Search results for: dataset generation
4315 A Challenge of the 3ʳᵈ Millenium: The Emotional Intelligence Development
Authors: Florentina Hahaianu, Mihaela Negrescu
Abstract:
The analysis of the positive and negative effects of technology use and abuse in Generation Z comes as a necessity in order to understand their ever-changing emotional development needs. The article quantitatively analyzes the findings of a sociological questionnaire on a group of students in social sciences. It aimed to identify the changes generated by the use of digital resources in the emotional intelligence development. Among the outcomes of our study we include a predilection for IT related activities – be they social, learning, entertainment, etc. which undermines the manifestation of emotional intelligence, especially the reluctance to face-to-face interaction. In this context, the issue of emotional intelligence development comes into focus as a solution to compensate for the undesirable effects that contact with technology has on this generation.Keywords: digital resources, emotional intelligence, generation Z, students
Procedia PDF Downloads 2064314 An Application-Driven Procedure for Optimal Signal Digitization of Automotive-Grade Ultrasonic Sensors
Authors: Mohamed Shawki Elamir, Heinrich Gotzig, Raoul Zoellner, Patrick Maeder
Abstract:
In this work, a methodology is presented for identifying the optimal digitization parameters for the analog signal of ultrasonic sensors. These digitization parameters are the resolution of the analog to digital conversion and the sampling rate. This is accomplished through the derivation of characteristic curves based on Fano inequality and the calculation of the mutual information content over a given dataset. The mutual information is calculated between the examples in the dataset and the corresponding variation in the feature that needs to be estimated. The optimal parameters are identified in a manner that ensures optimal estimation performance while preventing inefficiency in using unnecessarily powerful analog to digital converters.Keywords: analog to digital conversion, digitization, sampling rate, ultrasonic
Procedia PDF Downloads 2074313 Cultural Works Interacting with the Generational Aesthetic Gap between Gen X and Gen Z in China: A Qualitative Study
Authors: Qianyu Zhang
Abstract:
The spread of digital technology in China has worsened the generation gap and intergenerational competition for cultural and aesthetic discourse. Meanwhile, the increased accessibility of cultural works has encouraged the sharing and inheritance of collective cultural memories between generations. However, not each cultural work can engage positively with efforts to bridge intergenerational aesthetic differences. This study argues that in contemporary China, where new media and the Internet are widely available, featured cultural works have more potential to help enhance the cultural aesthetic consensus among different generations, thus becoming an effective countermeasure to narrow the intergenerational aesthetic rift and cultural discontinuity. Specifically, the generational aesthetic gap is expected to be bridged or improved through the shared appreciation or consumption of cultural works that meet certain conditions by several generations. In-depth interviews of Gen X and Gen Z (N=15, respectively) in China uncovered their preferences and commonalities for cultural works and shared experiences in appreciating them. Results demonstrate that both generations’ shared appreciation of cultural work is a necessary but insufficient condition for its effective response to the generational aesthetic gap. Coding analysis rendered six dimensions that cultural works with the potential to bridge the intergenerational aesthetic divide should satisfy simultaneously: genre, theme, content, elements, quality, and accessibility. Cultural works that engage multiple senses/ compound realistic, domestic and contemporary cultural memories/ contain the narrative of family life and nationalism/ include more elements familiar to the previous generation/ are superb-produced and unaffected/ are more accessible better promote intergenerational aesthetic exchange and value recognition. Moreover, compared to the dilemma of the previous generation facing the aesthetic gap, the later generation plays a crucial role in bridging the generational aesthetic divide.Keywords: cultural works, generation gap, generation X, generation Z, cultural memory
Procedia PDF Downloads 1534312 Improvement of Ground Truth Data for Eye Location on Infrared Driver Recordings
Authors: Sorin Valcan, Mihail Gaianu
Abstract:
Labeling is a very costly and time consuming process which aims to generate datasets for training neural networks in several functionalities and projects. For driver monitoring system projects, the need for labeled images has a significant impact on the budget and distribution of effort. This paper presents the modifications done to an algorithm used for the generation of ground truth data for 2D eyes location on infrared images with drivers in order to improve the quality of the data and performance of the trained neural networks. The algorithm restrictions become tougher, which makes it more accurate but also less constant. The resulting dataset becomes smaller and shall not be altered by any kind of manual label adjustment before being used in the neural networks training process. These changes resulted in a much better performance of the trained neural networks.Keywords: labeling automation, infrared camera, driver monitoring, eye detection, convolutional neural networks
Procedia PDF Downloads 1174311 Functional Mortality of Anopheles stephensi, the Urban Malaria Vector as Induced by the Sublethal Exposure to Deltamethrin
Authors: P. Aarumugam, N. Krishnamoorthy, K. Gunasekaran
Abstract:
The mosquitoes with loss of minimum three legs especially the hind legs have the negative impact on the survival hood of mosquitoes. Three days old unfed adult female laboratory strain was selected in each generation against sublethal dosages (0.004%, 0.005%, 0.007% and 0.01%) of deltamethrin upto 40 generations. Impregnated papers with acetone were used for control. Every fourth generation, survived mosquitoes were observed for functional mortality. Hind legs lost were significantly (P< 0.05) higher in treated than the controls up to generation 24, thereafter no significant lost. In contrary, no significant forelegs lost among exposed mosquitoes. Middle legs lost were also not significant in the exposed mosquitoes except first generation (F1). The field strain (Chennai) did not show any significant loss of legs (fore or mid or hind) compared to the control. The selection pressure on mosquito population influences strong natural selection to develop various adaptive mechanisms.Keywords: Anopheles stephensi, deltamethrin, functional mortality, synthetic pyrethroids
Procedia PDF Downloads 3964310 Multi-Objective Optimal Threshold Selection for Similarity Functions in Siamese Networks for Semantic Textual Similarity Tasks
Authors: Kriuk Boris, Kriuk Fedor
Abstract:
This paper presents a comparative study of fundamental similarity functions for Siamese networks in semantic textual similarity (STS) tasks. We evaluate various similarity functions using the STS Benchmark dataset, analyzing their performance and stability. Additionally, we introduce a multi-objective approach for optimal threshold selection. Our findings provide insights into the effectiveness of different similarity functions and offer a straightforward method for threshold selection optimization, contributing to the advancement of Siamese network architectures in STS applications.Keywords: siamese networks, semantic textual similarity, similarity functions, STS benchmark dataset, threshold selection
Procedia PDF Downloads 384309 Tongue Image Retrieval Based Using Machine Learning
Authors: Ahmad FAROOQ, Xinfeng Zhang, Fahad Sabah, Raheem Sarwar
Abstract:
In Traditional Chinese Medicine, tongue diagnosis is a vital inspection tool (TCM). In this study, we explore the potential of machine learning in tongue diagnosis. It begins with the cataloguing of the various classifications and characteristics of the human tongue. We infer 24 kinds of tongues from the material and coating of the tongue, and we identify 21 attributes of the tongue. The next step is to apply machine learning methods to the tongue dataset. We use the Weka machine learning platform to conduct the experiment for performance analysis. The 457 instances of the tongue dataset are used to test the performance of five different machine learning methods, including SVM, Random Forests, Decision Trees, and Naive Bayes. Based on accuracy and Area under the ROC Curve, the Support Vector Machine algorithm was shown to be the most effective for tongue diagnosis (AUC).Keywords: medical imaging, image retrieval, machine learning, tongue
Procedia PDF Downloads 814308 Study the Effect of Leading-Edge Serration at Owl Wing Feathers on Flow-Induced Noise Generation
Authors: Suprabha Islam, Sifat Ullah Tanzil
Abstract:
During past few decades, being amazed by the excellent silent flight of owl, scientists have been trying to demystify the unique features of its wing feathers. Our present study is dedicated to taking our understanding further on this phenomenon. In this present study, a numerical investigation was performed to analyze how the shape of the leading-edge serration at owl wing feathers effects the flow-induced noise generation. For the analysis, an owl inspired single feather wing model was prepared for both with and without serrations at the leading edge. The serration profiles were taken at different positions of the vane length for a single feather. The broadband noise was studied to quantify the local contribution to the total acoustic power generated by the flow, where the results clearly showed the effect of serrations in reducing the noise generation. It was also clearly visible that the shape of the serration has a very strong influence on noise generation. The frequency spectrum of noise was also analyzed and a strong relation was found between the shape of the serration and the noise generation. It showed that the noise suppression is strongly influenced by the height to length ratio of the serration. With the increase in height to length ratio, the noise suppression is enhanced further.Keywords: aeroacoustics, aerodynamic, biomimetics, serrations
Procedia PDF Downloads 1694307 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19
Authors: M. Bilal Ishfaq, Adnan N. Qureshi
Abstract:
COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.Keywords: COVID-19, feature engineering, artificial neural networks, radiology images
Procedia PDF Downloads 754306 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network
Authors: Hozaifa Zaki, Ghada Soliman
Abstract:
In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.Keywords: computer vision, deep learning, image processing, character recognition
Procedia PDF Downloads 824305 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem
Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq
Abstract:
High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.Keywords: artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch
Procedia PDF Downloads 1894304 Adjusting Electricity Demand Data to Account for the Impact of Loadshedding in Forecasting Models
Authors: Migael van Zyl, Stefanie Visser, Awelani Phaswana
Abstract:
The electricity landscape in South Africa is characterized by frequent occurrences of loadshedding, a measure implemented by Eskom to manage electricity generation shortages by curtailing demand. Loadshedding, classified into stages ranging from 1 to 8 based on severity, involves the systematic rotation of power cuts across municipalities according to predefined schedules. However, this practice introduces distortions in recorded electricity demand, posing challenges to accurate forecasting essential for budgeting, network planning, and generation scheduling. Addressing this challenge requires the development of a methodology to quantify the impact of loadshedding and integrate it back into metered electricity demand data. Fortunately, comprehensive records of loadshedding impacts are maintained in a database, enabling the alignment of Loadshedding effects with hourly demand data. This adjustment ensures that forecasts accurately reflect true demand patterns, independent of loadshedding's influence, thereby enhancing the reliability of electricity supply management in South Africa. This paper presents a methodology for determining the hourly impact of load scheduling and subsequently adjusting historical demand data to account for it. Furthermore, two forecasting models are developed: one utilizing the original dataset and the other using the adjusted data. A comparative analysis is conducted to evaluate forecast accuracy improvements resulting from the adjustment process. By implementing this methodology, stakeholders can make more informed decisions regarding electricity infrastructure investments, resource allocation, and operational planning, contributing to the overall stability and efficiency of South Africa's electricity supply system.Keywords: electricity demand forecasting, load shedding, demand side management, data science
Procedia PDF Downloads 614303 Features Reduction Using Bat Algorithm for Identification and Recognition of Parkinson Disease
Authors: P. Shrivastava, A. Shukla, K. Verma, S. Rungta
Abstract:
Parkinson's disease is a chronic neurological disorder that directly affects human gait. It leads to slowness of movement, causes muscle rigidity and tremors. Gait serve as a primary outcome measure for studies aiming at early recognition of disease. Using gait techniques, this paper implements efficient binary bat algorithm for an early detection of Parkinson's disease by selecting optimal features required for classification of affected patients from others. The data of 166 people, both fit and affected is collected and optimal feature selection is done using PSO and Bat algorithm. The reduced dataset is then classified using neural network. The experiments indicate that binary bat algorithm outperforms traditional PSO and genetic algorithm and gives a fairly good recognition rate even with the reduced dataset.Keywords: parkinson, gait, feature selection, bat algorithm
Procedia PDF Downloads 5454302 Fault Detection and Isolation of a Three-Tank System using Analytical Temporal Redundancy, Parity Space/Relation Based Residual Generation
Authors: A. T. Kuda, J. J. Dayya, A. Jimoh
Abstract:
This paper investigates the fault detection and Isolation technique of measurement data sets from a three tank system using analytical model-based temporal redundancy which is based on residual generation using parity equations/space approach. It further briefly outlines other approaches of model-based residual generation. The basic idea of parity space residual generation in temporal redundancy is dynamic relationship between sensor outputs and actuator inputs (input-output model). These residuals where then used to detect whether or not the system is faulty and indicate the location of the fault when it is faulty. The method obtains good results by detecting and isolating faults from the considered data sets measurements generated from the system.Keywords: fault detection, fault isolation, disturbing influences, system failure, parity equation/relation, structured parity equations
Procedia PDF Downloads 3024301 An Experimental Study on Evacuated Tube Solar Collector for Steam Generation in India
Authors: Avadhesh Yadav, Anunaya Saraswat
Abstract:
An evacuated tube solar collector is experimentally studied for steam generation. When the solar radiation falls on evacuated tubes, this energy is absorbed by the tubes and transferred to water with natural conduction and convection. A natural circulation of water occurs due to the inclination in tubes and header. In this experimental study, the efficiency of collector has been calculated. The result shows that the collector attains the maximum efficiency of 46.26% during 14:00 to 15:00h. Steam has been generated for two hours from 13:30 to 15:30 h on a winter day. Maximum solar intensity and maximum ambient temperatures are 795W/m2 and 19oC respectively on this day.Keywords: evacuated tube, solar collector, hot water, steam generation
Procedia PDF Downloads 3024300 Risk Factors and Regional Difference in the Prevalence of Fecal Carriage Third-Generation Cephalosporin-Resistant E. Coli in Taiwan
Authors: Wan-Ling Jiang, Hsin Chi, Jia-Lu Cheng, Ming-Fang Cheng
Abstract:
Background: Investigating the risk factors for the fecal carriage of third-generation cephalosporin-resistant E.coli could contribute to further disease prevention. Previous research on third-generation cephalosporin-resistant prevalence in children in different regions of Taiwan is limited. This project aims to explore the risk factors and regional differences in the prevalence of third-generation cephalosporin-resistant and other antibiotic-resistant E. coli in the northern, southern, and eastern regions of Taiwan. Methods: We collected data from children aged 0 to 18 from community or outpatient clinics from July 2022 to May 2023 in southern, northern, and eastern Taiwan. The questionnaire was designed to survey the characteristics of participants and possible risk factors, such as clinical information, household environment, drinking water, and food habits. After collecting fecal samples and isolating stool culture with E.coli, antibiotic sensitivity tests and MLST typing were performed. Questionnaires were used to analyze the risk factors of third-generation cephalosporin-resistant E. coli in the three different regions of Taiwan. Results: In the total 246 stool samples, third-generation cephalosporin-resistant E.coli accounted for 37.4% (97/246) of all isolates. Among the three different regions of Taiwan, the highest prevalence of fecal carriage with third-generation cephalosporin-resistant E.coli was observed in southern Taiwan (42.7%), followed by northern Taiwan (35.5%) and eastern Taiwan (28.4%). Multi-drug resistant E. coli had prevalence rates of 51.9%, 66.3%, and 37.1% in the northern, southern, and eastern regions, respectively. MLST typing revealed that ST131 was the most prevalent type (11.8%). The prevalence of ST131 in northern, southern, and eastern Taiwan was 10.1%, 12.3%, and 13.2%, respectively. Risk factors analysis identified lower paternal education, overweight status, and non-vegetarian diet as statistical significance risk factors for third-generation cephalosporin-resistant E.coli. Conclusion: The fecal carriage rates of antibiotic-resistant E. coli among Taiwanese children were on the rise. This study found regional disparities in the prevalence of third-generation cephalosporin-resistant and multi-drug-resistant E. coli, with southern Taiwan having the highest prevalence. Lower paternal education, overweight, and non-vegetarian diet were the potential risk factors of third-generation cephalosporin-resistant E. coli in this study.Keywords: Escherichia coli, fecal carriage, antimicrobial resistance, risk factors, prevalence
Procedia PDF Downloads 674299 Older Adult Grandparents' Voices as a Principle Care Giver in a Skipped-Generation Family
Authors: Kerdsiri Hongthai, Darunee Jongudomkarn, Rutja Phuphaibul
Abstract:
In Thailand, many adults in rural areas migrate to seek employ¬ment resulting in skipped-generation family where grandparents care for grandchildren with no other adults present. This is a preliminary study using qualitative case study methods, aimed to explore the situations of older adult grandparents' experiences in skipped-generation family in North-East of Thailand. Data were collected by in-depth inter¬views with 6 grandparents living in skipped-generation families; 5 females and 1 males grandparents, aged 62-75, some of them have diabetes mellitus, hypertension, during November to December, 2017. The finding themes are: ‘Caught up in the middle’: the older adults were pleased to have grandchildren but, at the same time, acknowledge the burden that this placed on them, especially when the migrant children failed to send enough money back to support the family. ‘Getting bad health’: they reported to be fatigued and stressed due to burden of caring for their grandchildren without support. This situation can aggravate problems of poor health status and be worsening economic status of the grandparents. In some cases of deprivation, the grandparents feel that having to be the sole care providers of their grandchildren can negative adversely affect their mental status. It is important to find out in other sectors similar to Thailand and lead to more in-depth research to answer the research questions about policy and social support in skipped-generation family in the future.Keywords: older adult grandparents, experiences, principle care giver, skipped-generation family
Procedia PDF Downloads 1444298 A Transformer-Based Question Answering Framework for Software Contract Risk Assessment
Authors: Qisheng Hu, Jianglei Han, Yue Yang, My Hoa Ha
Abstract:
When a company is considering purchasing software for commercial use, contract risk assessment is critical to identify risks to mitigate the potential adverse business impact, e.g., security, financial and regulatory risks. Contract risk assessment requires reviewers with specialized knowledge and time to evaluate the legal documents manually. Specifically, validating contracts for a software vendor requires the following steps: manual screening, interpreting legal documents, and extracting risk-prone segments. To automate the process, we proposed a framework to assist legal contract document risk identification, leveraging pre-trained deep learning models and natural language processing techniques. Given a set of pre-defined risk evaluation problems, our framework utilizes the pre-trained transformer-based models for question-answering to identify risk-prone sections in a contract. Furthermore, the question-answering model encodes the concatenated question-contract text and predicts the start and end position for clause extraction. Due to the limited labelled dataset for training, we leveraged transfer learning by fine-tuning the models with the CUAD dataset to enhance the model. On a dataset comprising 287 contract documents and 2000 labelled samples, our best model achieved an F1 score of 0.687.Keywords: contract risk assessment, NLP, transfer learning, question answering
Procedia PDF Downloads 1294297 Problems in Computational Phylogenetics: The Germano-Italo-Celtic Clade
Authors: Laura Mclean
Abstract:
A recurring point of interest in computational phylogenetic analysis of Indo-European family trees is the inference of a Germano-Italo-Celtic clade in some versions of the trees produced. The presence of this clade in the models is intriguing as there is little evidence for innovations shared among Germanic, Italic, and Celtic, the evidence generally used in the traditional method to construct a subgroup. One source of this unexpected outcome could be the input to the models. The datasets in the various models used so far, for the most part, take as their basis the Swadesh list, a list compiled by Morris Swadesh and then revised several times, containing up to 207 words that he believed were resistant to change among languages. The judgments made by Swadesh for this list, however, were subjective and based on his intuition rather than rigorous analysis. Some scholars used the Swadesh 200 list as the basis for their Indo-European dataset and made cognacy judgements for each of the words on the list. Another dataset is largely based on the Swadesh 207 list as well although the authors include additional lexical and non-lexical data, and they implement ‘split coding’ to deal with cases of polymorphic characters. A different team of scholars uses a different dataset, IECoR, which combines several different lists, one of which is the Swadesh 200 list. In fact, the Swadesh list is used in some form in every study surveyed and each dataset has three words that, when they are coded as cognates, seemingly contribute to the inference of a Germano-Italo-Celtic clade which could happen due to these clades sharing three words among only themselves. These three words are ‘fish’, ‘flower’, and ‘man’ (in the case of ‘man’, one dataset includes Lithuanian in the cognacy coding and removes the word ‘man’ from the screened data). This collection of cognates shared among Germanic, Italic, and Celtic that were deemed important enough to be included on the Swadesh list, without the ability to account for possible reasons for shared cognates that are not shared innovations, gives an impression of affinity between the Germanic, Celtic, and Italic branches without adequate methodological support. However, by changing how cognacy is defined (ie. root cognates, borrowings vs inherited cognates etc.), we will be able to identify whether these three cognates are significant enough to infer a clade for Germanic, Celtic, and Italic. This paper examines the question of what definition of cognacy should be used for phylogenetic datasets by examining the Germano-Italo-Celtic clade as a case study and offers insights into the reconstruction of a Germano-Italo-Celtic clade.Keywords: historical, computational, Italo-Celtic, Germanic
Procedia PDF Downloads 504296 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks
Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang
Abstract:
Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.Keywords: CNN, classification, deep learning, GAN, Resnet50
Procedia PDF Downloads 884295 Managing the Effects of Wet Coal on Generation in Thermal Power Station: A Case Study
Authors: Ravindra Gohane, S. V. Deshmukh
Abstract:
The coal acts as a fuel on a very large scale. Coal forms the basis of any thermal power plant. Different types of coal are available for utilization. The moisture content, volatile nature and ash content determines the type of the coal. Out of these moisture plays a very important part as it is present naturally within the coal and is added while handling the coal and is termed as wet coal. The problems of wet coal are many and more particularly during rainy season such as generation loss, jamming of crusher, reduction in calorific value, transportation of coal etc. Efforts are made to resolve the problems arising out of wet coal worldwide. This paper highlights the issue of resolving the problem due to wet coal with the help of a case study involving installation of V-type wiper on the conveyer belt.Keywords: coal handling plant, wet coal, v-type, generation
Procedia PDF Downloads 3584294 Machine Learning Methods for Network Intrusion Detection
Authors: Mouhammad Alkasassbeh, Mohammad Almseidin
Abstract:
Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE. Procedia PDF Downloads 2344293 Mapping of Textile Waste Generation across the Value Chains Operating in the Textile Industry
Authors: Veena Nair, Srikanth Prakash, Mayuri Wijayasundara
Abstract:
Globally, the textile industry is a key contributor to the generation of solid waste which gets landfilled. Textile waste generation generally occurs in three stages, namely: producer waste, pre-consumer waste, and post-consumer waste. However, the different processes adopted in textile material extraction, manufacturing, and use have their respective impact in terms of the quantity of waste being diverted to landfills. The study is focused on assessing the value chains of the two most common textile fibres: cotton and polyester, catering to a broad categories of apparel products. This study attempts to identify and evaluate the key processes adopted by the textile industry at each of the stages in their value chain in terms of waste generation. The different processes identified in each of the stages in the textile value chains are mapped to their respective contribution in generating fibre waste which eventually gets diverted to landfill. The results of the study are beneficial for the overall industry in terms of improving the traceability of waste in the value chains and the selection of processes and behaviours facilitating the reduction of environmental impacts associated with landfills.Keywords: textile waste, textile value chains, landfill waste, waste mapping
Procedia PDF Downloads 2064292 A Correlative Study of Heating Values of Saw Dust and Rice Husks in the Thermal Generation of Electricity
Authors: Muhammad Danladi, Muhammad Bura Garba, Muhammad Yahaya, Dahiru Muhammad
Abstract:
Biomass is one of the primary sources of energy supply, which contributes to about 78% of Nigeria. In this work, a comparative analysis of the heating values of sawdust and rice husks in the thermal generation of electricity was carried out. In the study, different masses of biomass were used and the corresponding electromotive force in millivolts was obtained. A graph of e.m.f was plotted against the mass of each biomass and a gradient was obtained. Bar graphs were plotted to represent the values of e.m.f and masses of the biomass. Also, a graph of e.m.f against eating values of sawdust and rice husks was plotted, and in each case, as the e.m.f increases also, the heating values increases. The result shows that saw dust with 0.033Mv/g gradient and 3.5 points of intercept had the highest gradient, followed by rice husks with 0.026Mv/g gradient and 2.6 points of intercept. It is, therefore, concluded that sawdust is the most efficient of the two types of biomass in the thermal generation of electricity.Keywords: biomass, electricity, thermal, generation
Procedia PDF Downloads 984291 Contemporary Technological Developments in Urban Warfare
Authors: Mehmet Ozturk, Serdal Akyuz, Halit Turan
Abstract:
By the evolving technology, the nature of the war has been changed since the beginning of the history. In the first generation war, the bayonet came to the fore in battlefields; successively; in the second-generation firepower; in the third generation maneuver. Today, in the fourth-generation, fighters, sides, and even fighters’ borders are unclear; consequently, lines of the battles have lost their significance. Furthermore, the actors in the battles can be state or non-state, military, paramilitary or civilian. In order to change the balance according to their interests, parties have utilized the urban areas as warfare. The main reason for using urban areas as a battlefield is the imbalance between parties. To balance the power strength, exploiting technological developments has utmost importance. There are many newly developed technologies for urban warfare such as change in the size of the unmanned aerial vehicle, increased usage of unmanned ground vehicles (especially in supply and evacuation purposes), systems showing the behind of the wall, simulations used for educational purposes. This study will focus on the technological equipment being used for urban warfare.Keywords: urban warfare, unmanned ground vehicles, technological developments, nature of the war
Procedia PDF Downloads 4194290 Evaluation of Model-Based Code Generation for Embedded Systems–Mature Approach for Development in Evolution
Authors: Nikolay P. Brayanov, Anna V. Stoynova
Abstract:
Model-based development approach is gaining more support and acceptance. Its higher abstraction level brings simplification of systems’ description that allows domain experts to do their best without particular knowledge in programming. The different levels of simulation support the rapid prototyping, verifying and validating the product even before it exists physically. Nowadays model-based approach is beneficial for modelling of complex embedded systems as well as a generation of code for many different hardware platforms. Moreover, it is possible to be applied in safety-relevant industries like automotive, which brings extra automation of the expensive device certification process and especially in the software qualification. Using it, some companies report about cost savings and quality improvements, but there are others claiming no major changes or even about cost increases. This publication demonstrates the level of maturity and autonomy of model-based approach for code generation. It is based on a real live automotive seat heater (ASH) module, developed using The Mathworks, Inc. tools. The model, created with Simulink, Stateflow and Matlab is used for automatic generation of C code with Embedded Coder. To prove the maturity of the process, Code generation advisor is used for automatic configuration. All additional configuration parameters are set to auto, when applicable, leaving the generation process to function autonomously. As a result of the investigation, the publication compares the quality of generated embedded code and a manually developed one. The measurements show that generally, the code generated by automatic approach is not worse than the manual one. A deeper analysis of the technical parameters enumerates the disadvantages, part of them identified as topics for our future work.Keywords: embedded code generation, embedded C code quality, embedded systems, model-based development
Procedia PDF Downloads 2444289 Numerical Study of Entropy Generation Due to Hybrid Nano-Fluid Flow through Coaxial Porous Disks
Authors: Muhammad Bilal Ameen, M. Zubair Akbar Qureshi
Abstract:
The current investigation of two-dimensional hybrid nanofluid flows with two coaxial parallel disks has been presented. Consider the hybrid nanofluid has been taken as steady-state. Consider the coaxial disks that have been porous. Consider the heat equation to examine joule heating and viscous dissipation effects. Nonlinear partial differential equations have been solved numerically. For shear stress and heat transfer, results are tabulated. Hybrid nanoparticles and Eckert numbers are increasing for heat transfer. Entropy generation is expanded with radiation parameters Eckert, Reynold, Prandtl, and Peclet numbers. A set of ordinary differential equations is obtained to utilize the capable transformation variables. The numerical solution of the continuity, momentum, energy, and entropy generation equations is obtaining using the command bvp4c of Matlab as a solver. To explore the impact of main parameters like suction/infusion, Prandtl, Reynold, Eckert, Peclet number, and volume fraction parameters, various graphs have been plotted and examined. It is concluded that a convectional nanofluid is highly compared by entropy generation with the boundary layer of hybrid nanofluid.Keywords: entropy generation, hybrid nano fluid, heat transfer, porous disks
Procedia PDF Downloads 1504288 Efficacy of Social-emotional Learning Programs Amongst First-generation Immigrant Children in Canada and The United States- A Scoping Review
Authors: Maria Gabrielle "Abby" Dalmacio
Abstract:
Social-emotional learning is a concept that is garnering more importance when considering the development of young children. The aim of this scoping literature review is to explore the implementation of social-emotional learning programs conducted with first-generation immigrant young children ages 3-12 years in North America. This review of literature focuses on social-emotional learning programs taking place in early childhood education centres and elementary school settings that include the first-generation immigrant children population to determine if and how their understanding of social-emotional learning skills may be impacted by the curriculum being taught through North American educational pedagogy. Research on early childhood education and social-emotional learning reveals the lack of inter-cultural adaptability in social emotional learning programs and the potential for immigrant children as being assessed as developmentally delayed due to programs being conducted through standardized North American curricula. The results of this review point to a need for more research to be conducted with first-generation immigrant children to help reform social-emotional learning programs to be conducive for each child’s individual development. There remains to be a gap of knowledge in the current literature on social-emotional learning programs and how educators can effectively incorporate the intercultural perspectives of first-generation immigrant children in early childhood education.Keywords: early childhood education, social-emotional learning, first-generation immigrant children, north america, inter-cultural perspectives, cultural diversity, early educational frameworks
Procedia PDF Downloads 1004287 A Design Method for Wind Turbine Blade to Have Uniform Strength and Optimum Power Generation Performance
Authors: Pengfei Liu, Yiyi Xu
Abstract:
There have been substantial incidents of wind turbine blade fractures and failures due to the lack of systematic blade strength design method incorporated with the aerodynamic forces and power generation efficiency. This research was to develop a methodology and procedure for the wind turbine rotor blade strength taking into account the strength, integration, and aerodynamic performance in terms of power generation efficiency. The wind turbine blade designed using this method and procedure will have a uniform strength across the span to save unnecessary thickness in many blade radial locations and yet to maintain the optimum power generation performance. A turbine rotor code, taking into account both aerodynamic and structural properties, was developed. An existing wind turbine blade was used as an example. For a condition of extreme wind speed of 100 km per hour, the design reduced about 19% of material usage while maintaining the optimum power regeneration efficiency.Keywords: renewable energy, wind turbine, turbine blade strength, aerodynamics-strength coupled optimization
Procedia PDF Downloads 1794286 Magnetic Field Generation in Inhomogeneous Plasma via Ponderomotive Force
Authors: Fatemeh Shahi, Mehdi Sharifian, Laia Shahrassai, Elham Eskandari A.
Abstract:
A new mechanism is reported here for magnetic field generation in laser-plasma interaction by means of nonlinear ponderomotive force. The plasma considered here is unmagnetized inhomogeneous plasma with an exponentially decreasing profile. A damped periodic magnetic field with a relatively lower frequency is obtained using the ponderomotive force exerted on plasma electrons. Finally, with an electric field and by using Faraday’s law, the magnetic field profile in the plasma has been obtained. Because of the negative exponential density profile, the generated magnetic field is relatively slowly oscillating and damped through the plasma.Keywords: magnetic field generation, laser-plasma interaction, ponderomotive force, inhomogeneous plasma
Procedia PDF Downloads 293