found that an average adult has about 2.5g Potasium-40 (40K) in the body.

Keywords: detector, efficiency, energy, radionuclides, resolution

Procedia PDF Downloads 250
11162 Algorithms for Fast Computation of Pan Matrix Profiles of Time Series Under Unnormalized Euclidean Distances

Authors: Jing Zhang, Daniel Nikovski

Abstract:

We propose an approximation algorithm called LINKUMP to compute the Pan Matrix Profile (PMP) under the unnormalized l∞ distance (useful for value-based similarity search) using double-ended queue and linear interpolation. The algorithm has comparable time/space complexities as the state-of-the-art algorithm for typical PMP computation under the normalized l₂ distance (useful for shape-based similarity search). We validate its efficiency and effectiveness through extensive numerical experiments and a real-world anomaly detection application.

Keywords: pan matrix profile, unnormalized euclidean distance, double-ended queue, discord discovery, anomaly detection

Procedia PDF Downloads 246
11161 Modified CUSUM Algorithm for Gradual Change Detection in a Time Series Data

Authors: Victoria Siriaki Jorry, I. S. Mbalawata, Hayong Shin

Abstract:

The main objective in a change detection problem is to develop algorithms for efficient detection of gradual and/or abrupt changes in the parameter distribution of a process or time series data. In this paper, we present a modified cumulative (MCUSUM) algorithm to detect the start and end of a time-varying linear drift in mean value of a time series data based on likelihood ratio test procedure. The design, implementation and performance of the proposed algorithm for a linear drift detection is evaluated and compared to the existing CUSUM algorithm using different performance measures. An approach to accurately approximate the threshold of the MCUSUM is also provided. Performance of the MCUSUM for gradual change-point detection is compared to that of standard cumulative sum (CUSUM) control chart designed for abrupt shift detection using Monte Carlo Simulations. In terms of the expected time for detection, the MCUSUM procedure is found to have a better performance than a standard CUSUM chart for detection of the gradual change in mean. The algorithm is then applied and tested to a randomly generated time series data with a gradual linear trend in mean to demonstrate its usefulness.

Keywords: average run length, CUSUM control chart, gradual change detection, likelihood ratio test

Procedia PDF Downloads 298
11160 Determination of Optimum Water Consumptive Using Deficit Irrigation Model for Barely: A Case Study in Arak, Iran

Authors: Mohsen Najarchi

Abstract:

This research was carried out in five fields (5-15 hectares) in Arak located in center of Iran, to determine optimum level of water consumed for Barely in four stages growth (vegetative, yield formation, flowering, and ripening). Actual evapotranspiration was calculated using measured water requirement in the fields. Five levels of water requirement equal to 50, 60, 70, 80, and 90 percents formed the treatments. To determine the optimum level of water requirement linear programming was used. The study showed 60 percent water requirement (40 percent deficit irrigation) has been the optimum level of irrigation for winter wheat in four stages of growth. Comparison between all of the treatments indicated above with normal condition (100% water requirement) shows increasing in water use efficiency. Although 40% deficit irrigation treatment lead to decrease of 38% in yield, net benefit was increasing in 11.37%. Furthermore, in comparison with normal condition, 70% of water requirement increased water use efficiency as 30%.

Keywords: optimum, deficit irrigation, water use efficiency, evapotranspiration

Procedia PDF Downloads 396
11159 Effect of Electromagnetic Fields on Protein Extraction from Shrimp By-Products for Electrospinning Process

Authors: Guido Trautmann-Sáez, Mario Pérez-Won, Vilbett Briones, María José Bugueño, Gipsy Tabilo-Munizaga, Luis Gonzáles-Cavieres

Abstract:

Shrimp by-products are a valuable source of protein. However, traditional protein extraction methods have limitations in terms of their efficiency. Protein extraction from shrimp (Pleuroncodes monodon) industrial by-products assisted with ohmic heating (OH), microwave (MW) and pulsed electric field (PEF). It was performed by chemical method (using NaOH and HCl 2M) assisted with OH, MW and PEF in a continuous flow system (5 ml/s). Protein determination, differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR). Results indicate a 19.25% (PEF) 3.65% (OH) and 28.19% (MW) improvement in protein extraction efficiency. The most efficient method was selected for the electrospinning process and obtaining fiber.

Keywords: electrospinning process, emerging technology, protein extraction, shrimp by-products

Procedia PDF Downloads 88
11158 Simultaneous Determination of p-Phenylenediamine, N-Acetyl-p-phenylenediamine and N,N-Diacetyl-p-phenylenediamine in Human Urine by LC-MS/MS

Authors: Khaled M. Mohamed

Abstract:

Background: P-Phenylenediamine (PPD) is used in the manufacture of hair dyes and skin decoration. In some developing countries, suicidal, homicidal and accidental cases by PPD were recorded. In this work, a sensitive LC-MS/MS method for determination of PPD and its metabolites N-acetyl-p-phenylenediamine (MAPPD) and N,N-diacetyl-p-phenylenediamine (DAPPD) in human urine has been developed and validated. Methods: PPD, MAPPD and DAPPD were extracted from urine by methylene chloride at alkaline pH. Acetanilide was used as internal standard (IS). The analytes and IS were separated on an Eclipse XDB- C18 column (150 X 4.6 mm, 5 µm) using a mobile phase of acetonitrile-1% formic acid in gradient elution. Detection was performed by LC-MS/MS using electrospray positive ionization under multiple reaction-monitoring mode. The transition ions m/z 109 → 92, m/z 151 → 92, m/z 193 → 92, and m/z 136 → 77 were selected for the quantification of PPD, MAPPD, DAPPD, and IS, respectively. Results: Calibration curves were linear in the range 10–2000 ng/mL for all analytes. The mean recoveries for PPD, MAPPD and DAPPD were 57.62, 74.19 and 50.99%, respectively. Intra-assay and inter-assay imprecisions were within 1.58–9.52% and 5.43–9.45% respectively for PPD, MAPPD and DAPPD. Inter-assay accuracies were within -7.43 and 7.36 for all compounds. PPD, MAPPD and DAPPD were stable in urine at –20 degrees for 24 hours. Conclusions: The method was successfully applied to the analysis of PPD, MAPPD and DAPPD in urine samples collected from suicidal cases.

Keywords: p-Phenylenediamine, metabolites, urine, LC-MS/MS, validation

Procedia PDF Downloads 355
11157 Design of Cartesian Robot for Electric Vehicle Wireless Charging Systems

Authors: Kaan Karaoglu, Raif Bayir

Abstract:

In this study, a cartesian robot is developed to improve the performance and efficiency of wireless charging of electric vehicles. The cartesian robot has three axes, each of which moves linearly. Magnetic positioning is used to align the cartesian robot transmitter charging pad. There are two different wireless charging methods, static and dynamic, for charging electric vehicles. The current state of charge information (SOC State of Charge) and location information are received wirelessly from the electric vehicle. Based on this information, the power to be transmitted is determined, and the transmitter and receiver charging pads are aligned for maximum efficiency. With this study, a fully automated cartesian robot structure will be used to charge electric vehicles with the highest possible efficiency. With the wireless communication established between the electric vehicle and the charging station, the charging status will be monitored in real-time. The cartesian robot developed in this study is a fully automatic system that can be easily used in static wireless charging systems with vehicle-machine communication.

Keywords: electric vehicle, wireless charging systems, energy efficiency, cartesian robot, location detection, trajectory planning

Procedia PDF Downloads 75
11156 A Novel Spectral Index for Automatic Shadow Detection in Urban Mapping Based on WorldView-2 Satellite Imagery

Authors: Kaveh Shahi, Helmi Z. M. Shafri, Ebrahim Taherzadeh

Abstract:

In remote sensing, shadow causes problems in many applications such as change detection and classification. It is caused by objects which are elevated, thus can directly affect the accuracy of information. For these reasons, it is very important to detect shadows particularly in urban high spatial resolution imagery which created a significant problem. This paper focuses on automatic shadow detection based on a new spectral index for multispectral imagery known as Shadow Detection Index (SDI). The new spectral index was tested on different areas of World-View 2 images and the results demonstrated that the new spectral index has a massive potential to extract shadows effectively and automatically.

Keywords: spectral index, shadow detection, remote sensing images, World-View 2

Procedia PDF Downloads 537
11155 Methods for Preparation of Soil Samples for Determination of Trace Elements

Authors: S. Krustev, V. Angelova, K. Ivanov, P. Zaprjanova

Abstract:

It is generally accepted that only about ten microelements are vitally important to all plants, and approximately ten more elements are proved to be significant for the development of some species. The main methods for their determination in soils are the atomic spectral techniques - AAS and ICP-OAS. Critical stage to obtain correct results for content of heavy metals and nutrients in the soil is the process of mineralization. A comparative study of the most widely spread methods for soil sample preparation for determination of some trace elements was carried out. Three most commonly used methods for sample preparation were used as follows: ISO11466, EPA Method 3051 and BDS ISO 14869-1. Their capabilities were assessed and their bounds of applicability in determining the levels of the most important microelements in agriculture were defined.

Keywords: analysis, copper, methods, zinc

Procedia PDF Downloads 255
11154 One Pot Synthesis of Cu–Ni–S/Ni Foam for the Simultaneous Removal and Detection of Norfloxacin

Authors: Xincheng Jiang, Yanyan An, Yaoyao Huang, Wei Ding, Manli Sun, Hong Li, Huaili Zheng

Abstract:

The residual antibiotics in the environment will pose a threat to the environment and human health. Thus, efficient removal and rapid detection of norfloxacin (NOR) in wastewater is very important. The main sources of NOR pollution are the agricultural, pharmaceutical industry and hospital wastewater. The total consumption of NOR in China can reach 5440 tons per year. It is found that neither animals nor humans can totally absorb and metabolize NOR, resulting in the excretion of NOR into the environment. Therefore, residual NOR has been detected in water bodies. The hazards of NOR in wastewater lie in three aspects: (1) the removal capacity of the wastewater treatment plant for NOR is limited (it is reported that the average removal efficiency of NOR in the wastewater treatment plant is only 68%); (2) NOR entering the environment will lead to the emergence of drug-resistant strains; (3) NOR is toxic to many aquatic species. At present, the removal and detection technologies of NOR are applied separately, which leads to a cumbersome operation process. The development of simultaneous adsorption-flocculation removal and FTIR detection of pollutants has three advantages: (1) Adsorption-flocculation technology promotes the detection technology (the enrichment effect on the material surface improves the detection ability); (2) The integration of adsorption-flocculation technology and detection technology reduces the material cost and makes the operation easier; (3) FTIR detection technology endows the water treatment agent with the ability of molecular recognition and semi-quantitative detection for pollutants. Thus, it is of great significance to develop a smart water treatment material with high removal capacity and detection ability for pollutants. This study explored the feasibility of combining NOR removal method with the semi-quantitative detection method. A magnetic Cu-Ni-S/Ni foam was synthesized by in-situ loading Cu-Ni-S nanostructures on the surface of Ni foam. The novelty of this material is the combination of adsorption-flocculation technology and semi-quantitative detection technology. Batch experiments showed that Cu-Ni-S/Ni foam has a high removal rate of NOR (96.92%), wide pH adaptability (pH=4.0-10.0) and strong ion interference resistance (0.1-100 mmol/L). According to the Langmuir fitting model, the removal capacity can reach 417.4 mg/g at 25 °C, which is much higher than that of other water treatment agents reported in most studies. Characterization analysis indicated that the main removal mechanisms are surface complexation, cation bridging, electrostatic attraction, precipitation and flocculation. Transmission FTIR detection experiments showed that NOR on Cu-Ni-S/Ni foam has easily recognizable FTIR fingerprints; the intensity of characteristic peaks roughly reflects the concentration information to some extent. This semi-quantitative detection method has a wide linear range (5-100 mg/L) and a low limit of detection (4.6 mg/L). These results show that Cu-Ni-S/Ni foam has excellent removal performance and semi-quantitative detection ability of NOR molecules. This paper provides a new idea for designing and preparing multi-functional water treatment materials to achieve simultaneous removal and semi-quantitative detection of organic pollutants in water.

Keywords: adsorption-flocculation, antibiotics detection, Cu-Ni-S/Ni foam, norfloxacin

Procedia PDF Downloads 76
11153 Poly Urea-Formaldehyde for Preconcentration and Determination of Cadmium Ion in Environmental Samples

Authors: Homayon Ahmad Panahi, Samira Tajik, Mohamad Hadi Dehghani, Mostafa Khezri, Elham Moniri

Abstract:

In this research, poly urea-formaldehyde was prepared. The poly urea-formaldehyde was characterized by fourier transform infra-red spectroscopy. Then the effects of various parameters on Cd (II) sorption such as pH, contact time were studied. The optimum pH value for sorption of Cd(II) was 5.5. The sorption capacity of poly urea-formaldehyde for Cd (II) were 76.3 mg g−1. A Cd (II) removal of 55% was obtained. The profile of Cd (II) uptake on this sorbent reflects good accessibility of the chelating sites in the poly urea-formaldehyde. The developed method was utilized for determination of Cd (II) in environmental water samples by flame atomic absorption spectrometry with satisfactory results.

Keywords: poly urea-formaldehyde, cadmium ion, environmental sample, determination

Procedia PDF Downloads 546
11152 Determination and Preconcentration of Chromium Ion in Environmental Samples by Clinoptilolite Zeolite

Authors: Elham Moniri, Homayon Ahmad Panahi, Mitra Hoseini

Abstract:

In this research, clinoptilolite zeolite was prepared. The zeolite was characterized by fourier transform infra-red spectroscopy. Then the effects of various parameters on Cr(III) sorption such as pH, contact time were studied. The optimum pH value for sorption of Cr(III) was 6 respectively. The sorption capacity of zeolite for Cr(III) were 7.9 mg g−1. A recovery of 89% was obtained for the metal ions with 0.5 M nitric acid as the eluting agent. The effects of interfering ions on Cr(III) sorption was also investigated. The profile of Cr(III) uptake on this sorbent reflects a good accessibility of the chelating sites in the clinoptilolite zeolite. The developed method was utilized for the determination of Cr(III) in environmental water samples by flame atomic absorption spectrometry with satisfactory results.

Keywords: clinoptilolite zeolite, chromium, environmental sample, determination

Procedia PDF Downloads 443
11151 A Tool to Measure Efficiency and Trust Towards eXplainable Artificial Intelligence in Conflict Detection Tasks

Authors: Raphael Tuor, Denis Lalanne

Abstract:

The ATM research community is missing suitable tools to design, test, and validate new UI prototypes. Important stakes underline the implementation of both DSS and XAI methods into current systems. ML-based DSS are gaining in relevance as ATFM becomes increasingly complex. However, these systems only prove useful if a human can understand them, and thus new XAI methods are needed. The human-machine dyad should work as a team and should understand each other. We present xSky, a configurable benchmark tool that allows us to compare different versions of an ATC interface in conflict detection tasks. Our main contributions to the ATC research community are (1) a conflict detection task simulator (xSky) that allows to test the applicability of visual prototypes on scenarios of varying difficulty and outputting relevant operational metrics (2) a theoretical approach to the explanations of AI-driven trajectory predictions. xSky addresses several issues that were identified within available research tools. Researchers can configure the dimensions affecting scenario difficulty with a simple CSV file. Both the content and appearance of the XAI elements can be customized in a few steps. As a proof-of-concept, we implemented an XAI prototype inspired by the maritime field.

Keywords: air traffic control, air traffic simulation, conflict detection, explainable artificial intelligence, explainability, human-automation collaboration, human factors, information visualization, interpretability, trajectory prediction

Procedia PDF Downloads 159
11150 An Architectural Model for APT Detection

Authors: Nam-Uk Kim, Sung-Hwan Kim, Tai-Myoung Chung

Abstract:

Typical security management systems are not suitable for detecting APT attack, because they cannot draw the big picture from trivial events of security solutions. Although SIEM solutions have security analysis engine for that, their security analysis mechanisms need to be verified in academic field. Although this paper proposes merely an architectural model for APT detection, we will keep studying on correlation analysis mechanism in the future.

Keywords: advanced persistent threat, anomaly detection, data mining

Procedia PDF Downloads 527
11149 A Super-Efficiency Model for Evaluating Efficiency in the Presence of Time Lag Effect

Authors: Yanshuang Zhang, Byungho Jeong

Abstract:

In many cases, there is a time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in evaluating the performance of organizations. Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. Multi-periods input(MpI) and Multi-periods output(MpO) models are integrated models to calculate simple efficiency considering time lag effect. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. That is, efficient DMUs can’t be discriminated because their efficiency scores are same. Thus, this paper suggests a super-efficiency model for efficiency evaluation under the consideration of time lag effect based on the MpO model. A case example using a long-term research project is given to compare the suggested model with the MpO model.

Keywords: DEA, super-efficiency, time lag, multi-periods input

Procedia PDF Downloads 470
11148 Lane Detection Using Labeling Based RANSAC Algorithm

Authors: Yeongyu Choi, Ju H. Park, Ho-Youl Jung

Abstract:

In this paper, we propose labeling based RANSAC algorithm for lane detection. Advanced driver assistance systems (ADAS) have been widely researched to avoid unexpected accidents. Lane detection is a necessary system to assist keeping lane and lane departure prevention. The proposed vision based lane detection method applies Canny edge detection, inverse perspective mapping (IPM), K-means algorithm, mathematical morphology operations and 8 connected-component labeling. Next, random samples are selected from each labeling region for RANSAC. The sampling method selects the points of lane with a high probability. Finally, lane parameters of straight line or curve equations are estimated. Through the simulations tested on video recorded at daytime and nighttime, we show that the proposed method has better performance than the existing RANSAC algorithm in various environments.

Keywords: Canny edge detection, k-means algorithm, RANSAC, inverse perspective mapping

Procedia PDF Downloads 242
11147 Ionophore-Based Materials for Selective Optical Sensing of Iron(III)

Authors: Natalia Lukasik, Ewa Wagner-Wysiecka

Abstract:

Development of selective, fast-responsive, and economical sensors for diverse ions detection and determination is one of the most extensively studied areas due to its importance in the field of clinical, environmental and industrial analysis. Among chemical sensors, vast popularity has gained ionophore-based optical sensors, where the generated analytical signal is a consequence of the molecular recognition of ion by the ionophore. Change of color occurring during host-guest interactions allows for quantitative analysis and for 'naked-eye' detection without the need of using sophisticated equipment. An example of application of such sensors is colorimetric detection of iron(III) cations. Iron as one of the most significant trace elements plays roles in many biochemical processes. For these reasons, the development of reliable, fast, and selective methods of iron ions determination is highly demanded. Taking all mentioned above into account a chromogenic amide derivative of 3,4-dihydroxybenzoic acid was synthesized, and its ability to iron(III) recognition was tested. To the best of authors knowledge (according to chemical abstracts) the obtained ligand has not been described in the literature so far. The catechol moiety was introduced to the ligand structure in order to mimic the action of naturally occurring siderophores-iron(III)-selective receptors. The ligand–ion interactions were studied using spectroscopic methods: UV-Vis spectrophotometry and infrared spectroscopy. The spectrophotometric measurements revealed that the amide exhibits affinity to iron(III) in dimethyl sulfoxide and fully aqueous solution, what is manifested by the change of color from yellow to green. Incorporation of the tested amide into a polymeric matrix (cellulose triacetate) ensured effective recognition of iron(III) at pH 3 with the detection limit 1.58×10⁻⁵ M. For the obtained sensor material parameters like linear response range, response time, selectivity, and possibility of regeneration were determined. In order to evaluate the effect of the size of the sensing material on iron(III) detection nanospheres (in the form of nanoemulsion) containing the tested amide were also prepared. According to DLS (dynamic light scattering) measurements, the size of the nanospheres is 308.02 ± 0.67 nm. Work parameters of the nanospheres were determined and compared with cellulose triacetate-based material. Additionally, for fast, qualitative experiments the test strips were prepared by adsorption of the amide solution on a glass microfiber material. Visual limit of detection of iron(III) at pH 3 by the test strips was estimated at the level 10⁻⁴ M. In conclusion, reported here amide derived from 3,4- dihydroxybenzoic acid proved to be an effective candidate for optical sensing of iron(III) in fully aqueous solutions. N. L. kindly acknowledges financial support from National Science Centre Poland the grant no. 2017/01/X/ST4/01680. Authors thank for financial support from Gdansk University of Technology grant no. 032406.

Keywords: ion-selective optode, iron(III) recognition, nanospheres, optical sensor

Procedia PDF Downloads 153
11146 Efficient Ground Targets Detection Using Compressive Sensing in Ground-Based Synthetic-Aperture Radar (SAR) Images

Authors: Gherbi Nabil

Abstract:

Detection of ground targets in SAR radar images is an important area for radar information processing. In the literature, various algorithms have been discussed in this context. However, most of them are of low robustness and accuracy. To this end, we discuss target detection in SAR images based on compressive sensing. Firstly, traditional SAR image target detection algorithms are discussed, and their limitations are highlighted. Secondly, a compressive sensing method is proposed based on the sparsity of SAR images. Next, the detection problem is solved using Multiple Measurements Vector configuration. Furthermore, a robust Alternating Direction Method of Multipliers (ADMM) is developed to solve the optimization problem. Finally, the detection results obtained using raw complex data are presented. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.

Keywords: compressive sensing, raw complex data, synthetic aperture radar, ADMM

Procedia PDF Downloads 18
11145 Stereo Camera Based Speed-Hump Detection Process for Real Time Driving Assistance System in the Daytime

Authors: Hyun-Koo Kim, Yong-Hun Kim, Soo-Young Suk, Ju H. Park, Ho-Youl Jung

Abstract:

This paper presents an effective speed hump detection process at the day-time. we focus only on round types of speed humps in the day-time dynamic road environment. The proposed speed hump detection scheme consists mainly of two process as stereo matching and speed hump detection process. Our proposed process focuses to speed hump detection process. Speed hump detection process consist of noise reduction step, data fusion step, and speed hemp detection step. The proposed system is tested on Intel Core CPU with 2.80 GHz and 4 GB RAM tested in the urban road environments. The frame rate of test videos is 30 frames per second and the size of each frame of grabbed image sequences is 1280 pixels by 670 pixels. Using object-marked sequences acquired with an on-vehicle camera, we recorded speed humps and non-speed humps samples. Result of the tests, our proposed method can be applied in real-time systems by computation time is 13 ms. For instance; our proposed method reaches 96.1 %.

Keywords: data fusion, round types speed hump, speed hump detection, surface filter

Procedia PDF Downloads 509