Search results for: deep space navigation
5757 Urban Life on the Go: Urban Transformation of Public Space
Authors: E. Zippelius
Abstract:
Urban design aims to provide a stage for public life that, when once brought to life, is right away subject to subtle but continuous transformation. This paper explores such transformations and searches for ways how public life can be reinforced in the case of a housing settlement for the displaced in Nicosia, Cyprus. First, a sound basis of theoretical knowledge is established through literature review, notably the theory of the Production of Space by Henri Lefebvre, exploring its potential and defining key criteria for the following empirical analysis. The analysis is pinpointing the differences between spatial practice, representation of space and spaces of representation as well as their interaction, alliance, or even conflict. In doing so uncertainties, chances and challenges are unraveled that will be consequently linked to practice and action and lead to the formulation of a design strategy. A strategy, though, that does not long for achieving an absolute, finite certainty but understands the three dimensions of space formulated by Lefebvre as equal and space as continuously produced, hence, unfinished.Keywords: production of space, public space, urban life, urban transformation
Procedia PDF Downloads 1415756 A Fully Interpretable Deep Reinforcement Learning-Based Motion Control for Legged Robots
Authors: Haodong Huang, Zida Zhao, Shilong Sun, Chiyao Li, Wenfu Xu
Abstract:
The control methods for legged robots based on deep reinforcement learning have seen widespread application; however, the inherent black-box nature of neural networks presents challenges in understanding the decision-making motives of the robots. To address this issue, we propose a fully interpretable deep reinforcement learning training method to elucidate the underlying principles of legged robot motion. We incorporate the dynamics of legged robots into the policy, where observations serve as inputs and actions as outputs of the dynamics model. By embedding the dynamics equations within the multi-layer perceptron (MLP) computation process and making the parameters trainable, we enhance interpretability. Additionally, Bayesian optimization is introduced to train these parameters. We validate the proposed fully interpretable motion control algorithm on a legged robot, opening new research avenues for motion control and learning algorithms for legged robots within the deep learning framework.Keywords: deep reinforcement learning, interpretation, motion control, legged robots
Procedia PDF Downloads 215755 Comprehensive Evaluation of COVID-19 Through Chest Images
Authors: Parisa Mansour
Abstract:
The coronavirus disease 2019 (COVID-19) was discovered and rapidly spread to various countries around the world since the end of 2019. Computed tomography (CT) images have been used as an important alternative to the time-consuming RT. PCR test. However, manual segmentation of CT images alone is a major challenge as the number of suspected cases increases. Thus, accurate and automatic segmentation of COVID-19 infections is urgently needed. Because the imaging features of the COVID-19 infection are different and similar to the background, existing medical image segmentation methods cannot achieve satisfactory performance. In this work, we try to build a deep convolutional neural network adapted for the segmentation of chest CT images with COVID-19 infections. First, we maintain a large and novel chest CT image database containing 165,667 annotated chest CT images from 861 patients with confirmed COVID-19. Inspired by the observation that the boundary of an infected lung can be improved by global intensity adjustment, we introduce a feature variable block into the proposed deep CNN, which adjusts the global features of features to segment the COVID-19 infection. The proposed PV array can effectively and adaptively improve the performance of functions in different cases. We combine features of different scales by proposing a progressive atrocious space pyramid fusion scheme to deal with advanced infection regions with various aspects and shapes. We conducted experiments on data collected in China and Germany and showed that the proposed deep CNN can effectively produce impressive performance.Keywords: chest, COVID-19, chest Image, coronavirus, CT image, chest CT
Procedia PDF Downloads 575754 Building Deep: Mystery And Sensuality In The Underground World
Authors: Rene Davids
Abstract:
Urban undergrounds spaces such as parking garages or metro stations are perceived as interludes before reaching desired destinations, as commodities devoid of aesthetic value. Within the encoded space of the city, commercial underground spaces are the closest expression to pure to structures of consumption and commodity. Even in the house, the cellar is associated with castoffs and waste or, as scholar Mircea Eliade has pointed out at best, with a place to store abandoned household and childhood objects, which lie forgotten and on rediscovery evoke a nostalgic and uncanny sense of the past. Despite a growing body of evidence presented by an increasing number of buildings situated entirely below or semi underground that feature exemplary spatial and sensuous qualities, critics and scholars see them largely as efforts to produce efforts in producing low consumption non-renewable energy. Buildings that also free space above ground. This critical approach neglects to mention and highlight other project drivers such as the notion that the ground and sky can be considered a building’s fundamental context, that underground spaces are conducive to the exploration of pure space, namely an architecture that doesn’t have to deal with facades and or external volumes and that digging into geology can inspire the textural and spatial richness. This paper will argue that while the assessment about the reduced energy consumption of underground construction is important, it does not do justice to the qualities underground buildings can contribute to a city’s expanded urban and or landscape experiences.Keywords: low non-renewable energy consumption, pure space, underground buildings, urban and landscape experience
Procedia PDF Downloads 1795753 The Access to the City in the Medellín Urban Experience
Authors: Mansilla, Juan Camilo
Abstract:
According to many studies, public space in the cities of Global South is constantly morcellated and captured by a multiplicity of actors in a permanent struggle for power. This imposed public space restricts the access to services and political actions to many inhabitants. The author has conducted several focus group sessions using video in a reflective mode with low-income communities in Medellín, Colombia in order to study how people in this city are shift from a physical public space to a hybrid public space shaped by internet. Beyond the fragmented city and the violent urban context manifested by participants, these activities have highlighted how the access to the city is currently going through a dialectic movement between the physical and the digital space. The purpose of this article is to make explicit the link between this hybrid public space and the boundaries of exclusion in the city. Urban marginality is closely related with the idea of access and space. Low-income communities in Medellín assume the digital realm like a “not controlled space” of resistance, where alternative ways of expression like hip hop movement, graffiti, dance, video and virtual communities produce effective changes in the physical realm.Keywords: access to the city, hybrid public space, low-income communities, Medellín, urban marginality
Procedia PDF Downloads 4945752 Global Navigation Satellite System and Precise Point Positioning as Remote Sensing Tools for Monitoring Tropospheric Water Vapor
Authors: Panupong Makvichian
Abstract:
Global Navigation Satellite System (GNSS) is nowadays a common technology that improves navigation functions in our life. Additionally, GNSS is also being employed on behalf of an accurate atmospheric sensor these times. Meteorology is a practical application of GNSS, which is unnoticeable in the background of people’s life. GNSS Precise Point Positioning (PPP) is a positioning method that requires data from a single dual-frequency receiver and precise information about satellite positions and satellite clocks. In addition, careful attention to mitigate various error sources is required. All the above data are combined in a sophisticated mathematical algorithm. At this point, the research is going to demonstrate how GNSS and PPP method is capable to provide high-precision estimates, such as 3D positions or Zenith tropospheric delays (ZTDs). ZTDs combined with pressure and temperature information allows us to estimate the water vapor in the atmosphere as precipitable water vapor (PWV). If the process is replicated for a network of GNSS sensors, we can create thematic maps that allow extract water content information in any location within the network area. All of the above are possible thanks to the advances in GNSS data processing. Therefore, we are able to use GNSS data for climatic trend analysis and acquisition of the further knowledge about the atmospheric water content.Keywords: GNSS, precise point positioning, Zenith tropospheric delays, precipitable water vapor
Procedia PDF Downloads 1985751 Weed Classification Using a Two-Dimensional Deep Convolutional Neural Network
Authors: Muhammad Ali Sarwar, Muhammad Farooq, Nayab Hassan, Hammad Hassan
Abstract:
Pakistan is highly recognized for its agriculture and is well known for producing substantial amounts of wheat, cotton, and sugarcane. However, some factors contribute to a decline in crop quality and a reduction in overall output. One of the main factors contributing to this decline is the presence of weed and its late detection. This process of detection is manual and demands a detailed inspection to be done by the farmer itself. But by the time detection of weed, the farmer will be able to save its cost and can increase the overall production. The focus of this research is to identify and classify the four main types of weeds (Small-Flowered Cranesbill, Chick Weed, Prickly Acacia, and Black-Grass) that are prevalent in our region’s major crops. In this work, we implemented three different deep learning techniques: YOLO-v5, Inception-v3, and Deep CNN on the same Dataset, and have concluded that deep convolutions neural network performed better with an accuracy of 97.45% for such classification. In relative to the state of the art, our proposed approach yields 2% better results. We devised the architecture in an efficient way such that it can be used in real-time.Keywords: deep convolution networks, Yolo, machine learning, agriculture
Procedia PDF Downloads 1185750 Strategies for Public Space Utilization
Authors: Ben Levenger
Abstract:
Social life revolves around a central meeting place or gathering space. It is where the community integrates, earns social skills, and ultimately becomes part of the community. Following this premise, public spaces are one of the most important spaces that downtowns offer, providing locations for people to be witnessed, heard, and most importantly, seamlessly integrate into the downtown as part of the community. To facilitate this, these local spaces must be envisioned and designed to meet the changing needs of a downtown, offering a space and purpose for everyone. This paper will dive deep into analyzing, designing, and implementing public space design for small plazas or gathering spaces. These spaces often require a detailed level of study, followed by a broad stroke of design implementation, allowing for adaptability. This paper will highlight how to assess needs, define needed types of spaces, outline a program for spaces, detail elements of design to meet the needs, assess your new space, and plan for change. This study will provide participants with the necessary framework for conducting a grass-roots-level assessment of public space and programming, including short-term and long-term improvements. Participants will also receive assessment tools, sheets, and visual representation diagrams. Urbanism, for the sake of urbanism, is an exercise in aesthetic beauty. An economic improvement or benefit must be attained to solidify these efforts' purpose further and justify the infrastructure or construction costs. We will deep dive into case studies highlighting economic impacts to ground this work in quantitative impacts. These case studies will highlight the financial impact on an area, measuring the following metrics: rental rates (per sq meter), tax revenue generation (sales and property), foot traffic generation, increased property valuations, currency expenditure by tenure, clustered development improvements, cost/valuation benefits of increased density in housing. The economic impact results will be targeted by community size, measuring in three tiers: Sub 10,000 in population, 10,001 to 75,000 in population, and 75,000+ in population. Through this classification breakdown, the participants can gauge the impact in communities similar to their work or for which they are responsible. Finally, a detailed analysis of specific urbanism enhancements, such as plazas, on-street dining, pedestrian malls, etc., will be discussed. Metrics that document the economic impact of each enhancement will be presented, aiding in the prioritization of improvements for each community. All materials, documents, and information will be available to participants via Google Drive. They are welcome to download the data and use it for their purposes.Keywords: downtown, economic development, planning, strategic
Procedia PDF Downloads 815749 Art, Nature, and City in the Construction of Contemporary Public Space
Authors: Rodrigo Coelho
Abstract:
We believe that in the majority of the “recent production of public space", the overvaluation of the "image", of the "ephemeral" and of the "objectual", has come to determine the configuration of banal and (more or less) arbitrary "public spaces", mostly linked to a problem of “outdoor decoration”, reflecting a clear sign of uncertainty and arbitrariness about the meaning, the role and shape of public space and public art.This "inconsistency" which is essentially linked to the loss of urban, but also social, cultural and political, vocation of the disciplines that “shape” the urban space (but is also linked to the lack of urban and technical culture of techinicians and policy makers) converted a significant set of the recently built "public space" and “urban art” into diffuse and multi-referenced pieces, which generally shares the inability of confering to the urban space, civic, aesthetic, social and symbolic meanings. In this sense we consider it is essential to undertake a theoretical reflection on the values, the meaning(s) and the shape(s) that open space, and urban art may (or must) take in the current urban and cultural context, in order to redeem for public space its status of significant physical reference, able to embody a spatial and urban identity, and simultaneously enable the collective accession and appropriation of public space. Taking as reference public space interventions built in the last decade on the European context, we will seek to explore and defend the need of considering public space as a true place of exception, an exceptional support where the emphasis is placed on the quality of the experience, especially by the relations public space/urban art can established with the city, with nature and geography in a broad sense, referring us back to a close and inseparable and timeless relationship between nature and culture.Keywords: art, city, nature, public space
Procedia PDF Downloads 4495748 Numerical Investigation on the Effects of Deep Excavation on Adjacent Pile Groups Subjected to Inclined Loading
Authors: Ashkan Shafee, Ahmad Fahimifar
Abstract:
There is a growing demand for construction of high-rise buildings and infrastructures in large cities, which sometimes require deep excavations in the vicinity of pile foundations. In this study, a two-dimensional finite element analysis is used to gain insight into the response of pile groups adjacent to deep excavations in sand. The numerical code was verified by available experimental works, and a parametric study was performed on different working load combinations, excavation depth and supporting system. The results show that the simple two-dimensional plane strain model can accurately simulate the excavation induced changes on adjacent pile groups. It was found that further excavation than pile toe level and also inclined loading on adjacent pile group can severely affect the serviceability of the foundation.Keywords: deep excavation, inclined loading, lateral deformation, pile group
Procedia PDF Downloads 2745747 Deep-Learning Based Approach to Facial Emotion Recognition through Convolutional Neural Network
Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah
Abstract:
Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. Accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER, benefiting from deep learning, especially CNN and VGG16. First, the data is pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.Keywords: CNN, deep-learning, facial emotion recognition, machine learning
Procedia PDF Downloads 955746 Vector-Based Analysis in Cognitive Linguistics
Authors: Chuluundorj Begz
Abstract:
This paper presents the dynamic, psycho-cognitive approach to study of human verbal thinking on the basis of typologically different languages /as a Mongolian, English and Russian/. Topological equivalence in verbal communication serves as a basis of Universality of mental structures and therefore deep structures. Mechanism of verbal thinking consisted at the deep level of basic concepts, rules for integration and classification, neural networks of vocabulary. In neuro cognitive study of language, neural architecture and neuro psychological mechanism of verbal cognition are basis of a vector-based modeling. Verbal perception and interpretation of the infinite set of meanings and propositions in mental continuum can be modeled by applying tensor methods. Euclidean and non-Euclidean spaces are applied for a description of human semantic vocabulary and high order structures.Keywords: Euclidean spaces, isomorphism and homomorphism, mental lexicon, mental mapping, semantic memory, verbal cognition, vector space
Procedia PDF Downloads 5195745 Cyber Attacks Management in IoT Networks Using Deep Learning and Edge Computing
Authors: Asmaa El Harat, Toumi Hicham, Youssef Baddi
Abstract:
This survey delves into the complex realm of Internet of Things (IoT) security, highlighting the urgent need for effective cybersecurity measures as IoT devices become increasingly common. It explores a wide array of cyber threats targeting IoT devices and focuses on mitigating these attacks through the combined use of deep learning and machine learning algorithms, as well as edge and cloud computing paradigms. The survey starts with an overview of the IoT landscape and the various types of attacks that IoT devices face. It then reviews key machine learning and deep learning algorithms employed in IoT cybersecurity, providing a detailed comparison to assist in selecting the most suitable algorithms. Finally, the survey provides valuable insights for cybersecurity professionals and researchers aiming to enhance security in the intricate world of IoT.Keywords: internet of things (IoT), cybersecurity, machine learning, deep learning
Procedia PDF Downloads 315744 Overview of Fiber Optic Gyroscopes as Ring Laser Gyros and Fiber Optic Gyros and the Comparison Between Them
Authors: M. Abdo, Mohamed Shalaby
Abstract:
A key development in the field of inertial sensors, fiber-optic gyroscopes (FOGs) are currently thought to be a competitive alternative to mechanical gyroscopes for inertial navigation and control applications. For the past few years, research and development efforts have been conducted all around the world using the FOG as a crucial sensor for high-accuracy inertial navigation systems. The main fundamentals of optical gyros were covered in this essay, followed by discussions of the main types of optical gyros and fiber optic gyroscopes and ring laser gyroscopes and comparisons between them. We also discussed different types of fiber optic gyros, including interferometric, resonator, and Brillion fiber optic gyroscopes.Keywords: mechanical gyros, ring laser gyros, interferometric finer optic gyros, Resonator fiber optic gyros
Procedia PDF Downloads 805743 A Summary of the Research on the Driving Mechanism of Space Expansion in China's National New District
Authors: Qin Xia
Abstract:
’National New District’ as a regional overall promotion of strategic thinking has become increasingly mature, but its spatial expansion is still chaotic and disorderly, so it is urgent to summarize the complex and unique driving mechanism contained in its spatial expansion to formulate sustainable urban expansion plan. Under the understanding of the general laws of the driving mechanism of China's space expansion, it is found that the existing research on the driving mechanism of the space expansion of national new districts is insufficient. The research area focuses on the research of the driving mechanism of the space expansion of a single new area. In terms of research methods, qualitative description is the main focus. In terms of research content, it is limited to the expansion speed, intensity, and area of the new district itself and does not involve the expansion and utilization efficiency of space and the spillover efficiency to surrounding cities. The specific connotations of social, economic, political, and geographical categories are not thoroughly explored. It is often a general explanation that a certain factor has promoted it. The logic is not rigorous and convincing, and the description is relatively static, with different time and space. There is less literature on scale interaction. Through the reflection on the key and difficult points of the drive mechanism of the space expansion of the national new area, it is clear that the existing research on the drive mechanism of the space expansion of the national new area should be continued to drive the sustainable expansion of space.Keywords: national new district, space expansion, driving mechanism, existing research
Procedia PDF Downloads 1695742 Exploring Environmental, Social, and Governance (ESG) Standards for Space Exploration
Authors: Rachael Sullivan, Joshua Berman
Abstract:
The number of satellites orbiting earth are in the thousands now. Commercial launches are increasing, and civilians are venturing into the outer reaches of the atmosphere. As the space industry continues to grow and evolve, so too will the demand on resources, the disparities amongst socio-economic groups, and space company governance standards. Outside of just ensuring that space operations are compliant with government regulations, export controls, and international sanctions, companies should also keep in mind the impact their operations will have on society and the environment. Those looking to expand their operations into outer space should remain mindful of both the opportunities and challenges that they could encounter along the way. From commercial launches promoting civilian space travel—like the recent launches from Blue Origin, Virgin Galactic, and Space X—to regulatory and policy shifts, the commercial landscape beyond the Earth's atmosphere is evolving. But practices will also have to become sustainable. Through a review and analysis of space industry trends, international government regulations, and empirical data, this research explores how Environmental, Social, and Governance (ESG) reporting and investing will manifest within a fast-changing space industry.Institutions, regulators, investors, and employees are increasingly relying on ESG. Those working in the space industry will be no exception. Companies (or investors) that are already engaging or plan to engage in space operations should consider 1) environmental standards and objectives when tackling space debris and space mining, 2) social standards and objectives when considering how such practices may impact access and opportunities for different socioeconomic groups to the benefits of space exploration, and 3) how decision-making and governing boards will function ethically, equitably, and sustainably as we chart new paths and encounter novel challenges in outer space.Keywords: climate, environment, ESG, law, outer space, regulation
Procedia PDF Downloads 1525741 Finite Element Simulation of Deep Drawing Process to Minimize Earing
Authors: Pawan S. Nagda, Purnank S. Bhatt, Mit K. Shah
Abstract:
Earing defect in drawing process is highly undesirable not only because it adds on an additional trimming operation but also because the uneven material flow demands extra care. The objective of this work is to study the earing problem in the Deep Drawing of circular cup and to optimize the blank shape to reduce the earing. A finite element model is developed for 3-D numerical simulation of cup forming process in ABAQUS. Extra-deep-drawing (EDD) steel sheet has been used for simulation. Properties and tool design parameters were used as input for simulation. Earing was observed in the simulated cup and it was measured at various angles with respect to rolling direction. To reduce the earing defect initial blank shape was modified with the help of anisotropy coefficient. Modified blanks showed notable reduction in earing.Keywords: anisotropy, deep drawing, earing, finite element simulation
Procedia PDF Downloads 3775740 Intelligent Fault Diagnosis for the Connection Elements of Modular Offshore Platforms
Authors: Jixiang Lei, Alexander Fuchs, Franz Pernkopf, Katrin Ellermann
Abstract:
Within the Space@Sea project, funded by the Horizon 2020 program, an island consisting of multiple platforms was designed. The platforms are connected by ropes and fenders. The connection is critical with respect to the safety of the whole system. Therefore, fault detection systems are investigated, which could detect early warning signs for a possible failure in the connection elements. Previously, a model-based method called Extended Kalman Filter was developed to detect the reduction of rope stiffness. This method detected several types of faults reliably, but some types of faults were much more difficult to detect. Furthermore, the model-based method is sensitive to environmental noise. When the wave height is low, a long time is needed to detect a fault and the accuracy is not always satisfactory. In this sense, it is necessary to develop a more accurate and robust technique that can detect all rope faults under a wide range of operational conditions. Inspired by this work on the Space at Sea design, we introduce a fault diagnosis method based on deep neural networks. Our method cannot only detect rope degradation by using the acceleration data from each platform but also estimate the contributions of the specific acceleration sensors using methods from explainable AI. In order to adapt to different operational conditions, the domain adaptation technique DANN is applied. The proposed model can accurately estimate rope degradation under a wide range of environmental conditions and help users understand the relationship between the output and the contributions of each acceleration sensor.Keywords: fault diagnosis, deep learning, domain adaptation, explainable AI
Procedia PDF Downloads 1805739 Cells Detection and Recognition in Bone Marrow Examination with Deep Learning Method
Authors: Shiyin He, Zheng Huang
Abstract:
In this paper, deep learning methods are applied in bio-medical field to detect and count different types of cells in an automatic way instead of manual work in medical practice, specifically in bone marrow examination. The process is mainly composed of two steps, detection and recognition. Mask-Region-Convolutional Neural Networks (Mask-RCNN) was used for detection and image segmentation to extract cells and then Convolutional Neural Networks (CNN), as well as Deep Residual Network (ResNet) was used to classify. Result of cell detection network shows high efficiency to meet application requirements. For the cell recognition network, two networks are compared and the final system is fully applicable.Keywords: cell detection, cell recognition, deep learning, Mask-RCNN, ResNet
Procedia PDF Downloads 1905738 Health Trajectory Clustering Using Deep Belief Networks
Authors: Farshid Hajati, Federico Girosi, Shima Ghassempour
Abstract:
We present a Deep Belief Network (DBN) method for clustering health trajectories. Deep Belief Network (DBN) is a deep architecture that consists of a stack of Restricted Boltzmann Machines (RBM). In a deep architecture, each layer learns more complex features than the past layers. The proposed method depends on DBN in clustering without using back propagation learning algorithm. The proposed DBN has a better a performance compared to the deep neural network due the initialization of the connecting weights. We use Contrastive Divergence (CD) method for training the RBMs which increases the performance of the network. The performance of the proposed method is evaluated extensively on the Health and Retirement Study (HRS) database. The University of Michigan Health and Retirement Study (HRS) is a nationally representative longitudinal study that has surveyed more than 27,000 elderly and near-elderly Americans since its inception in 1992. Participants are interviewed every two years and they collect data on physical and mental health, insurance coverage, financial status, family support systems, labor market status, and retirement planning. The dataset is publicly available and we use the RAND HRS version L, which is easy to use and cleaned up version of the data. The size of sample data set is 268 and the length of the trajectories is equal to 10. The trajectories do not stop when the patient dies and represent 10 different interviews of live patients. Compared to the state-of-the-art benchmarks, the experimental results show the effectiveness and superiority of the proposed method in clustering health trajectories.Keywords: health trajectory, clustering, deep learning, DBN
Procedia PDF Downloads 3695737 Real-Time Detection of Space Manipulator Self-Collision
Authors: Zhang Xiaodong, Tang Zixin, Liu Xin
Abstract:
In order to avoid self-collision of space manipulators during operation process, a real-time detection method is proposed in this paper. The manipulator is fitted into a cylinder enveloping surface, and then the detection algorithm of collision between cylinders is analyzed. The collision model of space manipulator self-links can be detected by using this algorithm in real-time detection during the operation process. To ensure security of the operation, a safety threshold is designed. The simulation and experiment results verify the effectiveness of the proposed algorithm for a 7-DOF space manipulator.Keywords: space manipulator, collision detection, self-collision, the real-time collision detection
Procedia PDF Downloads 4695736 Subsea Control Module (SCM) - A Vital Factor for Well Integrity and Production Performance in Deep Water Oil and Gas Fields
Authors: Okoro Ikechukwu Ralph, Fuat Kara
Abstract:
The discoveries of hydrocarbon reserves has clearly drifted offshore, and in deeper waters - areas where the industry still has limited knowledge; and that were hitherto, regarded as being out of reach. This shift presents significant and increased challenges in technology requirements needed to guarantee safety of personnel, environment and equipment; ensure high reliability of installed equipment; and provide high level of confidence in security of investment and company reputation. Nowhere are these challenges more apparent than on subsea well integrity and production performance. The past two decades has witnessed enormous rise in deep and ultra-deep water offshore field developments for the recovery of hydrocarbons. Subsea installed equipment at the seabed has been the technology of choice for these developments. This paper discusses the role of Subsea Control module (SCM) as a vital factor for deep-water well integrity and production performance. A case study for Deep-water well integrity and production performance is analysed.Keywords: offshore reliability, production performance, subsea control module, well integrity
Procedia PDF Downloads 5125735 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning
Procedia PDF Downloads 2445734 Foot Recognition Using Deep Learning for Knee Rehabilitation
Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia
Abstract:
The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network
Procedia PDF Downloads 1615733 Study on the Characteristics of Chinese Urban Network Space from the Perspective of Innovative Collaboration
Abstract:
With the development of knowledge economy era, deepening the mechanism of cooperation and adhering to sharing and win-win cooperation has become new direction of urban development nowadays. In recent years, innovative collaborations between cities are becoming more and more frequent, whose influence on urban network space has aroused many scholars' attention. Taking 46 cities in China as the research object, the paper builds the connectivity of innovative network between cities and the linkages of urban external innovation using patent cooperation data among cities, and explores urban network space in China by the application of GIS, which is a beneficial exploration to the study of social network space in China in the era of information network. The result shows that the urban innovative network space and geographical entity space exist differences, and the linkages of external innovation are not entirely related to the city innovative capacity and the level of economy development. However, urban innovative network space and geographical entity space are similar in hierarchical clustering. They have both formed Beijing-Tianjin-Hebei, Yangtze River Delta, Pearl River Delta three metropolitan areas and Beijing-Shenzhen-Shanghai-Hangzhou four core cities, which lead the development of innovative network space in China.Keywords: innovative collaboration, urban network space, the connectivity of innovative network, the linkages of external innovation
Procedia PDF Downloads 1785732 Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models
Authors: Suriya
Abstract:
Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models.Keywords: deep learning, AOD, PM2.5, prediction, Ulaanbaatar
Procedia PDF Downloads 485731 Memorabilia of Suan Sunandha through Interactive User Interface
Authors: Nalinee Sophatsathit
Abstract:
The objectives of memorabilia of Suan Sunandha are to develop a general knowledge presentation about the historical royal garden through interactive graphic simulation technique and to employ high-functionality context in enhancing interactive user navigation. The approach infers non-intrusive display of relevant history in response to situational context. User’s navigation runs through the virtual reality campus, consisting of new and restored buildings. A flash back presentation of information pertaining to the history in the form of photos, paintings, and textual descriptions are displayed along each passing-by building. To keep the presentation lively, graphical simulation is created in a serendipity game play so that the user can both learn and enjoy the educational tour. The benefits of this human-computer interaction development are two folds. First, lively presentation technique and situational context modeling are developed that entail a usable paradigm of knowledge and information presentation combinations. Second, cost effective training and promotion for both internal personnel and public visitors to learn and keep informed of this historical royal garden can be furnished without the need for a dedicated public relations service. Future improvement on graphic simulation and ability based display can extend this work to be more realistic, user-friendly, and informative for all.Keywords: interactive user navigation, high-functionality context, situational context, human-computer interaction
Procedia PDF Downloads 3575730 Scattering Operator and Spectral Clustering for Ultrasound Images: Application on Deep Venous Thrombi
Authors: Thibaud Berthomier, Ali Mansour, Luc Bressollette, Frédéric Le Roy, Dominique Mottier, Léo Fréchier, Barthélémy Hermenault
Abstract:
Deep Venous Thrombosis (DVT) occurs when a thrombus is formed within a deep vein (most often in the legs). This disease can be deadly if a part or the whole thrombus reaches the lung and causes a Pulmonary Embolism (PE). This disorder, often asymptomatic, has multifactorial causes: immobilization, surgery, pregnancy, age, cancers, and genetic variations. Our project aims to relate the thrombus epidemiology (origins, patient predispositions, PE) to its structure using ultrasound images. Ultrasonography and elastography were collected using Toshiba Aplio 500 at Brest Hospital. This manuscript compares two classification approaches: spectral clustering and scattering operator. The former is based on the graph and matrix theories while the latter cascades wavelet convolutions with nonlinear modulus and averaging operators.Keywords: deep venous thrombosis, ultrasonography, elastography, scattering operator, wavelet, spectral clustering
Procedia PDF Downloads 4795729 Research on Natural Lighting Design of Atriums Based on Energy-Saving Aim
Authors: Fan Yu
Abstract:
An atrium is a place for natural climate exchanging of indoor and outdoor space of buildings, which plays an active role in the overall energy conservation, climate control and environmental purification of buildings. Its greatest contribution is serving as a natural light collector and distributor to solve the problem of natural lighting in large and deep spaces. However, in real situations, the atrium space often results in energy consumption due to improper design in considering its big size and large amount use of glass. Based on the purpose of energy conservation of buildings, this paper emphasizes the significance of natural lighting of atriums. Through literature research, case analysis and other methods, four factors, namely: the light transmittance through the top of the atrium, the geometric proportion of the atrium space, the size and position of windows and the material of the surface of walls in the atrium, were studied, and the influence of different architectural compositions on the natural light distribution of the atrium is discussed. Relying on the analysis of relevant cases, it is proposed that when designing the natural lighting of the atrium, the height and width of the atrium should be paid attention to, the atrium walls are required being rough surfaces and the atrium top-level windows need to be minimized in order to introduce more natural light into the buildings and achieve the purpose of energy conservation.Keywords: energy conservation, atrium, natural lighting, architectural design
Procedia PDF Downloads 1915728 1G2A IMU\GPS Integration Algorithm for Land Vehicle Navigation
Authors: O. Maklouf, Ahmed Abdulla
Abstract:
A general decline in the cost, size, and power requirements of electronics is accelerating the adoption of integrated GPS/INS technologies in consumer applications such Land Vehicle Navigation. Researchers are looking for ways to eliminate additional components from product designs. One possibility is to drop one or more of the relatively expensive gyroscopes from microelectromechanical system (MEMS) versions of inertial measurement units (IMUs). For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a simplified integration algorithm for strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of the low-cost IMU and because of the relatively small area of the trajectory.Keywords: GPS, ParIMU, INS, Kalman filter
Procedia PDF Downloads 516