Search results for: aircraft maintenance
1775 Implementation of Enterprise Asset Management (E-AM) System at Oman Electricity Transmission Company
Authors: Omran Al Balushi, Haitham Al Rawahi
Abstract:
Enterprise Asset Management (eAM) has been implemented across different Generation, Transmission and Distribution subsidiaries in Nama Group companies. As part of Nama group, Oman Electricity Transmission Company (OETC) was the first company to implement this system. It was very important for OETC to implement and maintain such a system to achieve its business objectives and for effective operations, which will also support the delivery of the asset management strategy. Enterprise Asset Management (eAM) addresses the comprehensive asset maintenance requirements of Oman Electricity Transmission Company (OETC). OETC needs to optimize capacity and increase utilization, while lowering unit production. E-AM will enable OETC to adopt this strategy. Implementation of e-AM has improved operation performance with preventive and scheduled maintenance as well as it increased safety. Implementation of e-AM will also enable OETC to create optimal asset management strategy which will increase revenue and decrease cost by effectively monitoring operational data such as maintenance history and operation conditions. CMMS (Computerised Maintenance Management System) is the main software and the back-bone of e-AM system. It is used to provide an improved working practice to properly establish information and data flow related to maintenance activities. Implementation of e-AM system was one of the factors that supported OETC to achieve ISO55001 Certificate on fourth quarter of 2016. Also, full implementation of e-AM system will result in strong integration between CMMS and Geographical Information Systems (GIS) application and it will improve OETC to build a reliable maintenance strategy for all asset classes in its Transmission network. In this paper we will share our experience and knowledge of implementing such a system and how it supported OETC’s management to make decisions. Also we would highlight the challenges and difficulties that we encountered during the implementation of e-AM. Also, we will list some features and advantages of e-AM in asset management, preventive maintenance and maintenance cost management.Keywords: CMMS, Maintenance Management, Asset Management, Maintenance Strategy
Procedia PDF Downloads 1441774 Implementing a Strategy of Reliability Centred Maintenance (RCM) in the Libyan Cement Industry
Authors: Khalid M. Albarkoly, Kenneth S. Park
Abstract:
The substantial development of the construction industry has forced the cement industry, its major support, to focus on achieving maximum productivity to meet the growing demand for this material. Statistics indicate that the demand for cement rose from 1.6 billion metric tons (bmt) in 2000 to 4bmt in 2013. This means that the reliability of a production system needs to be at the highest level that can be achieved by good maintenance. This paper studies the extent to which the implementation of RCM is needed as a strategy for increasing the reliability of the production systems component can be increased, thus ensuring continuous productivity. In a case study of four Libyan cement factories, 80 employees were surveyed and 12 top and middle managers interviewed. It is evident that these factories usually breakdown more often than once per month which has led to a decline in productivity, they cannot produce more than 50% of their designed capacity. This has resulted from the poor reliability of their production systems as a result of poor or insufficient maintenance. It has been found that most of the factories’ employees misunderstand maintenance and its importance. The main cause of this problem is the lack of qualified and trained staff, but in addition, it has been found that most employees are not found to be motivated as a result of a lack of management support and interest. In response to these findings, it has been suggested that the RCM strategy should be implemented in the four factories. The paper shows the importance of considering the development of maintenance strategies through the implementation of RCM in these factories. The purpose of it would be to overcome the problems that could reduce the level of reliability of the production systems. This study could be a useful source of information for academic researchers and the industrial organisations which are still experiencing problems in maintenance practices.Keywords: Libyan cement industry, reliability centred maintenance, maintenance, production, reliability
Procedia PDF Downloads 3891773 Mitigation of High Voltage Equipment Design Deficiencies for Improved Operation and Maintenance
Authors: Riyad Awad, Abdulmohsen Alghadeer, Meshari Otaibi
Abstract:
Proper operation and maintenance (O&M) activities of high voltage equipment can lead to an increased asset lifecycle and maintain its integrity and reliability. Such a vital process is important to be proactively considered during equipment design and manufacturing phases by removing and eliminating any obstacles in the equipment which adversely affect the (O&M) activities. This paper presents a gap analysis pertaining to difficulties in performing operations and maintenance (O&M) high voltage electrical equipment, includes power transformers, switch gears, motor control center, disconnect switches and circuit breakers. The difficulties are gathered from field personnel, equipment design review comments, quality management system, and lessons learned database. The purpose of the gap analysis is to mitigate and prevent the (O&M) difficulties as early as possible in the design stage of the equipment lifecycle. The paper concludes with several recommendations and corrective actions for all identified gaps in order to reduce the cost (O&M) difficulties and improve the equipment lifecycle.Keywords: operation and maintenance, high voltage equipment, equipment lifecycle, reduce the cost of maintenance
Procedia PDF Downloads 1661772 Contents for the Maintenance and Troubleshooting of Anti-lock Braking System for Automobile Craftsmen in Nigeria
Authors: Arah Abubakar Saidu, Audu Rufai, Abdulkadir Mohammed, Ibrahim Yakubu Umar, Idris Abubakar Mohammed
Abstract:
The study determined the contents for the maintenance and troubleshooting of an anti-lock braking system for automobile craftsmen in Nigeria. Two research questions were raised and answered and two null hypotheses were formulated and tested at a .05 level of significance. The study adopted a descriptive survey research design. The study was conducted in Federal Capital Territory (FCT), Abuja, Kaduna, Kano, Lagos and Plateau States, Nigeria. The targeted population for the study was 99 consisting of all 43 non-teaching Subject Matter Experts (SMEs). The study utilized the whole population of the study. The instruments used for data collection were Anti-lock Braking System Maintenance and Troubleshooting Contents Questionnaire (ABSMTQ). Mean was used to analyze data that answered research questions and Z-test was used in testing the null hypotheses. Findings revealed, among others, that 81 items as content for the maintenance of ABS and 61 items as content for troubleshooting ABS for automobile craftsmen in Nigeria. Based on the findings of the study, the recommended, among others, that the National Board for Technical Education should include the contents for the maintenance and troubleshooting ABS in Motor Vehicle Mechanic Works curriculum used for training automobile craftsmen through the process of curriculum review in order to equip them with the competencies in troubleshooting and maintenance of ABS.Keywords: anti-lock braking system, maintenance, troubleshooting, automobile craftsmen
Procedia PDF Downloads 881771 Productivity Improvement of Faffa Food Share Company Using a Computerized Maintenance Management System
Authors: Gadisa Alemayehu, Muralidhar Avvari, Atkilt Mulu G.
Abstract:
Since 1962 EC, the Faffa Food Share Company has been producing and supplying flour (famix) and value-added flour (baby food) in Ethiopia. It meets nearly all of the country's total flour demand, both for relief and commercial markets. However, it is incompetent in the international market due to a poor maintenance management system. The results of recorded documents and stopwatches revealed that frequent failure machines, as well as a poor maintenance management system, cause increased production downtimes, resulting in a 29.19 percent decrease in production from the planned production. As a result, the current study's goal is to recommend newly developed software for use in and as a Computerized Maintenance Management System (CMMS). As a result, the system increases machine reliability and decreases the frequency of equipment failure, reducing breakdown time and maintenance costs. The company's overall manufacturing performance improved by 4.45 percent, particularly after the implementation of the CMMS.Keywords: CMMS, manufacturing performance, delivery, availability, flexibility, Faffa Food Share Company
Procedia PDF Downloads 1361770 Reliability-Based Life-Cycle Cost Model for Engineering Systems
Authors: Reza Lotfalian, Sudarshan Martins, Peter Radziszewski
Abstract:
The effect of reliability on life-cycle cost, including initial and maintenance cost of a system is studied. The failure probability of a component is used to calculate the average maintenance cost during the operation cycle of the component. The standard deviation of the life-cycle cost is also calculated as an error measure for the average life-cycle cost. As a numerical example, the model is used to study the average life cycle cost of an electric motor.Keywords: initial cost, life-cycle cost, maintenance cost, reliability
Procedia PDF Downloads 6051769 Towards a Simulation Model to Ensure the Availability of Machines in Maintenance Activities
Authors: Maryam Gallab, Hafida Bouloiz, Youness Chater, Mohamed Tkiouat
Abstract:
The aim of this paper is to present a model based on multi-agent systems in order to manage the maintenance activities and to ensure the reliability and availability of machines just with the required resources (operators, tools). The interest of the simulation is to solve the complexity of the system and to find results without cost or wasting time. An implementation of the model is carried out on the AnyLogic platform to display the defined performance indicators.Keywords: maintenance, complexity, simulation, multi-agent systems, AnyLogic platform
Procedia PDF Downloads 3051768 Administrative and Legal Instruments of Disciplining Maintenance Debtors in Poland - A Critical Analysis of Their Effectiveness
Authors: Tomasz Kosicki
Abstract:
The subject of the presentation will be the administrative and legal instruments of disciplining maintenance debtors adopted by the Polish legislator, the substantive legal bases of which were adopted in the Act of 7 September 2007 on assistance to persons entitled to maintenance (Journal of Laws of 2022, item 1205). These provisions are complemented by procedural regulations resulting from the Act of 14 June 1960 - Code of Administrative Procedure (Journal of Laws of 2021, item 735, as amended). The first part of the paper will focus on the administrative proceedings regarding the recognition of the debtor as evading maintenance obligations. The initiation of this procedure ex officio is preceded by a number of actions by public administration bodies, including Conducting a maintenance interview with the debtor, during which his health and professional situation and the reasons for non-payment of maintenance are determined, Professional activation in a situation where the lack of payment of maintenance results from the lack of employment. The reasons for initiating the above-mentioned administrative proceedings ex officio will be indicated, taking into account the current views of the judicial decisions. The second part of the paper will focus on the instrument of retaining the driving license of the debtor, who was previously found to be evading maintenance. The author points out that the detention of the driving license is one of the types of administrative sanctions of a very severe nature. Doubts of a constitutional nature will also be highlighted, as well as those concerning the effectiveness of this legal instrument and the protection of the debtor's rights. The thesis will be presented that the administrative procedure for the retention of a driving license does not fulfill its role and especially does not affect the collection of maintenance obligations from debtors. All the considerations will be based on the current and most representative views of the literature on the subject and the jurisprudence of Polish administrative courts.Keywords: maintenance debtor, administrative proceedings, detention of driving license, administrative sanction, polish administrative law, public administration
Procedia PDF Downloads 861767 Optimal Tamping for Railway Tracks, Reducing Railway Maintenance Expenditures by the Use of Integer Programming
Authors: Rui Li, Min Wen, Kim Bang Salling
Abstract:
For the modern railways, maintenance is critical for ensuring safety, train punctuality and overall capacity utilization. The cost of railway maintenance in Europe is high, on average between 30,000 – 100,000 Euros per kilometer per year. In order to reduce such maintenance expenditures, this paper presents a mixed 0-1 linear mathematical model designed to optimize the predictive railway tamping activities for ballast track in the planning horizon of three to four years. The objective function is to minimize the tamping machine actual costs. The approach of the research is using the simple dynamic model for modelling condition-based tamping process and the solution method for finding optimal condition-based tamping schedule. Seven technical and practical aspects are taken into account to schedule tamping: (1) track degradation of the standard deviation of the longitudinal level over time; (2) track geometrical alignment; (3) track quality thresholds based on the train speed limits; (4) the dependency of the track quality recovery on the track quality after tamping operation; (5) Tamping machine operation practices (6) tamping budgets and (7) differentiating the open track from the station sections. A Danish railway track between Odense and Fredericia with 42.6 km of length is applied for a time period of three and four years in the proposed maintenance model. The generated tamping schedule is reasonable and robust. Based on the result from the Danish railway corridor, the total costs can be reduced significantly (50%) than the previous model which is based on optimizing the number of tamping. The different maintenance strategies have been discussed in the paper. The analysis from the results obtained from the model also shows a longer period of predictive tamping planning has more optimal scheduling of maintenance actions than continuous short term preventive maintenance, namely yearly condition-based planning.Keywords: integer programming, railway tamping, predictive maintenance model, preventive condition-based maintenance
Procedia PDF Downloads 4421766 Development of a Tilt-Rotor Aircraft Model Using System Identification Technique
Authors: Ferdinando Montemari, Antonio Vitale, Nicola Genito, Giovanni Cuciniello
Abstract:
The introduction of tilt-rotor aircraft into the existing civilian air transportation system will provide beneficial effects due to tilt-rotor capability to combine the characteristics of a helicopter and a fixed-wing aircraft into one vehicle. The disposability of reliable tilt-rotor simulation models supports the development of such vehicle. Indeed, simulation models are required to design automatic control systems that increase safety, reduce pilot's workload and stress, and ensure the optimal aircraft configuration with respect to flight envelope limits, especially during the most critical flight phases such as conversion from helicopter to aircraft mode and vice versa. This article presents a process to build a simplified tilt-rotor simulation model, derived from the analysis of flight data. The model aims to reproduce the complex dynamics of tilt-rotor during the in-flight conversion phase. It uses a set of scheduled linear transfer functions to relate the autopilot reference inputs to the most relevant rigid body state variables. The model also computes information about the rotor flapping dynamics, which are useful to evaluate the aircraft control margin in terms of rotor collective and cyclic commands. The rotor flapping model is derived through a mixed theoretical-empirical approach, which includes physical analytical equations (applicable to helicopter configuration) and parametric corrective functions. The latter are introduced to best fit the actual rotor behavior and balance the differences existing between helicopter and tilt-rotor during flight. Time-domain system identification from flight data is exploited to optimize the model structure and to estimate the model parameters. The presented model-building process was applied to simulated flight data of the ERICA Tilt-Rotor, generated by using a high fidelity simulation model implemented in FlightLab environment. The validation of the obtained model was very satisfying, confirming the validity of the proposed approach.Keywords: flapping dynamics, flight dynamics, system identification, tilt-rotor modeling and simulation
Procedia PDF Downloads 1991765 Administrative and Legal Instruments of Disciplining Maintenance (alimony) Debtors in Poland - A Critical Analysis of their Effectiveness
Authors: Tomasz Kosicki
Abstract:
The subject of the presentation will be the administrative and legal instruments of disciplining maintenance debtors adopted by the Polish legislator, the substantive legal bases of which were adopted in the Act of 7 September 2007 on assistance to persons entitled to maintenance (Journal of Laws of 2022, item 1205). These provisions are complemented by procedural regulations resulting from the Act of 14 June 1960 - Code of Administrative Procedure (Journal of Laws of 2021, item 735, as amended). The first part of the paper will focus on the administrative proceedings regarding the recognition of the debtor as evading maintenance obligations. The initiation of this procedure ex officio is preceded by a number of actions by public administration bodies, including Conducting a maintenance interview with the debtor, during which his health and professional situation and the reasons for non-payment of maintenance are determined, Professional activation in a situation where the lack of payment of maintenance results from the lack of employment. The reasons for initiating the above-mentioned administrative proceedings ex officio will be indicated, taking into account the current views of the judicial decisions. The second part of the paper will focus on the instrument of retaining the driving license of the debtor, who was previously found to be evading maintenance. The author points out that the detention of the driving license is one of the types of administrative sanctions of a very severe nature. Doubts of a constitutional nature will also be highlighted, as well as those concerning the effectiveness of this legal instrument and the protection of the debtor's rights. The thesis will be presented that the administrative procedure for the retention of a driving license does not fulfill its role and especially does not affect the collection of maintenance obligations from debtors. All the considerations will be based on the current and most representative views of the literature on the subject and the jurisprudence of Polish administrative courts.Keywords: maintenance debtor, administrative proceedings, detention of driving license, administrative sanction, polish administrative law, public administration
Procedia PDF Downloads 841764 Autonomous Strategic Aircraft Deconfliction in a Multi-Vehicle Low Altitude Urban Environment
Authors: Loyd R. Hook, Maryam Moharek
Abstract:
With the envisioned future growth of low altitude urban aircraft operations for airborne delivery service and advanced air mobility, strategies to coordinate and deconflict aircraft flight paths must be prioritized. Autonomous coordination and planning of flight trajectories is the preferred approach to the future vision in order to increase safety, density, and efficiency over manual methods employed today. Difficulties arise because any conflict resolution must be constrained by all other aircraft, all airspace restrictions, and all ground-based obstacles in the vicinity. These considerations make pair-wise tactical deconfliction difficult at best and unlikely to find a suitable solution for the entire system of vehicles. In addition, more traditional methods which rely on long time scales and large protected zones will artificially limit vehicle density and drastically decrease efficiency. Instead, strategic planning, which is able to respond to highly dynamic conditions and still account for high density operations, will be required to coordinate multiple vehicles in the highly constrained low altitude urban environment. This paper develops and evaluates such a planning algorithm which can be implemented autonomously across multiple aircraft and situations. Data from this evaluation provide promising results with simulations showing up to 10 aircraft deconflicted through a relatively narrow low-altitude urban canyon without any vehicle to vehicle or obstacle conflict. The algorithm achieves this level of coordination beginning with the assumption that each vehicle is controlled to follow an independently constructed flight path, which is itself free of obstacle conflict and restricted airspace. Then, by preferencing speed change deconfliction maneuvers constrained by the vehicles flight envelope, vehicles can remain as close to the original planned path and prevent cascading vehicle to vehicle conflicts. Performing the search for a set of commands which can simultaneously ensure separation for each pair-wise aircraft interaction and optimize the total velocities of all the aircraft is further complicated by the fact that each aircraft's flight plan could contain multiple segments. This means that relative velocities will change when any aircraft achieves a waypoint and changes course. Additionally, the timing of when that aircraft will achieve a waypoint (or, more directly, the order upon which all of the aircraft will achieve their respective waypoints) will change with the commanded speed. Put all together, the continuous relative velocity of each vehicle pair and the discretized change in relative velocity at waypoints resembles a hybrid reachability problem - a form of control reachability. This paper proposes two methods for finding solutions to these multi-body problems. First, an analytical formulation of the continuous problem is developed with an exhaustive search of the combined state space. However, because of computational complexity, this technique is only computable for pairwise interactions. For more complicated scenarios, including the proposed 10 vehicle example, a discretized search space is used, and a depth-first search with early stopping is employed to find the first solution that solves the constraints.Keywords: strategic planning, autonomous, aircraft, deconfliction
Procedia PDF Downloads 951763 Hearing Aids Maintenance Training for Hearing-Impaired Preschool Children with the Help of Motion Graphic Tools
Authors: M. Mokhtarzadeh, M. Taheri Qomi, M. Nikafrooz, A. Atashafrooz
Abstract:
The purpose of the present study was to investigate the effectiveness of using motion graphics as a learning medium on training hearing aids maintenance skills to hearing-impaired children. The statistical population of this study consisted of all children with hearing loss in Ahvaz city, at age 4 to 7 years old. As the sample, 60, whom were selected by multistage random sampling, were randomly assigned to two groups; experimental (30 children) and control (30 children) groups. The research method was experimental and the design was pretest-posttest with the control group. The intervention consisted of a 2-minute motion graphics clip to train hearing aids maintenance skills. Data were collected using a 9-question researcher-made questionnaire. The data were analyzed by using one-way analysis of covariance. Results showed that the training of hearing aids maintenance skills with motion graphics was significantly effective for those children. The results of this study can be used by educators, teachers, professionals, and parents to train children with disabilities or normal students.Keywords: hearing aids, hearing aids maintenance skill, hearing impaired children, motion graphics
Procedia PDF Downloads 1581762 Managing Uncertainty in Unmanned Aircraft System Safety Performance Requirements Compliance Process
Authors: Achim Washington, Reece Clothier, Jose Silva
Abstract:
System Safety Regulations (SSR) are a central component to the airworthiness certification of Unmanned Aircraft Systems (UAS). There is significant debate on the setting of appropriate SSR for UAS. Putting this debate aside, the challenge lies in how to apply the system safety process to UAS, which lacks the data and operational heritage of conventionally piloted aircraft. The limited knowledge and lack of operational data result in uncertainty in the system safety assessment of UAS. This uncertainty can lead to incorrect compliance findings and the potential certification and operation of UAS that do not meet minimum safety performance requirements. The existing system safety assessment and compliance processes, as used for conventional piloted aviation, do not adequately account for the uncertainty, limiting the suitability of its application to UAS. This paper discusses the challenges of undertaking system safety assessments for UAS and presents current and envisaged research towards addressing these challenges. It aims to highlight the main advantages associated with adopting a risk based framework to the System Safety Performance Requirement (SSPR) compliance process that is capable of taking the uncertainty associated with each of the outputs of the system safety assessment process into consideration. Based on this study, it is made clear that developing a framework tailored to UAS, would allow for a more rational, transparent and systematic approach to decision making. This would reduce the need for conservative assumptions and take the risk posed by each UAS into consideration while determining its state of compliance to the SSR.Keywords: Part 1309 regulations, risk models, uncertainty, unmanned aircraft systems
Procedia PDF Downloads 1861761 Cessna Citation X Performances Improvement by an Adaptive Winglet during the Cruise Flight
Authors: Marine Segui, Simon Bezin, Ruxandra Mihaela Botez
Abstract:
As part of a ‘Morphing-Wing’ idea, this study consists of measuring how a winglet, which is able to change its shape during the flight, is efficient. Conventionally, winglets are fixed-vertical platforms at the wingtips, optimized for a cruise condition that the airplane should use most of the time. However, during a cruise, an airplane flies through a lot of cruise conditions corresponding to altitudes variations from 30,000 to 45,000 ft. The fixed winglets are not optimized for these variations, and consequently, they are supposed to generate some drag, and thus to deteriorate aircraft fuel consumption. This research assumes that it exists a winglet position that reduces the fuel consumption for each cruise condition. In this way, the methodology aims to find these optimal winglet positions, and to further simulate, and thus estimate the fuel consumption of an aircraft wearing this type of adaptive winglet during several cruise conditions. The adaptive winglet is assumed to have degrees of freedom given by the various changes of following surfaces: the tip chord, the sweep and the dihedral angles. Finally, results obtained during cruise simulations are presented in this paper. These results show that an adaptive winglet can reduce, thus improve up to 2.12% the fuel consumption of an aircraft during a cruise.Keywords: aerodynamic, Cessna, Citation X, optimization, winglet
Procedia PDF Downloads 2431760 A Review on Literatures in Management and Maintenance of WAQF Properties in Malaysia
Authors: Huraizah Arshad, Maizan Baba
Abstract:
Malaysia is the country that consists of high population of Muslim community with more than 60%; as reported in year 2014. The stability of economy allowed people to contribute towards ongoing charity such as waqf and infaq. Waqf is an important component of the Islamic economic instruments since it is beneficial to help those needy in the community. Although waqf had been implemented in Malaysia for many years, there is no specific framework on how to manage and maintain the waqf properties in effective and efficient practice. Thus, a comprehensive framework related to the management and maintenance of the waqf properties is crucial to ensure that the administration of the fund is fair within the community. The objective of this article is to examine the related literatures in administration, management and maintenance of waqf for the past ten (10) years. The methodology of this article is through qualitative research based on literature on waqf administration and management; waqf planning and development and the application of maintenance concept. Data from each articles related in this field were collected and statistically analyzed using the SPSS software. A variable such as authorship patterns, number of articles published and geographical affiliation are identified in this study. The general finding in this article shows that there are still limited number of articles and papers published by the researchers related to this field. Henceforth, this article provides significant suggestions and strategies for the future research on waqf administration, management and maintenance.Keywords: Waqf, administration and management, maintenance, improvement, facilities management
Procedia PDF Downloads 4021759 Mechanical Properties and Microstructural Analyzes of Epoxy Resins Reinforced with Satin Tissue
Authors: Băilă Diana Irinel, Păcurar Răzvan, Păcurar Ancuța
Abstract:
Although the volumes of fibre reinforced polymer composites (FRPs) used for aircraft applications is a relatively small percentage of total use, the materials often find their most sophisticated applications in this industry. In aerospace, the performance criteria placed upon materials can be far greater than in other areas – key aspects are light-weight, high-strength, high-stiffness, and good fatigue resistance. Composites were first used by the military before the technology was applied to commercial planes. Nowadays, composites are widely used, and this has been the result of a gradual direct substitution of metal components followed by the development of integrated composite designs as confidence in FRPs has increased. The airplane uses a range of components made from composites, including the fin and tailplane. In the last years, composite materials are increasingly used in automotive applications due to the improvement of material properties. In the aerospace and automotive sector, the fuel consumption is proportional to the weight of the body of the vehicle. A minimum of 20% of the cost can be saved if it used polymer composites in place of the metal structures and the operating and maintenance costs are alco very low. Glass fiber-epoxy composites are widely used in the making of aircraft and automobile body parts and are not only limited to these fields but also used in ship building, structural applications in civil engineering, pipes for the transport of liquids, electrical insulators in reactors. This article was establish the high-performance of composite material, a type glass-epoxy used in automotive and aeronautic domains, concerning the tensile and flexural tests and SEM analyzes.Keywords: glass-epoxy composite, traction and flexion tests, SEM analysis, acoustic emission (AE) signals
Procedia PDF Downloads 1031758 Trends in Use of Millings in Pavement Maintenance
Authors: Rafiqul Tarefder, Mohiuddin Ahmad, Mohammad Hossain
Abstract:
While milling materials from old pavement surface can be an important component of cost effective maintenance operation, their use in maintenance projects are not uniform and well documented. This study documents the different maintenance practices followed by four transportation districts of New Mexico Department of Transportation (NMDOT) in an attempt to find whether millings are being used in maintenance projects by those districts. Based on existing literature, a questionnaire was developed related to six common maintenance practices. NMDOT district personal were interviewed face to face to discuss and get answers to that questionnaire. It revealed that NMDOT districts mainly use chip seal and patching. Other maintenance procedures such as sand seal, scrub seal, slurry seal, and thin overlay have limited use. Two out of four participating districts do not have any documents on chip sealing; rather they employ the experiences of the chip seal crew. All districts use polymer modified high float emulsion (HFE100P) for chip seal with an application rate ranging from 0.4 to 0.56 gallons per square yard. Chip application rate varies from 15 to 40 lb/ square yard. State wide, the thickness of chip seal varies from 3/8" to 1" and life varies from 3 to 10 years. NMDOT districts mainly use three type of patching: pothole, dig-out and blade patch. Pothole patches are used for small potholes and during emergency, dig-out patches are used for all type of potholes sometimes after pothole patching, and blade patch is used when a significant portion of the pavement is damaged. Pothole patches last as low as three days whereas, blade patch lasts as long as 3 years. It was observed that all participating districts use millings in maintenance projects.Keywords: chip seal, sand seal, scrub seal, slurry seal, overlay, patching, millings
Procedia PDF Downloads 3421757 Quantification of Aerodynamic Variables Using Analytical Technique and Computational Fluid Dynamics
Authors: Adil Loya, Kamran Maqsood, Muhammad Duraid
Abstract:
Aerodynamic stability coefficients are necessary to be known before any unmanned aircraft flight is performed. This requires expertise on aerodynamics and stability control of the aircraft. To enable efficacious performance of aircraft requires that a well-defined flight path and aerodynamics should be defined beforehand. This paper presents a study on the aerodynamics of an unmanned aero vehicle (UAV) during flight conditions. Current research holds comparative studies of different parameters for flight aerodynamic, measured using two different open source analytical software programs. These software packages are DATCOM and XLRF5, which help in depicting the flight aerodynamic variables. Computational fluid dynamics (CFD) was also used to perform aerodynamic analysis for which Star CCM+ was used. Output trends of the study demonstrate high accuracies between the two software programs with that of CFD. It can be seen that the Coefficient of Lift (CL) obtained from DATCOM and XFLR is similar to CL of CFD simulation. In the similar manner, other potential aerodynamic stability parameters obtained from analytical software are in good agreement with CFD.Keywords: XFLR5, DATCOM, computational fluid dynamic, unmanned aero vehicle
Procedia PDF Downloads 2961756 Factors Associated with Weight Loss Maintenance after an Intervention Program
Authors: Filipa Cortez, Vanessa Pereira
Abstract:
Introduction: The main challenge of obesity treatment is long-term weight loss maintenance. The 3 phases method is a weight loss program that combines a low carb and moderately high-protein diet, food supplements and a weekly one-to-one consultation with a certified nutritionist. Sustained weight control is the ultimate goal of phase 3. Success criterion was the minimum loss of 10% of initial weight and its maintenance after 12 months. Objective: The aim of this study was to identify factors associated with successful weight loss maintenance after 12 months at the end of 3 phases method. Methods: The study included 199 subjects that achieved their weight loss goal (phase 3). Weight and body mass index (BMI) were obtained at the baseline and every week until the end of the program. Therapeutic adherence was measured weekly on a Likert scale from 1 to 5. Subjects were considered in compliance with nutritional recommendation and supplementation when their classification was ≥ 4. After 12 months of the method, the current weight and number of previous weight-loss attempts were collected by telephone interview. The statistical significance was assumed at p-values < 0.05. Statistical analyses were performed using SPSS TM software v.21. Results: 65.3% of subjects met the success criterion. The factors which displayed a significant weight loss maintenance prediction were: greater initial percentage weight loss (OR=1.44) during the weight loss intervention and a higher number of consultations in phase 3 (OR=1.10). Conclusion: These findings suggest that the percentage weight loss during the weight loss intervention and the number of consultations in phase 3 may facilitate maintenance of weight loss after the 3 phases method.Keywords: obesity, weight maintenance, low-carbohydrate diet, dietary supplements
Procedia PDF Downloads 1501755 Investigating the Causes of Human Error-Induced Incidents in the Maintenance Operations of Petrochemical Industry by Using Human Factors Analysis and Classification System
Authors: Omid Kalatpour, Mohammadreza Ajdari
Abstract:
This article studied the possible causes of human error-induced incidents in the petrochemical industry maintenance activities by using Human Factors Analysis and Classification System (HFACS). The purpose of the study was anticipating and identifying these causes and proposing corrective and preventive actions. Maintenance department in a petrochemical company was selected for research. A checklist of human error-induced incidents was developed based on four HFACS main levels and nineteen sub-groups. Hierarchical task analysis (HTA) technique was used to identify maintenance activities and tasks. The main causes of possible incidents were identified by checklist and recorded. Corrective and preventive actions were defined depending on priority. Analyzing the worksheets of 444 activities in four levels of HFACS showed 37.6% of the causes were at the level of unsafe actions, 27.5% at the level of unsafe supervision, 20.9% at the level of preconditions for unsafe acts and 14% of the causes were at the level of organizational effects. The HFACS sub-groups showed errors (24.36%) inadequate supervision (14.89%) and violations (13.26%) with the most frequency. According to findings of this study, increasing the training effectiveness of operators and supervision improvement respectively are the most important measures in decreasing the human error-induced incidents in petrochemical industry maintenance.Keywords: human error, petrochemical industry, maintenance, HFACS
Procedia PDF Downloads 2421754 Influence of Propeller Blade Lift Distribution on Whirl Flutter Stability Characteristics
Authors: J. Cecrdle
Abstract:
This paper deals with the whirl flutter of the turboprop aircraft structures. It is focused on the influence of the blade lift span-wise distribution on the whirl flutter stability. Firstly it gives the overall theoretical background of the whirl flutter phenomenon. After that the propeller blade forces solution and the options of the blade lift modelling are described. The problem is demonstrated on the example of a twin turboprop aircraft structure. There are evaluated the influences with respect to the propeller aerodynamic derivatives and finally the influences to the whirl flutter speed and the whirl flutter margin respectively.Keywords: aeroelasticity, flutter, propeller blade force, whirl flutter
Procedia PDF Downloads 5361753 Budget Optimization for Maintenance of Bridges in Egypt
Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham
Abstract:
Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.Keywords: bridge management systems (BMS), cost optimization condition assessment, fund allocation, Markov chain
Procedia PDF Downloads 2911752 Advancing Power Network Maintenance: The Development and Implementation of a Robotic Cable Splicing Machine
Authors: Ali Asmari, Alex Symington, Htaik Than, Austin Caradonna, John Senft
Abstract:
This paper presents the collaborative effort between ULC Technologies and Con Edison in developing a groundbreaking robotic cable splicing machine. The focus is on the machine's design, which integrates advanced robotics and automation to enhance safety and efficiency in power network maintenance. The paper details the operational steps of the machine, including cable grounding, cutting, and removal of different insulation layers, and discusses its novel technological approach. The significant benefits over traditional methods, such as improved worker safety and reduced outage times, are highlighted based on the field data collected during the validation phase of the project. The paper also explores the future potential and scalability of this technology, emphasizing its role in transforming the landscape of power network maintenance.Keywords: cable splicing machine, power network maintenance, electric distribution, electric transmission, medium voltage cable
Procedia PDF Downloads 661751 Machine Learning Application in Shovel Maintenance
Authors: Amir Taghizadeh Vahed, Adithya Thaduri
Abstract:
Shovels are the main components in the mining transportation system. The productivity of the mines depends on the availability of shovels due to its high capital and operating costs. The unplanned failure/shutdowns of a shovel results in higher repair costs, increase in downtime, as well as increasing indirect cost (i.e. loss of production and company’s reputation). In order to mitigate these failures, predictive maintenance can be useful approach using failure prediction. The modern mining machinery or shovels collect huge datasets automatically; it consists of reliability and maintenance data. However, the gathered datasets are useless until the information and knowledge of data are extracted. Machine learning as well as data mining, which has a major role in recent studies, has been used for the knowledge discovery process. In this study, data mining and machine learning approaches are implemented to detect not only anomalies but also patterns from a dataset and further detection of failures.Keywords: maintenance, machine learning, shovel, conditional based monitoring
Procedia PDF Downloads 2181750 Failure Analysis of Fuel Pressure Supply from an Aircraft Engine
Authors: M. Pilar Valles-gonzalez, Alejandro Gonzalez Meije, Ana Pastor Muro, Maria Garcia-Martinez, Beatriz Gonzalez Caballero
Abstract:
This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed of the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material has been mechanical, by hardness test, and microstructural characterized using a stereomicroscope and an optical microscope. The results confirmed that it is within specifications. To determine the macrofractographic features, a visual examination and a stereo microscope of the tube fracture surface have been carried out. The results revealed a tube plastic macrodeformation, surface damaged, and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with a microanalysis system by X-ray dispersive energy (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, have been observed. The origin of the fracture has been placed in defects located on the outer wall of the tube, leading to a final overload fracture.Keywords: aircraft engine, fatigue, FE-SEM, fractography, fracture, fuel tube, microstructure, stainless steel
Procedia PDF Downloads 1531749 Investigating the Road Maintenance Performance in Developing Countries
Authors: Jamaa Salih, Francis Edum-Fotwe, Andrew Price
Abstract:
One of the most critical aspects of the management of road infrastructure is the type and scale of maintenance systems adopted and the consequences of their inadequacy. The performance of road maintenance systems can be assessed by a number of important indicators such as: cost, safety, environmental impact, and level of complaints by users. A review of practice reveals that insufficient level of expenditure or poor management of the road network often has serious consequences for the economic and social life of a country in terms of vehicle operating costs (VOC), travel time costs, accident costs and environmental impact. Despite an increase in the attention paid by global road agencies to the environmental and the road users’ satisfaction, the overwhelming evidence from the available literature agree on the lack of similar levels of attention for the two factors in many developing countries. While many sources agree that the road maintenance backlog is caused by either the shortage of expenditures or lack of proper management or both, it appears that managing the available assets particularly in the developing countries is the main issue. To address this subject, this paper will concentrate on exposing the various issues related to this field.Keywords: environmental impact, performance indicators, road maintenance, users’ satisfaction
Procedia PDF Downloads 3571748 System-Driven Design Process for Integrated Multifunctional Movable Concepts
Authors: Oliver Bertram, Leonel Akoto Chama
Abstract:
In today's civil transport aircraft, the design of flight control systems is based on the experience gained from previous aircraft configurations with a clear distinction between primary and secondary flight control functions for controlling the aircraft altitude and trajectory. Significant system improvements are now seen particularly in multifunctional moveable concepts where the flight control functions are no longer considered separate but integral. This allows new functions to be implemented in order to improve the overall aircraft performance. However, the classical design process of flight controls is sequential and insufficiently interdisciplinary. In particular, the systems discipline is involved only rudimentarily in the early phase. In many cases, the task of systems design is limited to meeting the requirements of the upstream disciplines, which may lead to integration problems later. For this reason, approaching design with an incremental development is required to reduce the risk of a complete redesign. Although the potential and the path to multifunctional moveable concepts are shown, the complete re-engineering of aircraft concepts with less classic moveable concepts is associated with a considerable risk for the design due to the lack of design methods. This represents an obstacle to major leaps in technology. This gap in state of the art is even further increased if, in the future, unconventional aircraft configurations shall be considered, where no reference data or architectures are available. This means that the use of the above-mentioned experience-based approach used for conventional configurations is limited and not applicable to the next generation of aircraft. In particular, there is a need for methods and tools for a rapid trade-off between new multifunctional flight control systems architectures. To close this gap in the state of the art, an integrated system-driven design process for multifunctional flight control systems of non-classical aircraft configurations will be presented. The overall goal of the design process is to find optimal solutions for single or combined target criteria in a fast process from the very large solution space for the flight control system. In contrast to the state of the art, all disciplines are involved for a holistic design in an integrated rather than a sequential process. To emphasize the systems discipline, this paper focuses on the methodology for designing moveable actuation systems in the context of this integrated design process of multifunctional moveables. The methodology includes different approaches for creating system architectures, component design methods as well as the necessary process outputs to evaluate the systems. An application example of a reference configuration is used to demonstrate the process and validate the results. For this, new unconventional hydraulic and electrical flight control system architectures are calculated which result from the higher requirements for multifunctional moveable concept. In addition to typical key performance indicators such as mass and required power requirements, the results regarding the feasibility and wing integration aspects of the system components are examined and discussed here. This is intended to show how the systems design can influence and drive the wing and overall aircraft design.Keywords: actuation systems, flight control surfaces, multi-functional movables, wing design process
Procedia PDF Downloads 1441747 Improvement of Electric Aircraft Endurance through an Optimal Propeller Design Using Combined BEM, Vortex and CFD Methods
Authors: Jose Daniel Hoyos Giraldo, Jesus Hernan Jimenez Giraldo, Juan Pablo Alvarado Perilla
Abstract:
Range and endurance are the main limitations of electric aircraft due to the nature of its source of power. The improvement of efficiency on this kind of systems is extremely meaningful to encourage the aircraft operation with less environmental impact. The propeller efficiency highly affects the overall efficiency of the propulsion system; hence its optimization can have an outstanding effect on the aircraft performance. An optimization method is applied to an aircraft propeller in order to maximize its range and endurance by estimating the best combination of geometrical parameters such as diameter and airfoil, chord and pitch distribution for a specific aircraft design at a certain cruise speed, then the rotational speed at which the propeller operates at minimum current consumption is estimated. The optimization is based on the Blade Element Momentum (BEM) method, additionally corrected to account for tip and hub losses, Mach number and rotational effects; furthermore an airfoil lift and drag coefficients approximation is implemented from Computational Fluid Dynamics (CFD) simulations supported by preliminary studies of grid independence and suitability of different turbulence models, to feed the BEM method, with the aim of achieve more reliable results. Additionally, Vortex Theory is employed to find the optimum pitch and chord distribution to achieve a minimum induced loss propeller design. Moreover, the optimization takes into account the well-known brushless motor model, thrust constraints for take-off runway limitations, maximum allowable propeller diameter due to aircraft height and maximum motor power. The BEM-CFD method is validated by comparing its predictions for a known APC propeller with both available experimental tests and APC reported performance curves which are based on Vortex Theory fed with the NASA Transonic Airfoil code, showing a adequate fitting with experimental data even more than reported APC data. Optimal propeller predictions are validated by wind tunnel tests, CFD propeller simulations and a study of how the propeller will perform if it replaces the one of on known aircraft. Some tendency charts relating a wide range of parameters such as diameter, voltage, pitch, rotational speed, current, propeller and electric efficiencies are obtained and discussed. The implementation of CFD tools shows an improvement in the accuracy of BEM predictions. Results also showed how a propeller has higher efficiency peaks when it operates at high rotational speed due to the higher Reynolds at which airfoils present lower drag. On the other hand, the behavior of the current consumption related to the propulsive efficiency shows counterintuitive results, the best range and endurance is not necessary achieved in an efficiency peak.Keywords: BEM, blade design, CFD, electric aircraft, endurance, optimization, range
Procedia PDF Downloads 1081746 The Integrated Strategy of Maintenance with a Scientific Analysis
Authors: Mahmoud Meckawey
Abstract:
This research is dealing with one of the most important aspects of maintenance fields, that is Maintenance Strategy. It's the branch which concerns the concepts and the schematic thoughts in how to manage maintenance and how to deal with the defects in the engineering products (buildings, machines, etc.) in general. Through the papers we will act with the followings: i) The Engineering Product & the Technical Systems: When we act with the maintenance process, in a strategic view, we act with an (engineering product) which consists of multi integrated systems. In fact, there is no engineering product with only one system. We will discuss and explain this topic, through which we will derivate a developed definition for the maintenance process. ii) The factors or basis of the functionality efficiency: That is the main factors affect the functional efficiency of the systems and the engineering products, then by this way we can give a technical definition of defects and how they occur. iii) The legality of occurrence of defects (Legal defects and Illegal defects): with which we assume that all the factors of the functionality efficiency been applied, and then we will discuss the results. iv) The Guarantee, the Functional Span Age and the Technical surplus concepts: In the complementation with the above topic, and associated with the Reliability theorems, where we act with the Probability of Failure state, with which we almost interest with the design stages, that is to check and adapt the design of the elements. But in Maintainability we act in a different way as we act with the actual state of the systems. So, we act with the rest of the story that means we have to act with the complementary part of the probability of failure term which refers to the actual surplus of the functionality for the systems.Keywords: engineering product and technical systems, functional span age, legal and illegal defects, technical and functional surplus
Procedia PDF Downloads 475