Search results for: depth images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5565

Search results for: depth images

5385 Image Processing and Calculation of NGRDI Embedded System in Raspberry

Authors: Efren Lopez Jimenez, Maria Isabel Cajero, J. Irving-Vasqueza

Abstract:

The use and processing of digital images have opened up new opportunities for the resolution of problems of various kinds, such as the calculation of different vegetation indexes, among other things, differentiating healthy vegetation from humid vegetation. However, obtaining images from which these indexes are calculated is still the exclusive subject of active research. In the present work, we propose to obtain these images using a low cost embedded system (Raspberry Pi) and its processing, using a set of libraries of open code called OpenCV, in order to obtain the Normalized Red-Green Difference Index (NGRDI).

Keywords: Raspberry Pi, vegetation index, Normalized Red-Green Difference Index (NGRDI), OpenCV

Procedia PDF Downloads 292
5384 Abdominal Organ Segmentation in CT Images Based On Watershed Transform and Mosaic Image

Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid

Abstract:

Accurate Liver, spleen and kidneys segmentation in abdominal CT images is one of the most important steps for computer aided abdominal organs pathology diagnosis. In this paper, we have proposed a new semi-automatic algorithm for Liver, spleen and kidneys area extraction in abdominal CT images. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. The algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.

Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, multi-abdominal organ segmentation, mosaic image, the watershed algorithm

Procedia PDF Downloads 499
5383 Correlation between Initial Absorption of the Cover Concrete, the Compressive Strength and Carbonation Depth

Authors: Bouzidi Yassine

Abstract:

This experimental work was aimed to characterize the porosity of the concrete cover zone using the capillary absorption test, and establish the links between open porosity characterized by the initial absorption, the compressive strength and carbonation depth. Eight formulations of workability similar made from ordinary Portland cement (CEM I 42.5) and a compound cement (CEM II/B 42.5) four of each type are studied. The results allow us to highlight the effect of the cement type. Indeed, concretes-based cement CEM II/B 42.5 carbonatent approximately faster than concretes-based cement CEM I 42.5. This effect is attributed in part to the lower content of portlandite Ca(OH)2 of concretes-based cement CEM II/B 42.5, but also the impact of the cement type on the open porosity of the cover concrete. The open porosity of concretes-based cement CEM I 42.5 is lower than that of concretes-based cement CEM II/B 42.5. The carbonation depth is a decreasing function of the compressive strength at 28 days and increases with the initial absorption. Through the results obtained, correlations between the quantity of water absorbed in 1 h, the carbonation depth at 180 days and the compressive strength at 28 days were performed in an acceptable manner.

Keywords: initial absorption, cover concrete, compressive strength, carbonation depth

Procedia PDF Downloads 336
5382 Digital Art Fabric Prints: Procedure, Process and Progress

Authors: Tripti Singh

Abstract:

Digital tools are merging boundaries of different mediums as endeavoured artists exploring new areas. Digital fabric printing has motivated artists to create prints by combining images acquired by photograph, scanned images, computer graphics and microscopic imaginary etc to name few, with traditional media such as hand drawing, weaving, hand printed patterns, printing making techniques and so on. It opened whole new world of possibilities for artists to search, research and combine old and contemporary mediums for their unique art prints. As artistic medium digital art fabrics have aesthetic values which have impact and influence on not only on a personality but also interiors of a living or work space. In this way it can be worn, as fashion statement and also an interior decoration. Digital art fabric prints gives opportunity to print almost everything on any fabric with long lasting prints quality. Single edition and limited editions are possible for maintaining scarcity and uniqueness of an art form. These fabric prints fulfill today’s need, as they are eco-friendly in nature and they produce less wastage compared to traditional fabric printing techniques. These prints can be used to make unique and customized curtains, quilts, clothes, bags, furniture, dolls, pillows, framed artwork, costumes, banners and much, much more. This paper will explore the procedure, process, and progress techniques of digital art fabric printing in depth with suitable pictorial examples.

Keywords: digital art, fabric prints, digital fabric prints, new media

Procedia PDF Downloads 516
5381 A Similar Image Retrieval System for Auroral All-Sky Images Based on Local Features and Color Filtering

Authors: Takanori Tanaka, Daisuke Kitao, Daisuke Ikeda

Abstract:

The aurora is an attractive phenomenon but it is difficult to understand the whole mechanism of it. An approach of data-intensive science might be an effective approach to elucidate such a difficult phenomenon. To do that we need labeled data, which shows when and what types of auroras, have appeared. In this paper, we propose an image retrieval system for auroral all-sky images, some of which include discrete and diffuse aurora, and the other do not any aurora. The proposed system retrieves images which are similar to the query image by using a popular image recognition method. Using 300 all-sky images obtained at Tromso Norway, we evaluate two methods of image recognition methods with or without our original color filtering method. The best performance is achieved when SIFT with the color filtering is used and its accuracy is 81.7% for discrete auroras and 86.7% for diffuse auroras.

Keywords: data-intensive science, image classification, content-based image retrieval, aurora

Procedia PDF Downloads 450
5380 3D Printed Multi-Modal Phantom Using Computed Tomography and 3D X-Ray Images

Authors: Sung-Suk Oh, Bong-Keun Kang, Sang-Wook Park, Hui-Jin Joo, Jong-Ryul Choi, Seong-Jun Lee, Jeong-Woo Sohn

Abstract:

The imaging phantom is utilized for the verification, evaluation and tuning of the medical imaging device and system. Although it could be costly, 3D printing is an ideal technique for a rapid, customized, multi-modal phantom making. In this article, we propose the multi-modal phantom using 3D printing. First of all, the Dicom images for were measured by CT (Computed Tomography) and 3D X-ray systems (PET/CT and Angio X-ray system of Siemens) and then were analyzed. Finally, the 3D modeling was processed using Dicom images. The 3D printed phantom was scanned by PET/CT and MRI systems and then evaluated.

Keywords: imaging phantom, MRI (Magnetic Resonance Imaging), PET / CT (Positron Emission Tomography / Computed Tomography), 3D printing

Procedia PDF Downloads 580
5379 Multiple Images Stitching Based on Gradually Changing Matrix

Authors: Shangdong Zhu, Yunzhou Zhang, Jie Zhang, Hang Hu, Yazhou Zhang

Abstract:

Image stitching is a very important branch in the field of computer vision, especially for panoramic map. In order to eliminate shape distortion, a novel stitching method is proposed based on gradually changing matrix when images are horizontal. For images captured horizontally, this paper assumes that there is only translational operation in image stitching. By analyzing each parameter of the homography matrix, the global homography matrix is gradually transferred to translation matrix so as to eliminate the effects of scaling, rotation, etc. in the image transformation. This paper adopts matrix approximation to get the minimum value of the energy function so that the shape distortion at those regions corresponding to the homography can be minimized. The proposed method can avoid multiple horizontal images stitching failure caused by accumulated shape distortion. At the same time, it can be combined with As-Projective-As-Possible algorithm to ensure precise alignment of overlapping area.

Keywords: image stitching, gradually changing matrix, horizontal direction, matrix approximation, homography matrix

Procedia PDF Downloads 319
5378 Comparative Study of Dose Calculation Accuracy in Bone Marrow Using Monte Carlo Method

Authors: Marzieh Jafarzadeh, Fatemeh Rezaee

Abstract:

Introduction: The effect of ionizing radiation on human health can be effective for genomic integrity and cell viability. It also increases the risk of cancer and malignancy. Therefore, X-ray behavior and absorption dose calculation are considered. One of the applicable tools for calculating and evaluating the absorption dose in human tissues is Monte Carlo simulation. Monte Carlo offers a straightforward way to simulate and integrate, and because it is simple and straightforward, Monte Carlo is easy to use. The Monte Carlo BEAMnrc code is one of the most common diagnostic X-ray simulation codes used in this study. Method: In one of the understudy hospitals, a certain number of CT scan images of patients who had previously been imaged were extracted from the hospital database. BEAMnrc software was used for simulation. The simulation of the head of the device with the energy of 0.09 MeV with 500 million particles was performed, and the output data obtained from the simulation was applied for phantom construction using CT CREATE software. The percentage of depth dose (PDD) was calculated using STATE DOSE was then compared with international standard values. Results and Discussion: The ratio of surface dose to depth dose (D/Ds) in the measured energy was estimated to be about 4% to 8% for bone and 3% to 7% for bone marrow. Conclusion: MC simulation is an efficient and accurate method for simulating bone marrow and calculating the absorbed dose.

Keywords: Monte Carlo, absorption dose, BEAMnrc, bone marrow

Procedia PDF Downloads 213
5377 Automatic Detection of Proliferative Cells in Immunohistochemically Images of Meningioma Using Fuzzy C-Means Clustering and HSV Color Space

Authors: Vahid Anari, Mina Bakhshi

Abstract:

Visual search and identification of immunohistochemically stained tissue of meningioma was performed manually in pathologic laboratories to detect and diagnose the cancers type of meningioma. This task is very tedious and time-consuming. Moreover, because of cell's complex nature, it still remains a challenging task to segment cells from its background and analyze them automatically. In this paper, we develop and test a computerized scheme that can automatically identify cells in microscopic images of meningioma and classify them into positive (proliferative) and negative (normal) cells. Dataset including 150 images are used to test the scheme. The scheme uses Fuzzy C-means algorithm as a color clustering method based on perceptually uniform hue, saturation, value (HSV) color space. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.

Keywords: positive cell, color segmentation, HSV color space, immunohistochemistry, meningioma, thresholding, fuzzy c-means

Procedia PDF Downloads 211
5376 Automatic Method for Exudates and Hemorrhages Detection from Fundus Retinal Images

Authors: A. Biran, P. Sobhe Bidari, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is an eye disease that leads to blindness. The earliest signs of DR are the appearance of red and yellow lesions on the retina called hemorrhages and exudates. Early diagnosis of DR prevents from blindness; hence, many automated algorithms have been proposed to extract hemorrhages and exudates. In this paper, an automated algorithm is presented to extract hemorrhages and exudates separately from retinal fundus images using different image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Since Optic Disc is the same color as the exudates, it is first localized and detected. The presented method has been tested on fundus images from Structured Analysis of the Retina (STARE) and Digital Retinal Images for Vessel Extraction (DRIVE) databases by using MATLAB codes. The results show that this method is perfectly capable of detecting hard exudates and the highly probable soft exudates. It is also capable of detecting the hemorrhages and distinguishing them from blood vessels.

Keywords: diabetic retinopathy, fundus, CHT, exudates, hemorrhages

Procedia PDF Downloads 273
5375 Contrastive Learning for Unsupervised Object Segmentation in Sequential Images

Authors: Tian Zhang

Abstract:

Unsupervised object segmentation aims at segmenting objects in sequential images and obtaining the mask of each object without any manual intervention. Unsupervised segmentation remains a challenging task due to the lack of prior knowledge about these objects. Previous methods often require manually specifying the action of each object, which is often difficult to obtain. Instead, this paper does not need action information of objects and automatically learns the actions and relations among objects from the structured environment. To obtain the object segmentation of sequential images, the relationships between objects and images are extracted to infer the action and interaction of objects based on the multi-head attention mechanism. Three types of objects’ relationships in the object segmentation task are proposed: the relationship between objects in the same frame, the relationship between objects in two frames, and the relationship between objects and historical information. Based on these relationships, the proposed model (1) is effective in multiple objects segmentation tasks, (2) just needs images as input, and (3) produces better segmentation results as more relationships are considered. The experimental results on multiple datasets show that this paper’s method achieves state-of-art performance. The quantitative and qualitative analyses of the result are conducted. The proposed method could be easily extended to other similar applications.

Keywords: unsupervised object segmentation, attention mechanism, contrastive learning, structured environment

Procedia PDF Downloads 111
5374 The Effect of the Acquisition and Reconstruction Parameters in Quality of Spect Tomographic Images with Attenuation and Scatter Correction

Authors: N. Boutaghane, F. Z. Tounsi

Abstract:

Many physical and technological factors degrade the SPECT images, both qualitatively and quantitatively. For this, it is not always put into leading technological advances to improve the performance of tomographic gamma camera in terms of detection, collimation, reconstruction and correction of tomographic images methods. We have to master firstly the choice of various acquisition and reconstruction parameters, accessible to clinical cases and using the attenuation and scatter correction methods to always optimize quality image and minimized to the maximum dose received by the patient. In this work, an evaluation of qualitative and quantitative tomographic images is performed based on the acquisition parameters (counts per projection) and reconstruction parameters (filter type, associated cutoff frequency). In addition, methods for correcting physical effects such as attenuation and scatter degrading the image quality and preventing precise quantitative of the reconstructed slices are also presented. Two approaches of attenuation and scatter correction are implemented: the attenuation correction by CHANG method with a filtered back projection reconstruction algorithm and scatter correction by the subtraction JASZCZAK method. Our results are considered as such recommandation, which permits to determine the origin of the different artifacts observed both in quality control tests and in clinical images.

Keywords: attenuation, scatter, reconstruction filter, image quality, acquisition and reconstruction parameters, SPECT

Procedia PDF Downloads 455
5373 Experimental Investigation of Soil Corrosion and Electrical Resistance in Depth by Geoelectrical Method

Authors: Seyed Abolhassan Naeini, Maedeh Akhavan Tavakkoli

Abstract:

Determining soil engineering properties is essential for geotechnical problems. In addition to high cost, invasive soil survey methods can be time-consuming, so geophysical methods can be an excellent choice to determine soil characteristics. In this study, geoelectric investigation using the Wenner arrangement method has been used to determine the amount of soil corrosion in soil layers in a project site as a case study. This study aims to assess the degree of corrosion of soil layers to a depth of 5 meters and find the variation of soil electrical resistance versus depth. For this purpose, the desired points in the study area were marked and specified, and all withdrawals were made within the specified points. The collected data have been processed by standard and accepted methods, and the results have been presented in the form of calculation tables and curves of electrical resistivity with depth.

Keywords: Wenner array, geoelectric, soil corrosion, electrical soil resistance

Procedia PDF Downloads 104
5372 Investigation of Several Parameters on Local Scour around Inclined Dual Bridge Piers

Authors: Murat Çeşme

Abstract:

For a bridge engineer to ensure a safe footing design, it is very important to estimate the maximum scour depth around the piers as accurately as possible. Many experimental studies have been performed by several investigators to obtain information about scouring mechanism. In order to examine the effect of inclination of dual bridge piers on scour depth under clear-water conditions for various uniform flow depths, an experimental research on scaled dual bridge piers has been carried over in METU Hydromechanics Lab. Dimensional and non-dimensional curves were developed and presented to show the variation of scour depth with respect to various parameters such as footing angle with the vertical, flow depth and footing dimensions. Results of the study were compared to those obtained from a similar study performed with single inclined piers to see the effect of the second pier on scour depths. Useful equations for the design engineers were developed based on multiple regression analyses to be used for predicting local scour depths around inclined piers in uniform and non-uniform sediments.

Keywords: experimental research, inclined dual bridge piers, footing safety, scour depth, clear water condition

Procedia PDF Downloads 100
5371 Secure Transfer of Medical Images Using Hybrid Encryption

Authors: Boukhatem Mohamed Belkaid, Lahdi Mourad

Abstract:

In this paper, we propose a new encryption system for security issues medical images. The hybrid encryption scheme is based on AES and RSA algorithms to validate the three security services are authentication, integrity, and confidentiality. Privacy is ensured by AES, authenticity is ensured by the RSA algorithm. Integrity is assured by the basic function of the correlation between adjacent pixels. Our system generates a unique password every new session of encryption, that will be used to encrypt each frame of the medical image basis to strengthen and ensure his safety. Several metrics have been used for various tests of our analysis. For the integrity test, we noticed the efficiencies of our system and how the imprint cryptographic changes at reception if a change affects the image in the transmission channel.

Keywords: AES, RSA, integrity, confidentiality, authentication, medical images, encryption, decryption, key, correlation

Procedia PDF Downloads 443
5370 Visualization of Corrosion at Plate-Like Structures Based on Ultrasonic Wave Propagation Images

Authors: Aoqi Zhang, Changgil Lee Lee, Seunghee Park

Abstract:

A non-contact nondestructive technique using laser-induced ultrasonic wave generation method was applied to visualize corrosion damage at aluminum alloy plate structures. The ultrasonic waves were generated by a Nd:YAG pulse laser, and a galvanometer-based laser scanner was used to scan specific area at a target structure. At the same time, wave responses were measured at a piezoelectric sensor which was attached on the target structure. The visualization of structural damage was achieved by calculating logarithmic values of root mean square (RMS). Damage-sensitive feature was defined as the scattering characteristics of the waves that encounter corrosion damage. The corroded damage was artificially formed by hydrochloric acid. To observe the effect of the location where the corrosion was formed, the both sides of the plate were scanned with same scanning area. Also, the effect on the depth of the corrosion was considered as well as the effect on the size of the corrosion. The results indicated that the damages were successfully visualized for almost cases, whether the damages were formed at the front or back side. However, the damage could not be clearly detected because the depth of the corrosion was shallow. In the future works, it needs to develop signal processing algorithm to more clearly visualize the damage by improving signal-to-noise ratio.

Keywords: non-destructive testing, corrosion, pulsed laser scanning, ultrasonic waves, plate structure

Procedia PDF Downloads 300
5369 Biomass and CPUA Estimation and Distribution Pattern of Saurida Tumbil in the Northwest of Persian Gulf

Authors: Negar Ghotbeddin, Izadpanah Zeinab, Tooraj Valinassab, Mohammad Azhir

Abstract:

It is reported on results of a trawls survey in 2011 to assess the amount of biomass and Catch Per Unit of Area (CPUA) and also to determine the distribution pattern of Synodonidae family of demersal fishes (with emphasize on great lizardfish, Saurida tumbil) as one the most important and commercial fish species in the northwest of Persian Gulf. Samples were collected at a total 65 trawl stations selected a stratified random procedure. The study area was stratified to five strata (A to E) covering the depth layers of 10-20, 20-30 and 30-50 m. The catch rates of CPUA and biomass of lizardfishes were estimated to be approximately 316.20 kg/nm2, and 2902.1 tons, respectively. The highest value of biomass of Synodontids was recorded in the east of the study area, Bordkhoon to Dayer (stratum D & E, approximately 1310.6 tonnes) and in depth layer of 30-50 m; and the lowest value was estimated for stratum A (West of Khuzestan Province) and in depth layer of 10-20 m. On the other hand, the highest CPUA was recorded in stratum D and depth layer of 20-30 m; and the lowest value for stratum A and 10-20 m depth. It was concluded that stratum D (namely from Bordkhoon to Dayer) contains the best fishing area from the point of higher density and distribution of Synodontidae in the covering area, and from the point of depth distribution, they are found in depths more than 30 m.

Keywords: Saurida tumbil, CPUA, biomass, distribution, fishing area, Persian gulf

Procedia PDF Downloads 407
5368 Robust Barcode Detection with Synthetic-to-Real Data Augmentation

Authors: Xiaoyan Dai, Hsieh Yisan

Abstract:

Barcode processing of captured images is a huge challenge, as different shooting conditions can result in different barcode appearances. This paper proposes a deep learning-based barcode detection using synthetic-to-real data augmentation. We first augment barcodes themselves; we then augment images containing the barcodes to generate a large variety of data that is close to the actual shooting environments. Comparisons with previous works and evaluations with our original data show that this approach achieves state-of-the-art performance in various real images. In addition, the system uses hybrid resolution for barcode “scan” and is applicable to real-time applications.

Keywords: barcode detection, data augmentation, deep learning, image-based processing

Procedia PDF Downloads 174
5367 Influence of Bed Depth on Performance of Wire Screen Packed Bed Solar Air Heater

Authors: Vimal Kumar Chouksey, S. P. Sharma

Abstract:

This paper deals with theoretical analysis of performance of solar air collector having its duct packed with blackened wire screen matrices. The heat transfer equations for two-dimensional fully developed fluid flows under quasi-steady-state conditions have been developed in order to analyze the effect of bed depth on performance. A computer programme is developed in C++ language to estimate the temperature rise of entering air for evaluation of performance by solving the governing equations numerically using relevant correlations for heat transfer coefficient for packed bed systems. Results of air temperature rise and thermal efficiency obtained from the analysis have been compared with available experimental results and results have been found fairly in closed agreement. It has been found that there is considerable enhancement in performance with packed bed collector upto a certain total bed depth. Effect of total bed depth on efficiency show that there is an upper limiting value of total bed depth beyond which the thermal efficiency begins to fall again and this type of characteristics behavior is observed at all mass flow rate.

Keywords: plane collector, solar air heater, solar energy, wire screen packed bed

Procedia PDF Downloads 238
5366 Three Visions of a Conflict: The Case of La Araucania, Chile

Authors: Maria Barriga

Abstract:

The article focuses on the analysis of three images of the last five years that represent different visions of social groups in the context of the so call “Conflicto Mapuche” in la Araucanía, Chile. Using a multimodal social semiotic approach, we analyze the meaning making of these images and the social groups strategies to achieve visibility and recognition in political contexts. We explore the making and appropriation of symbols and concepts and analyze the different strategies that groups use to built hegemonic views. Among these strategies, we compare the use of digital technologies in design these images and the influence of Chilean Estate's vision on the Mapuche political conflict. Finally, we propose visual strategies to improve basic conditions for dialogue and recognition among these groups.

Keywords: visual culture, power, conflict, indigenous people

Procedia PDF Downloads 286
5365 Determining the Width and Depths of Cut in Milling on the Basis of a Multi-Dexel Model

Authors: Jens Friedrich, Matthias A. Gebele, Armin Lechler, Alexander Verl

Abstract:

Chatter vibrations and process instabilities are the most important factors limiting the productivity of the milling process. Chatter can leads to damage of the tool, the part or the machine tool. Therefore, the estimation and prediction of the process stability is very important. The process stability depends on the spindle speed, the depth of cut and the width of cut. In milling, the process conditions are defined in the NC-program. While the spindle speed is directly coded in the NC-program, the depth and width of cut are unknown. This paper presents a new simulation based approach for the prediction of the depth and width of cut of a milling process. The prediction is based on a material removal simulation with an analytically represented tool shape and a multi-dexel approach for the work piece. The new calculation method allows the direct estimation of the depth and width of cut, which are the influencing parameters of the process stability, instead of the removed volume as existing approaches do. The knowledge can be used to predict the stability of new, unknown parts. Moreover with an additional vibration sensor, the stability lobe diagram of a milling process can be estimated and improved based on the estimated depth and width of cut.

Keywords: dexel, process stability, material removal, milling

Procedia PDF Downloads 525
5364 Multiscale Edge Detection Based on Nonsubsampled Contourlet Transform

Authors: Enqing Chen, Jianbo Wang

Abstract:

It is well known that the wavelet transform provides a very effective framework for multiscale edges analysis. However, wavelets are not very effective in representing images containing distributed discontinuities such as edges. In this paper, we propose a novel multiscale edge detection method in nonsubsampled contourlet transform (NSCT) domain, which is based on the dominant multiscale, multidirection edge expression and outstanding edge location of NSCT. Through real images experiments, simulation results demonstrate that the proposed method is better than other edge detection methods based on Canny operator, wavelet and contourlet. Additionally, the proposed method also works well for noisy images.

Keywords: edge detection, NSCT, shift invariant, modulus maxima

Procedia PDF Downloads 490
5363 Depth-Averaged Velocity Distribution in Braided Channel Using Calibrating Coefficients

Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua

Abstract:

Rivers are the backbone of human civilization as well as one of the most important components of nature. In this paper, a method for predicting lateral depth-averaged velocity distribution in a two-flow braided compound channel is proposed. Experiments were conducted to study the boundary shear stress in the tip of the two flow path. The cross-section of the channel is divided into several panels to study the flow phenomenon on both the main channel and the flood plain. It can be inferred from the study that the flow coefficients get affected by boundary shear stress. In this study, the analytical solution of Shiono and knight (SKM) for lateral distributions of depth-averaged velocity and bed shear stress has been taken into account. The SKM is based on hydraulic parameters, which signify the bed friction factor (f), lateral eddy viscosity, and depth-averaged flow. While applying the SKM to different panels, the equations are solved considering the boundary conditions between panels. The boundary shear stress data, which are obtained from experimentation, are compared with CES software, which is based on quasi-one-dimensional Reynold's Averaged Navier-Stokes (RANS) approach.

Keywords: boundary shear stress, lateral depth-averaged velocity, two-flow braided compound channel, velocity distribution

Procedia PDF Downloads 129
5362 Diving Behaviour of White-Chinned Petrels and Its Relevance for Mitigating Longline Bycatch

Authors: D. P. Rollinson, B. J. Dilley, P. G. Ryan

Abstract:

The white-chinned petrel (Procellaria aequinoctialis) is the seabird species most commonly killed by Southern Hemisphere longline fisheries. Despite the importance of diving ability for mitigating longline bycatch, little is known of this species’ diving behaviour. We obtained data from temperature–depth recorders from nine white-chinned petrels breeding on Marion Island, southwestern Indian Ocean, during the late incubation and chickrearing period. Maximum dive depth (16 m) was slightly deeper than the previous estimate (13 m), but varied considerably among individuals (range 2–16 m). Males dived deeper than females, and birds feeding chicks dived deeper than incubating birds, but dive rate did not differ between the sexes. Time of day had no significant effect on dive depth or rate. Our findings will help to improve the design and performance of mitigation measures aimed at reducing seabird bycatch in longline fisheries, such as the calculation of minimum line sink rates and optimum aerial coverage of bird-scaring lines.

Keywords: dive depth, dive duration, temperature–depth recorders, seabirds, bird-scaring lines

Procedia PDF Downloads 573
5361 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images

Authors: Firas Gerges, Frank Y. Shih

Abstract:

Malignant melanoma, known simply as melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient's death. When detected early, melanoma is curable. In this paper, we propose a deep learning model (convolutional neural networks) in order to automatically classify skin lesion images as malignant or benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.

Keywords: deep learning, skin cancer, image processing, melanoma

Procedia PDF Downloads 150
5360 COVID-19 Analysis with Deep Learning Model Using Chest X-Rays Images

Authors: Uma Maheshwari V., Rajanikanth Aluvalu, Kumar Gautam

Abstract:

The COVID-19 disease is a highly contagious viral infection with major worldwide health implications. The global economy suffers as a result of COVID. The spread of this pandemic disease can be slowed if positive patients are found early. COVID-19 disease prediction is beneficial for identifying patients' health problems that are at risk for COVID. Deep learning and machine learning algorithms for COVID prediction using X-rays have the potential to be extremely useful in solving the scarcity of doctors and clinicians in remote places. In this paper, a convolutional neural network (CNN) with deep layers is presented for recognizing COVID-19 patients using real-world datasets. We gathered around 6000 X-ray scan images from various sources and split them into two categories: normal and COVID-impacted. Our model examines chest X-ray images to recognize such patients. Because X-rays are commonly available and affordable, our findings show that X-ray analysis is effective in COVID diagnosis. The predictions performed well, with an average accuracy of 99% on training photographs and 88% on X-ray test images.

Keywords: deep CNN, COVID–19 analysis, feature extraction, feature map, accuracy

Procedia PDF Downloads 81
5359 Column Studies on Chromium(VI) Adsorption onto Kala Jamun (Syzygium cumini L.) Seed Powder

Authors: Sumi Deka, Krishna Gopal Bhattacharyya

Abstract:

This paper evaluate the industrial use of Kala Jamun (Syzygiumcumini L.) Seed powder (KSP) for the continuous adsorption of Cr(VI) in a column adsorption process. Adsorption of Cr(VI) onto Kala jamun (Syzygiumcumini L.) Seed Powder have been examined with the variation of (a) bed depth of the adsorbents, (b) flow rate of the adsorbents and (c) Cr(VI) concentration. The results showed that both the adsorption and the regeneration of the Cr(VI) onto Kala Jamun (Syzygiumcumini L.) seed Powder (KSP) can effectively occur in the column mode of adsorption. On increasing the bed depth, the adsorption of Cr(VI) onto KSP increases whereas on increasing the flow rate and the Cr(VI) concentration of KSP adsorption decreases. The results of the column studies were also fitted to Bed Depth Service Time (BDST) model. The BDST model was appropriate for designing the column for industrial purpose.

Keywords: bed-depth-service-time, continuous adsorption, Cr(VI), KSP

Procedia PDF Downloads 256
5358 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images

Authors: Masood Varshosaz, Kamyar Hasanpour

Abstract:

In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.

Keywords: human recognition, deep learning, drones, disaster mitigation

Procedia PDF Downloads 96
5357 Secure Transfer of Medical Images Using Hybrid Encryption Authentication, Confidentiality, Integrity

Authors: Boukhatem Mohammed Belkaid, Lahdir Mourad

Abstract:

In this paper, we propose a new encryption system for security issues medical images. The hybrid encryption scheme is based on AES and RSA algorithms to validate the three security services are authentication, integrity, and confidentiality. Privacy is ensured by AES, authenticity is ensured by the RSA algorithm. Integrity is assured by the basic function of the correlation between adjacent pixels. Our system generates a unique password every new session of encryption, that will be used to encrypt each frame of the medical image basis to strengthen and ensure his safety. Several metrics have been used for various tests of our analysis. For the integrity test, we noticed the efficiencies of our system and how the imprint cryptographic changes at reception if a change affects the image in the transmission channel.

Keywords: AES, RSA, integrity, confidentiality, authentication, medical images, encryption, decryption, key, correlation

Procedia PDF Downloads 540
5356 The Use of the Matlab Software as the Best Way to Recognize Penumbra Region in Radiotherapy

Authors: Alireza Shayegan, Morteza Amirabadi

Abstract:

The y tool was developed to quantitatively compare dose distributions, either measured or calculated. Before computing ɣ, the dose and distance scales of the two distributions, referred to as evaluated and reference, are re-normalized by dose and distance criteria, respectively. The re-normalization allows the dose distribution comparison to be conducted simultaneously along dose and distance axes. Several two-dimensional images were acquired using a Scanning Liquid Ionization Chamber EPID and Extended Dose Range (EDR2) films for regular and irregular radiation fields. The raw images were then converted into two-dimensional dose maps. Transitional and rotational manipulations were performed for images using Matlab software. As evaluated dose distribution maps, they were then compared with the corresponding original dose maps as the reference dose maps.

Keywords: energetic electron, gamma function, penumbra, Matlab software

Procedia PDF Downloads 301