Search results for: advanced oxidation protein product
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8575

Search results for: advanced oxidation protein product

8395 Homoleptic Complexes of a Tetraphenylporphyrinatozinc(II)-conjugated 2,2':6',6"-Terpyridine

Authors: Angelo Lanzilotto, Martin Kuss-Petermann, Catherine E. Housecroft, Edwin C. Constable, Oliver S. Wenger

Abstract:

We recently described the synthesis of a new tetraphenylporphyrinatozinc(II)-conjugated 2,2':6',6"-terpyridine (1) in which the tpy domain enables the molecule to act as a metalloligand. The synthetic route to 1 has been optimized, the importance of selecting a particular sequence of synthetic steps will be discussed. Three homoleptic complexes have been prepared, [Zn(1)₂]²⁺, [Fe(1)₂]²⁺ and [Ru(1)₂]²⁺, and have been isolated as the hexafluoridophosphate salts. Spectroelectrochemical measurements have been performed and the spectral changes ascribed to redox processes are partitioned on either the porphyrin or the terpyridine units. Compound 1 undergoes a reversible one-electron oxidation/reduction. The removal/gain of a second electron leads to a further irreversible chemical transformation. For the homoleptic [M(1)₂]²⁺ complexes, a suitable potential can be chosen at which both the oxidation and the reduction of the {ZnTPP} core are reversible. When the homoleptic complex contains a redox active metal such as Fe or Ru, spectroelectrochemistry has been used to investigate the metal to ligand charge transfer (MLCT) transition. The latter is sensitive to the oxidation state of the metal, and electrochemical oxidation of the metal center suppresses it. Detailed spectroelectrochemical studies will be presented.

Keywords: homoleptic complexes, spectroelectrochemistry, tetraphenylporphyrinatozinc(II), 2, 2':6', 6"-terpyridine

Procedia PDF Downloads 211
8394 Performance of Phytogreen Zone for BOD5 and SS Removal for Refurbishment Conventional Oxidation Pond in an Integrated Phytogreen System

Authors: A. R. Abdul Syukor, A. W. Zularisam, Z. Ideris, M. S. Mohd Ismid, H. M. Nakmal, S. Sulaiman, A. H. Hasmanie, M. R. Siti Norsita, M. Nasrullah

Abstract:

In this study, the effectiveness of integrated aquatic plants in phytogreen zone was studied and statistical analysis for the promotional integrated phytogreen system approached was discussed. It was found that the effectiveness of using aquatic plant such as Typha angustifolia sp., Lepironia articulata sp., Limnocharis flava sp., Monochoria vaginalis sp., Pistia stratiotes sp., and Eichhornia crassipes sp. in the conventional oxidation pond process in order to comply the standard A according to Malaysia Environmental Quality Act 1974 (Act 127); Environmental Quality (Sewage) Regulation 2009 for effluent discharge into inland water near the residential area was successfully shown. It was concluded that the integrated phytogreen system developed in this study has great potential for refurbishment wastewater in conventional oxidation pond.

Keywords: phytoremediation, integrated phytogreen system, sewage treatment plant, oxidation pond, aquatic plants

Procedia PDF Downloads 375
8393 Development of a Two-Step 'Green' Process for (-) Ambrafuran Production

Authors: Lucia Steenkamp, Chris V. D. Westhuyzen, Kgama Mathiba

Abstract:

Ambergris, and more specifically its oxidation product (–)-ambrafuran, is a scarce, valuable, and sought-after perfumery ingredient. The material is used as a fixative agent to stabilise perfumes in formulations by reducing the evaporation rate of volatile substances. Ambergris is a metabolic product of the sperm whale (Physeter macrocephatus L.), resulting from intestinal irritation. Chemically, (–)-ambrafuran is produced from the natural product sclareol in eight synthetic steps – in the process using harsh and often toxic chemicals to do so. An overall yield of no more than 76% can be achieved in some routes, but generally, this is lower. A new 'green' route has been developed in our laboratory in which sclareol, extracted from the Clary sage plant, is converted to (–)-ambrafuran in two steps with an overall yield in excess of 80%. The first step uses a microorganism, Hyphozyma roseoniger, to bioconvert sclareol to an intermediate diol using substrate concentrations up to 50g/L. The yield varies between 90 and 67% depending on the substrate concentration used. The purity of the diol product is 95%, and the diol is used without further purification in the next step. The intermediate diol is then cyclodehydrated to the final product (–)-ambrafuran using a zeolite, which is not harmful to the environment and is readily recycled. The yield of the product is 96%, and following a single recrystallization, the purity of the product is > 99.5%. A preliminary LC-MS study of the bioconversion identified several intermediates produced in the fermentation broth under oxygen-restricted conditions. Initially, a short-lived ketone is produced in equilibrium with a more stable pyranol, a key intermediate in the process. The latter is oxidised under Norrish type I cleavage conditions to yield an acetate, which is hydrolysed either chemically or under lipase action to afford the primary fermentation product, an intermediate diol. All the intermediates identified point to the likely CYP450 action as the key enzyme(s) in the mechanism. This invention is an exceptional example of how the power of biocatalysis, combined with a mild, benign chemical step, can be deployed to replace a total chemical synthesis of a specific chiral antipode of a commercially relevant material.

Keywords: ambrafuran, biocatalysis, fragrance, microorganism

Procedia PDF Downloads 208
8392 Evaluation of DNA Oxidation and Chemical DNA Damage Using Electrochemiluminescent Enzyme/DNA Microfluidic Array

Authors: Itti Bist, Snehasis Bhakta, Di Jiang, Tia E. Keyes, Aaron Martin, Robert J. Forster, James F. Rusling

Abstract:

DNA damage from metabolites of lipophilic drugs and pollutants, generated by enzymes, represents a major toxicity pathway in humans. These metabolites can react with DNA to form either 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG), which is the oxidative product of DNA or covalent DNA adducts, both of which are genotoxic and hence considered important biomarkers to detect cancer in humans. Therefore, detecting reactions of metabolites with DNA is an effective approach for the safety assessment of new chemicals and drugs. Here we describe a novel electrochemiluminescent (ECL) sensor array which can detect DNA oxidation and chemical DNA damage in a single array, facilitating a more accurate diagnostic tool for genotoxicity screening. Layer-by-layer assembly of DNA and enzyme are assembled on the pyrolytic graphite array which is housed in a microfluidic device for sequential detection of two type of the DNA damages. Multiple enzyme reactions are run on test compounds using the array, generating toxic metabolites in situ. These metabolites react with DNA in the films to cause DNA oxidation and chemical DNA damage which are detected by ECL generating osmium compound and ruthenium polymer, respectively. The method is further validated by the formation of 8-oxodG and DNA adduct using similar films of DNA/enzyme on magnetic bead biocolloid reactors, hydrolyzing the DNA, and analyzing by liquid chromatography-mass spectrometry (LC-MS). Hence, this combined DNA/enzyme array/LC-MS approach can efficiently explore metabolic genotoxic pathways for drugs and environmental chemicals.

Keywords: biosensor, electrochemiluminescence, DNA damage, microfluidic array

Procedia PDF Downloads 361
8391 Expression of CASK Antibody in Non-Mucionus Colorectal Adenocarcinoma and Its Relation to Clinicopathological Prognostic Factors

Authors: Reham H. Soliman, Noha Noufal, Howayda AbdelAal

Abstract:

Calcium/calmodulin-dependent serine protein kinase (CASK) belongs to the membrane-associated guanylate kinase (MAGUK) family and has been proposed as a mediator of cell-cell adhesion and proliferation, which can contribute to tumorogenesis. CASK has been linked as a good prognostic factor with some tumor subtypes, while considered as a poor prognostic marker in others. To our knowledge, no sufficient evidence of CASK role in colorectal cancer is available. The aim of this study is to evaluate the expression of Calcium/calmodulin-dependent serine protein kinase (CASK) in non-mucinous colorectal adenocarcinoma and adenomatous polyps as precursor lesions and assess its prognostic significance. The study included 42 cases of conventional colorectal adenocarcinoma and 15 biopsies of adenomatous polyps with variable degrees of dysplasia. They were reviewed for clinicopathological prognostic factors and stained by CASK; mouse, monoclonal antibody using heat-induced antigen retrieval immunohistochemical techniques. The results showed that CASK protein was significantly overexpressed (p <0.05) in CRC compared with adenoma samples. The CASK protein was overexpressed in the majority of CRC samples with 85.7% of cases showing moderate to strong expression, while 46.7% of adenomas were positive. CASK overexpression was significantly correlated with both TNM stage and grade of differentiation (p <0.05). There was a significantly higher expression in tumor samples with early stages (I/II) rather than advanced stage (III/IV) and with low grade (59.5%) rather than high grade (40.5%). Another interesting finding was found among the adenomas group, where the stronger intensity of staining was observed in samples with high grade dysplasia (33.3%) than those of lower grades (13.3%). In conclusion, this study shows that there is significant overexpression of CASK protein in CRC as well as in adenomas with high grade dysplasia. This indicates that CASK is involved in the process of carcinogenesis and functions as a potential trigger of the adenoma-carcinoma cascade. CASK was significantly overexpressed in early stage and low-grade tumors rather than tumors with advanced stage and higher histological grades. This suggests that CASK protein is a good prognostic factor. We suggest that CASK affects CRC in two different ways derived from its physiology. CASK as part of MAGUK family can stimulate proliferation and through its cell membrane localization and as a mediator of cell-cell adhesion might contribute in tumor confinement and localization.

Keywords: CASK, colorectal cancer, overexpression, prognosis

Procedia PDF Downloads 273
8390 The Effect of Sorafenibe on Soat1 Protein by Using Molecular Docking Method

Authors: Mahdiyeh Gholaminezhad

Abstract:

Context: The study focuses on the potential impact of Sorafenib on SOAT1 protein in liver cancer treatment, addressing the need for more effective therapeutic options. Research aim: To explore the effects of Sorafenib on the activity of SOAT1 protein in liver cancer cells. Methodology: Molecular docking was employed to analyze the interaction between Sorafenib and SOAT1 protein. Findings: The study revealed a significant effect of Sorafenib on the stability and activity of SOAT1 protein, suggesting its potential as a treatment for liver cancer. Theoretical importance: This research highlights the molecular mechanism underlying Sorafenib's anti-cancer properties, contributing to the understanding of its therapeutic effects. Data collection: Data on the molecular structure of Sorafenib and SOAT1 protein were obtained from computational simulations and databases. Analysis procedures: Molecular docking simulations were performed to predict the binding interactions between Sorafenib and SOAT1 protein. Question addressed: How does Sorafenib influence the activity of SOAT1 protein and what are the implications for liver cancer treatment? Conclusion: The study demonstrates the potential of Sorafenib as a targeted therapy for liver cancer by affecting the activity of SOAT1 protein. Reviewers' Comments: The study provides valuable insights into the molecular basis of Sorafenib's action on SOAT1 protein, suggesting its therapeutic potential. To enhance the methodology, the authors could consider validating the docking results with experimental data for further validation.

Keywords: liver cancer, sorafenib, SOAT1, molecular docking

Procedia PDF Downloads 13
8389 The Gasification of Acetone via Partial Oxidation in Supercritical Water

Authors: Shyh-Ming Chern, Kai-Ting Hsieh

Abstract:

Organic solvents find various applications in many industrial sectors and laboratories as dilution solvents, dispersion solvents, cleaners and even lubricants. Millions of tons of Spent Organic Solvents (SOS) are generated each year worldwide, prompting the need for more efficient, cleaner and safer methods for the treatment and resource recovery of SOS. As a result, acetone, selected as a model compound for SOS, was gasified in supercritical water to assess the feasibility of resource recovery of SOS by means of supercritical water processes. Experiments were conducted with an autoclave reactor. Gaseous product is mainly consists of H2, CO, CO2 and CH4. The effects of three major operating parameters, the reaction temperature, from 673 to 773K, the dosage of oxidizing agent, from 0.3 to 0.5 stoichiometric oxygen, and the concentration of acetone in the feed, 0.1 and 0.2M, on the product gas composition, yield and heating value were evaluated with the water density fixed at about 0.188g/ml.

Keywords: acetone, gasification, SCW, supercritical water

Procedia PDF Downloads 381
8388 Effects of Hawthorn (Crataegus monogyna) Polyphenols on Oxymyoglobin and Myofibrillar Proteins Stability in Meat

Authors: Valentin Nicorescu, Nicoleta C. Predescu, Camelia Papuc, Iuliana Gajaila, Carmen D. Petcu

Abstract:

The oxidation of the fresh muscle oxymyoglobin (bright red colour) to metmyoglobin (brown colour) leads to discoloration of red meats. After slaughter, enzymatic systems involved in metmyoglobin reduction are continually depleted as time post-mortem progresses, thus the meat colour is affected. Phenolic compounds are able to scavenge reactive species involved in oxymyoglobin oxidation and to reduce metmyoglobin to oxymyoglobin. The aim of this study was to investigate the effect of polyphenols extracted from hawthorn fruits on the stability of oxymyoglobin and myofibrillar proteins in ground pork subject to refrigeration for 6 days. Hawthorn polyphenols (HP) were added in ground pork in 100, 200 and 300 ppm concentrations. Oxymyoglobin and metmyoglobin were evaluated spectrophotometrically at every 2 days and electrophoretic pattern of myofibrillar proteins was investigated at days 0 and 6 by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE). For all meat samples, oxymyoglobin concentration significantly decreased during the first 4 days of refrigeration. After 6 days, the significant decrease of oxymyoglobin concentration continued only in the negative control samples. In samples treated with HP and butylated hydroxylanisole (BHA - positive control), oxymyoglobin concentration increased after 6 days of refrigeration, the highest levels complying with the following order: 100 ppm HP > 200 ppm HP > 300 ppm HP > 100 ppm BHA. The increase in metmyoglobin was coincidental with the decrease in oxymyoglobin; metmyoglobin concentration progressively increased during the first 4 days of refrigeration in all meat samples. After 6 days, in meat samples treated with HP and BHA, lower metmyoglobin concentrations were found (compared to day 4), respecting the following order: 100 ppm HP < 200 ppm HP < 300 ppm HP < 100 ppm BHA. These results showed that hawthorn polyphenols and BHA reduced metmyoglobin (MbFe3+) to oxymyoglobin (MbFe2+), and the strongest reducing character was recorded for 100 ppm HP. After 6 days of refrigeration, electrophoretic pattern of myofibrillar proteins showed minor changes compared to day 0, indicating that HP prevent protein degradation as well as synthetic antioxidant BHA. Also, HP did not induce cross-links in the myofibrillar proteins, to form protein aggregates, and no risk of reducing their ability to retain water was identified. The pattern of oxymyoglobin and metmyoglobin concentrations determined in this study showed that hawthorn polyphenols are able to reduce metmyoglobin to oxymyoglobin and to delay oxymyoglobin oxidation, especially when they are added to ground meat in concentration of 100 ppm. This work was carried out through Partnerships in priority areas Program – PN II, implemented with the support of MEN – UEFISCDI (Romania), project nr. 149/2014.

Keywords: Hawthorn polyphenols, metmyoglobin, oxymyoglobin, proteins stability

Procedia PDF Downloads 216
8387 Utilization of Rice and Corn Bran with Dairy By-Product in Tarhana Production

Authors: Kübra Aktaş, Nihat Akin

Abstract:

Tarhana is a traditional Turkish fermented food. It is widely consumed as soup and includes many different ingredients such as wheat flour, various vegetables, and spices, yoghurt, bakery yeast. It can also be enriched by adding other ingredients. Thus, its nutritional properties can be enhanced. In this study, tarhana was supplemented with two different types of brans (rice bran and corn bran) and WPC (whey protein concentrate powder) to improve its nutritional and functional properties. Some chemical properties of tarhana containing two different brans and their levels (0, 5, 10 and 15%) and WPC (0, 5, 10%) were investigated. The results indicated that addition of WPC increased ash content in tarhanas which were fortified with rice and corn bran. The highest antioxidant and phenolic content values were obtained with addition of rice bran in tarhana formulation. Compared to tarhana with corn bran, rice bran addition gave higher oil content values. The cellulose content of tarhana samples was determined between 0.75% and 2.74% and corn bran showed an improving effect on cellulose contents of samples. In terms of protein content, addition of WPC into the tarhana raised protein content for the samples.

Keywords: corn, rice, tarhana, whey

Procedia PDF Downloads 325
8386 Protein and Lipid Extraction from Microalgae with Ultrasound Assisted Osmotic Shock Method

Authors: Nais Pinta Adetya, H. Hadiyanto

Abstract:

Microalgae has a potential to be utilized as food and natural colorant. The microalgae components consists of three main parts, these are lipid, protein, and carbohydrate. Crucial step in producing lipid and protein from microalgae is extraction. Microalgae has high water level (70-90%), it causes drying process of biomass needs much more energy and also has potential to distract lipid and protein from microalgae. Extraction of lipid from wet biomass is able to take place efficiently with cell disruption of microalgae by osmotic shock method. In this study, osmotic shock method was going to be integrated with ultrasound to maximalize the extraction yield of lipid and protein from wet biomass Spirulina sp. with osmotic shock method assisted ultrasound. This study consisted of two steps, these were osmotic shock process toward wet biomass and ultrasound extraction assisted. NaCl solution was used as osmotic agent, with the variation of concentrations were 10%, 20%, and 30%. Extraction was conducted in 40°C for 20 minutes with frequency of ultrasound wave was 40kHz. The optimal yield of protein (2.7%) and (lipid 38%) were achieved at 20% osmotic agent concentration.

Keywords: extraction, lipid, osmotic shock, protein, ultrasound

Procedia PDF Downloads 347
8385 Protein Derived Biodegradable Food Packaging Material from Poultry By-Product

Authors: Muhammad Zubair, Aman Ullah, Jianping Wu

Abstract:

During the last decades, petroleum derived synthetic polymers like polyethylene terephthalate, polyvinylchloride, polyethylene, polypropylene and polystyrene has extensively been used in the field of food packaging and mostly are non-degradable. Biopolymers are a good fit for single-use or short-lived products such as food packaging. Spent hens, a poultry by-product which is of little economic value and their disposal are environmentally harmful. Through current study, we have explored the possibility to transform proteins from spent fowl into green food packaging material. Proteins from spent fowl were extracted within 1 hour using pH shift method with recovery of about 74%. Different plasticizers were tried like glycerol, sorbitol, glutaraldehyde, 1,2 ethylene glycol and 1,2 butanediol. Glycerol was the best plasticizer among all these plasticizers. A naturally occurring and non-toxic cross-linking agent, chitosan, was used to form the chitosan/glycerol/protein blend by casting and compression molding techniques. The mechanical properties were characterized using tensile strength analyzer. The nano-reinforcements with homogeneous dispersion of nanoparticles lead to improved physical properties suggesting that these materials have great potential for food packaging applications.

Keywords: differential scanning calorimetry, dynamic mechanical analysis, scanning electron microscopy, spent hen

Procedia PDF Downloads 272
8384 Development of Low Glycemic Gluten Free Bread from Barnyard Millet and Lentil Flour

Authors: Hemalatha Ganapathyswamy, Thirukkumar Subramani

Abstract:

Celiac disease is an autoimmune response to dietary wheat gluten. Gluten is the main structure forming protein in bread and hence developing gluten-free bread is a technological challenge. The study aims at using nonwheat flours like barnyard millet and lentil flour to replace wheat in bread formulations. Other characteristics of these grains, such as high protein, soluble fiber, mineral content and bioactive components make them attractive alternatives to traditional gluten-free ingredients in the production of high protein, gluten-free bread. The composite flour formulations for the development of gluten-free bread were optimized using lentil flour (50 to 70 g), barnyard millet flour (0 to 30 g) and corn flour (0 to 30 g) by means of response surface methodology with various independent variables for physical, sensorial and nutritional characteristics. The optimized composite flour which had a desirability value of 0.517, included lentil flour –62.94 g, barnyard millet flour– 24.34 g and corn flour– 12.72 g with overall acceptability score 8.00/9.00. The optimized gluten-free bread formulation had high protein (14.99g/100g) and fiber (1.95g/100g) content. The glycemic index of the gluten-free bread was 54.58 rendering it as low glycemic which enhances the functional benefit of the gluten-free bread. Since the standardised gluten-free bread from barnyard millet and lentil flour are high protein, and gluten-free with low glycemic index, the product would serve as an ideal therapeutic food in the management of both celiac disease and diabetes mellitus with better nutritional value.

Keywords: gluten free bread, lentil, low glycemic index, response surface methodology

Procedia PDF Downloads 184
8383 Mordenite as Catalyst Support for Complete Volatile Organic Compounds Oxidation

Authors: Yuri A. Kalvachev, Totka D. Todorova

Abstract:

Zeolite mordenite has been investigated as a transition metal support for the preparation of efficient catalysts in the oxidation of volatile organic compounds (VOCs). The highly crystalline mordenite samples were treated with hydrofluoric acid and ammonium fluoride to get hierarchical material with secondary porosity. The obtained supports by this method have a high active surface area, good diffusion properties and prevent the extraction of metal components during catalytic reactions. The active metal phases platinum and copper were loaded by impregnation on both mordenite materials (parent and acid treated counterparts). Monometalic Pt and Cu, and bimetallic Pt/Cu catalysts were obtained. The metal phases were fine dispersed as nanoparticles on the functional porous materials. The catalysts synthesized in this way were investigated in the reaction of complete oxidation of propane and benzene. Platinum, copper and platinum/copper were loaded and there catalytic activity was investigated and compared. All samples are characterized by X-ray diffraction analysis, nitrogen adsorption, scanning electron microscopy (SEM), X-ray photoelectron measurements (XPS) and temperature programed reduction (TPR). The catalytic activity of the samples obtained is investigated in the reaction of complete oxidation of propane and benzene by using of Gas Chromatography (GC). The oxidation of three organic molecules was investigated—methane, propane and benzene. The activity of metal loaded mordenite catalysts for methane oxidation is almost the same for parent and treated mordenite as a support. For bigger molecules as propane and benzene, the activity of catalysts based on treated mordenite is higher than those based on parent zeolite.

Keywords: metal loaded catalysts, mordenite, VOCs oxidation, zeolites

Procedia PDF Downloads 121
8382 Stability-Indicating High-Performance Thin-Layer Chromatography Method for Estimation of Naftopidil

Authors: P. S. Jain, K. D. Bobade, S. J. Surana

Abstract:

A simple, selective, precise and Stability-indicating High-performance thin-layer chromatographic method for analysis of Naftopidil both in a bulk and in pharmaceutical formulation has been developed and validated. The method employed, HPTLC aluminium plates precoated with silica gel as the stationary phase. The solvent system consisted of hexane: ethyl acetate: glacial acetic acid (4:4:2 v/v). The system was found to give compact spot for Naftopidil (Rf value of 0.43±0.02). Densitometric analysis of Naftopidil was carried out in the absorbance mode at 253 nm. The linear regression analysis data for the calibration plots showed good linear relationship with r2=0.999±0.0001 with respect to peak area in the concentration range 200-1200 ng per spot. The method was validated for precision, recovery and robustness. The limits of detection and quantification were 20.35 and 61.68 ng per spot, respectively. Naftopidil was subjected to acid and alkali hydrolysis, oxidation and thermal degradation. The drug undergoes degradation under acidic, basic, oxidation and thermal conditions. This indicates that the drug is susceptible to acid, base, oxidation and thermal conditions. The degraded product was well resolved from the pure drug with significantly different Rf value. Statistical analysis proves that the method is repeatable, selective and accurate for the estimation of investigated drug. The proposed developed HPTLC method can be applied for identification and quantitative determination of Naftopidil in bulk drug and pharmaceutical formulation.

Keywords: naftopidil, HPTLC, validation, stability, degradation

Procedia PDF Downloads 393
8381 Myeloid Zinc Finger 1/Ets-Like Protein-1/Protein Kinase C Alpha Associated with Poor Prognosis in Patients with Hepatocellular Carcinoma

Authors: Jer-Yuh Liu, Je-Chiuan Ye, Jin-Ming Hwang

Abstract:

Protein kinase C alpha (PKCα) is a key signaling molecule in human cancer development. As a therapeutic strategy, targeting PKCα is difficult because the molecule is ubiquitously expressed in non-malignant cells. PKCα is regulated by the cooperative interaction of the transcription factors myeloid zinc finger 1 (MZF-1) and Ets-like protein-1 (Elk-1) in human cancer cells. By conducting tissue array analysis, herein, we determined the protein expression of MZF-1/Elk-1/PKCα in various cancers. The data show that the expression of MZF-1/Elk-1 is correlated with that of PKCα in hepatocellular carcinoma (HCC), but not in bladder and lung cancers. In addition, the PKCα down-regulation by shRNA Elk-1 was only observed in the HCC SK-Hep-1 cells. Blocking the interaction between MZF-1 and Elk-1 through the transfection of their binding domain MZF-160–72 decreased PKCα expression. This step ultimately depressed the epithelial-mesenchymal transition potential of the HCC cells. These findings could be used to develop an alternative therapeutic strategy for patients with the PKCα-derived HCC.

Keywords: protein kinase C alpha, myeloid zinc finger 1, ets-like protein-1, hepatocellular carcinoma

Procedia PDF Downloads 222
8380 Electrochemical Studies of Nickel Nanoparticles Decorated the Surface of Some Conducting Polymers for Glucose Oxidation in Biofuel Cells

Authors: Z. Khalifa, K. M. Hassan, M. Abdel Azzem

Abstract:

Potential strategies for deriving useful forms of renewable high density energy from abundant energy stored in carbohydrates is direct conversion of glucose (GLU) to electrical power. A three novel versatile modified electrodes, synthesized by electrochemical polymerization of organic monomers on glassy carbon electrodes (GC), have been developed for biofuel cells results in stable and long-term power production. Electrocatalytic oxidation of glucose in alkaline solution on conducting polymers electrodes modified by incorporation of Ni nanoparticles (NiNPs) onto poly(1,5-aminonaphthalene) (1,5-PDAN), poly(1,8-diaminonaphthalene) (1,8-PDAN) and poly(1-amino-2-methyl-9,10-anthraquinone) (PAMAQ) was investigated. The electrocatalytic oxidation of glucose at NiNPs-modified 1,5-PDAN/GC, 1,8-PDAN/GC and PAMAQ/GC electrodes has been studied using voltammetry technique. The PDAN electrodes show a slight activity in the potential of interest. The prepared NiNPs/PAMAQ/GC catalyst showed a very interesting catalytic activity that was nicely comparable to the NiNPs/1,5-PDAN/GC, NiNPs/1,8-PDAN/GC modified electrodes. In advance, both shows a significant more catalytic activity compared to the reported data for electrodes for glucose electrocatalytic oxidation.

Keywords: biofuel cells, glucose oxidation, electrocatalysis, nanoparticles and modified electrodes

Procedia PDF Downloads 240
8379 Effect of Sulfur on the High-Temperature Oxidation of DIN1.4091

Authors: M. J. Kim, D. B. Lee

Abstract:

Centrifugal casting is a metal casting method that uses forces make by centripetal acceleration to distribute molten material in mold. Centrifugal cast parts manufactured in industry contain gas pipes and water supply lines, moreover rings, turbocharger, bushings, brake drums. Turbochargers were exposed to exhaust temperatures of 900-1050°C require a material for the corrosion resistance that will withstand such high component temperatures during the entire service life of the vehicle. Hence, the study of corrosion resistance for turbocharger is important for practical application. DIN1.4091 steels were used widely. The DIN1.4091 steels whose compositions were Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si-(0.009 or 0.35)S (wt.%) were centrifugally cast, and oxidized at 900°C for 50-200 h in order to find the effect of sulfur on the high-temperature oxidation of Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si-(0.009 or 0.35)S (wt.%) alloys. These alloys formed oxide scales that consisted primarily of Cr₂O₃ as the major oxide and Cr₂MnO₄ as the minor one through preferential oxidation of Cr and Mn. Cr formed a thin CrOx oxide film on the surface to prevent further oxidation, and when it is added more than 20%, the sulphide decreased corrosion rate. The high affinity of Mn with S, led to the formation of scattered MnS inclusions, particularly in the 0.35S-containing cast alloy. Sulfur was harmful to the oxidation resistance because it deteriorated the scale/alloy adherence so as to accelerate the adherence and compactness of the formed scales. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A2B1013169).

Keywords: centrifugal casting, turbocharger, sulfur, oxidation, Fe-34.4Cr-14.5Ni alloy

Procedia PDF Downloads 193
8378 Study Habits and Level of Difficulty Encountered by Maltese Students Studying Biology Advanced Level Topics

Authors: Marthese Azzopardi, Liberato Camilleri

Abstract:

This research was performed to investigate the study habits and level of difficulty perceived by post-secondary students in Biology at Advanced-level topics after completing their first year of study. At the end of a two-year ‘sixth form’ course, Maltese students sit for the Matriculation and Secondary Education Certificate (MATSEC) Advanced-level biology exam as a requirement to pursue science-related studies at the University of Malta. The sample was composed of 23 students (16 taking Chemistry and seven taking some ‘Other’ subject at the Advanced Level). The cohort comprised seven males and 16 females. A questionnaire constructed by the authors, was answered anonymously during the last lecture at the end of the first year of study, in May 2016. The Chi square test revealed that gender plays no effect on the various study habits (c2 (6) = 5.873, p = 0.438). ‘Reading both notes and textbooks’ was the most common method adopted by males (71.4%), whereas ‘Writing notes on each topic’ was that mostly used by females (81.3%). The Mann-Whitney U test showed no significant difference in the study habits of students and the mean assessment mark obtained at the end of the first year course (p = 0.231). Statistical difference was found with the One-ANOVA test when comparing the mean assessment mark obtained at the end of the first year course when students are clustered by their Secondary Education Certificate (SEC) grade (p < 0.001). Those obtaining a SEC grade of 2 and 3 got the highest mean assessment of 68.33% and 66.9%, respectively [SEC grading is 1-7, where 1 is the highest]. The Friedman test was used to compare the mean difficulty rating scores provided for the difficulty of each topic. The mean difficulty rating score ranges from 1 to 4, where the larger the mean rating score, the higher the difficulty. When considering the whole group of students, nine topics out of 21 were perceived as significantly more difficult than the other topics. Protein synthesis, DNA Replication and Biomolecules were the most difficult, in that order. The Mann-Whitney U test revealed that the perceived level of difficulty in comprehending Biomolecules is significantly lower for students taking Chemistry compared to those not choosing the subject (p = 0.018). Protein Synthesis was claimed as the most difficult by Chemistry students and Biomolecules by those not studying Chemistry. DNA Replication was the second most difficult topic perceived by both groups. The Mann-Whitney U test was used to examine the effect of gender on the perceived level of difficulty in comprehending various topics. It was found that females have significantly more difficulty in comprehending Biomolecules than males (p=0.039). Protein synthesis was perceived as the most difficult topic by males (mean difficulty rating score = 3.14), while Biomolecules, DNA Replication and Protein synthesis were of equal difficulty for females (mean difficulty rating score = 3.00). Males and females perceived DNA Replication as equally difficult (mean difficulty rating score = 3.00). Discovering the students’ study habits and perceived level of difficulty of specific topics is vital for the lecturer to offer guidance that leads to higher academic achievement.

Keywords: biology, perceived difficulty, post-secondary, study habits

Procedia PDF Downloads 186
8377 The Combination of Porcine Plasma Protein and Maltodextrin as Wall Materials on Microencapsulated Turmeric Oil Powder Quality

Authors: Namfon Samsalee, Rungsinee Sothornvit

Abstract:

Turmeric is a natural plant herb and generally extracted as essential oil and widely used in food, cosmetic, pharmaceutical products including insect repellent. However, turmeric oil is a volatile essential oil which is easy to be lost during storage or exposure to light. Therefore, biopolymers such as protein and polysaccharide can be used as wall materials to encapsulate the essential oil which will solve this drawback. Approximately 60% plasma from porcine blood contains 6-7% of protein content mainly albumin and globulin which can be a good source of animal protein at the low-cost biopolymer from by-product. Microencapsulation is a useful technique to entrap volatile compounds in the biopolymer matrix and protect them to degrade. The objective of this research was to investigate the different ratios of two biopolymers (PPP and maltodextrin; MD) as wall materials at 100:0, 75:25, 50:50, 25:75 and 0:100 at a fixed ratio of wall material: core material (turmeric oil) at 3:1 (oil in water) on the qualities of microencapsulated powder using freeze drying. It was found that the combination of PPP and MD showed higher solubility of microencapsules compared to the use of PPP alone (P < 0.05). Moreover, the different ratios of wall materials also affected on color (L*, a* and b*) of microencapsulated powder. Morphology of microencapsulated powder using a scanning electron microscope showed holes on the surface reflecting on free oil content and encapsulation efficiency of microencapsules. At least 50% of MD was needed to increase encapsulation efficiency of microencapsulates rather than using only PPP as the wall material (P < 0.05). Microencapsulated turmeric oil powder can be useful as food additives to improve food texture, as a biopolymer material for edible film and coating to maintain quality of food products.

Keywords: microencapsulation, turmeric oil, porcine plasma protein, maltodextrin

Procedia PDF Downloads 180
8376 Investigation on Porcine Follicular Fluid Protein Pattern of Medium and Large Follicles

Authors: Hatairuk Tungkasen, Somrudee Phetchrid, Suwapat Jaidee, Supinya Yoomak, Chantana Kankamol, Mayuree Pumipaiboon, Mayuva Areekijseree

Abstract:

Ovaries of reproductive female pigs were obtained from local slaughterhouses in Nakorn Pathom Province, Thailand. Follicular fluid of medium follicle (5-6 diameters) and large follicles (7-8 mm and 10 mm in diameter) were aspirated and collected by sterile technique and analyzed protein pattern. The follicular fluid protein bands were found by SDS-PAGE which has no protein band in difference compared to standard protein band. So we chose protein band molecular weight 50, 62-65, 75-80, 90, 120-160, and >220 kDa were analyzed by LC/MS/MS. The result was found immunoglobulin gamma chain, keratin, transferrin, heat shock protein, and plasminogen precursor, ceruloplasmin, and hemopexin, and protease, respectively. All proteins play important roles in promotion and regulation on growth and development of reproductive cells. The result of this study found many proteins which were useful and important for in vitro oocyte maturation and embryonic development of cell technology in animals. The further study will be use porcine follicular fluid protein of medium and large follicles as feeder cells in in vitro condition to promote oocyte and embryo maturation.

Keywords: follicular fluid protein, LC/MS/MS, porcine oocyte, SDS-PAGE

Procedia PDF Downloads 574
8375 Perspectives and Challenges Functional Bread with Yeast Extract to Improve Human Diet

Authors: Jelena Filipović, Milenko Košutić, Vladimir Filipović

Abstract:

In the last decades, the urban population has been characterized by sedentary lifestyles, low physical activity, and "fast food". These changes in diet and physical nonactivity have been associated with an increase in chronic diseases. Bread is one of the most popular wheat products consumed worldwide. Spelt wheat has shown potential in various food applications, including bread, pasta, breakfast cereal, and other products of altered nutritional characteristics compared to conventional wheat products. It has very high protein content and even 30 to 60% higher concentration of mineral elements Fe, Zn, Cu, Mg and P compared to Triticum Aestivum. Spelt wheat is growing without the use of pesticides in harsh ecological conditions and it is an old cultivar. So it can be used for organic and health-safe food. Changes in the formulation of bread with the aim of improving its nutritional and functional properties usually lead to changes in the dough's properties, which are related to the quality of the finished product. The aim of this paper is to research the impact of adding yeast extract to bread on sensory characteristics and consumer acceptance of a new product as a key factor for the successful marketing of a distinct product. The sensory analysis of bread with 5% yeast extract is as follows: the technological quality is very good (3.8), and the color of the product is excellent (4.85). Based on data, consumers' survey declared that they liked the taste of bread with 5% yeast extract (74%), consumers marked the product as likable (70%), and 75% of the total number of respondents would buy this new product. This paper is promoting a type of bread with 5% yeast extract (Z score 0.80) to improve diet and a product intended for consumers conscious about their health and diet.

Keywords: bread, yeast extract, sensory analysis, consumer survey, score analysis

Procedia PDF Downloads 51
8374 Self-Assembled ZnFeAl Layered Double Hydroxides as Highly Efficient Fenton-Like Catalysts

Authors: Marius Sebastian Secula, Mihaela Darie, Gabriela Carja

Abstract:

Ibuprofen is a non-steroidal anti-inflammatory drug (NSAIDs) and is among the most frequently detected pharmaceuticals in environmental samples and among the most widespread drug in the world. Its concentration in the environment is reported to be between 10 and 160 ng L-1. In order to improve the abatement efficiency of this compound for water source prevention and reclamation, the development of innovative technologies is mandatory. AOPs (advanced oxidation processes) are known as highly efficient towards the oxidation of organic pollutants. Among the promising combined treatments, photo-Fenton processes using layered double hydroxides (LDHs) attracted significant consideration especially due to their composition flexibility, high surface area and tailored redox features. This work presents the self-supported Fe, Mn or Ti on ZnFeAl LDHs obtained by co-precipitation followed by reconstruction method as novel efficient photo-catalysts for Fenton-like catalysis. Fe, Mn or Ti/ZnFeAl LDHs nano-hybrids were tested for the degradation of a model pharmaceutical agent, the anti-inflammatory agent ibuprofen, by photocatalysis and photo-Fenton catalysis, respectively, by means of a lab-scale system consisting of a batch reactor equipped with an UV lamp (17 W). The present study presents comparatively the degradation of Ibuprofen in aqueous solution UV light irradiation using four different types of LDHs. The newly prepared Ti/ZnFeAl 4:1 catalyst results in the best degradation performance. After 60 minutes of light irradiation, the Ibuprofen removal efficiency reaches 95%. The slowest degradation of Ibuprofen solution occurs in case of Fe/ZnFeAl 4:1 LDH, (67% removal efficiency after 60 minutes of process). Evolution of Ibuprofen degradation during the photo Fenton process is also studied using Ti/ZnFeAl 2:1 and 4:1 LDHs in the presence and absence of H2O2. It is found that after 60 min the use of Ti/ZnFeAl 4:1 LDH in presence of 100 mg/L H2O2 leads to the fastest degradation of Ibuprofen molecule. After 120 min, both catalysts Ti/ZnFeAl 4:1 and 2:1 result in the same value of removal efficiency (98%). In the absence of H2O2, Ibuprofen degradation reaches only 73% removal efficiency after 120 min of degradation process. Acknowledgements: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.

Keywords: layered double hydroxide, advanced oxidation process, micropollutant, heterogeneous Fenton

Procedia PDF Downloads 224
8373 Thrombophilic Risk Factors and Pregnancy Complications

Authors: Hanan Azzam1, Nashwa Abousamra1, Amany Mansour1, Yaser Abd El-dayem2, , Solafa Elsharawy1

Abstract:

Background: Inherited thrombophilias are a heterogenous group of conditions which have been implicated in a variety of pregnancy complications. More recently, deficiency of protein Z (PZ) has been liked to pregnancy complications, including preterm delivery. Aim: We designed this study to evaluate the association of inherited thrombophilias including [Protein C (PC), Protein S (PS), Anti thrombin III (ATIII) deficiency and activated protein C (APC) resistance] and protein Z deficiency with a variety of pregnancy complications. Patients and Methods: 60 women with different pregnancy complications, including 20 patients with preeclampsia, 20 patients with intrauterine growth resistance (IUGR), and 20 patients with intrauterine fetal death (IUFD), in addition to 30 healthy pregnant women were recruited for the present study. PC and free PS antigen, ATIII activity, modified functional APC-resistance, and PZ levels were determined. Results: There was no significant association between inherited thrombophilias and complicated pregnancies as regards PC deficiency (p=1.0), AT III and PS deficiency (p=0.312), and APC-resistance (P=0.083). PZ was significantly associated with complicated pregnancies (p=0.012). Patients with protein Z levels below 1.5 µg/ml were considered deficient. Accordingly, we demonstrated protein Z deficiency in 30% of complicated pregnancies (RR 6.0, 95% CI 1.29-27.90;p=0.022), 20% of preeclampsia (RR 3.5, 95% CI 0.57 – 21.28; P = 0.174), 40% of IUGR (RR 9.3 95% CI 1.72-50.61; P = 0.010) and 30% of IUFD (RR 6, 95% CI 1.07 – 33.64; P = 0.042). Conclusions: These findings indicate the absence of association of inherited thrombophilias, including PC, PS, AT III deficiency, and APC resistance with pregnancy complications. However, PZ deficiency is associated with increased risk of pregnancy complications, especially intrauterine growth restriction and intrauterine fetal death.

Keywords: protein C, protein S, thrombophelia, pregnancy, protein Z

Procedia PDF Downloads 227
8372 Perspectives and Challenges a Functional Bread With Yeast Extract to Improve Human Diet

Authors: Jelena Filipović, Milenko Košutić, Vladimir Filipović

Abstract:

In the last decades urban population is characterized by sedentary lifestyles, low physical activity and "fast food". These changes in diet and physical non activity have been associated with the increase of chronic non diseases. Bread is one of the most popularly wheat products consumed worldwide. Spelt wheat has shown potential in various food applications, including bread, pasta, breakfast cereal and other products of altered nutritional characteristics compared to conventional wheat products. It has very high protein content and even 30 to 60% higher concentration of mineral elements Fe, Zn, Cu, Mg and P compared to Triticum Aestivum. Spelt wheat is growing without the use of pesticides in harsh ecological conditions and it is an old cultivar. So it can be used for organic and health safe food. Changes in the formulation of bread with the aim to improve their nutritional and functional properties usually lead to changes in the dough properties which is related reflected to the quality of the finished product. The aim of this paper is researching the impact of adding yeast extract to bread on sensory characteristics and consumer acceptance of a new product as a key factor for successful marketing of a new product. The sensory analysis of bread with 5% yeast extract is as follows: the technological quality is very good (3.8) and the color of the product is excellent (4.85). Based on data consumers survey declared that they liked the taste of bread with 5% yeast extract (74%), consumers marked the product as likeable (70%), and 75% of the total number of respondents would buy this new product. This paper is promoting a new type of bread with 5% yeast extract (Z score 0.80) to improve diet and novel functional product which intended for consumers conscious about their health and diet.

Keywords: bread, yeast extract, sensory analysis, consumer survey, score analysis Z

Procedia PDF Downloads 49
8371 Textile Wastewater Ecotoxicity Abatement after Aerobic Granular Sludge Treatment and Advanced Oxidation Process

Authors: Ana M. T. Mata, Alexiane Ligneul

Abstract:

Textile effluents are usually heavily loaded with organic carbon and color compounds, the latter being azo dyes in an estimated 70% of the case effluent posing a major challenge in environmental protection. In this study, the ecotoxicity of simulated textile effluent after biological treatment with anaerobic and aerobic phase (aerobic granular sludge, AGS) and after advanced oxidation processes (AOP) namely ozonation and UV irradiation as post-treatment, were tested to evaluate the fitness of this treatments for ecotoxicity abatement. AGS treatment achieved an 80% removal in both COD and color. AOP was applied with the intention to mineralize the metabolites resulting from biodecolorization of the azo dye Acid Red 14, especially the stable aromatic amine (4-amino-1-naphthalenesulfonic acid, 4A1NS). The ecotoxicity evaluation was based on growth inhibition of the algae Pseudokirchneriella subcapitata following OECD TG 201 except regarding the medium, MBL medium was used instead. Five replicate control cultures and samples were performed with an average STD of 2.7% regarding specific algae growth rate determination. It was found that untreated textile effluent holds an inhibition of specific growth rate of 82%. AGS treatment by itself is able to lower ecotoxicity to 53%. This is probably due to the high color removal of the treatment. AOP post-treatment with Ozone and UV irradiation improves the ecotoxicity abatment to 49 and 43% inhibition respectively, less significantly than previously thought. Since over 85% of 4A1NS was removed by either of the AOP (followed by HPLC), an individual ecotoxicity test of 4A1NS was performed showing that 4A1NS does not inhibit algae growth (0% inhibition). It was concluded that AGS treatment is able by itself to achieve a significant ecotoxicity abatement of textile effluent. The cost-benefit of AOP as a post-treatment have to be better accessed since their application resulted in an improvement of only 10% regarding ecotoxicity effluent removal. It was also found that the 4A1NS amine had no apparent effect on ecotoxicity. Further studies will be conducted to study where ecotoxicity is coming from after AGS biological treatment and how to eliminate it.

Keywords: textile wastewate, ecotoxicity, aerobic granular sludge, AOP

Procedia PDF Downloads 158
8370 Social Media as a Distribution Channel for Thailand’s Rice Berry Product

Authors: Phutthiwat Waiyawuththanapoom, Wannapong Waiyawuththanapoom, Pimploi Tirastittam

Abstract:

Nowadays, it is a globalization era which social media plays an important role to the lifestyle as an information source, tools to connect people together and etc. This research is object to find out about the significant level of the social media as a distribution channel to the agriculture product of Thailand. In this research, the agriculture product is the Rice Berry which is the cross-bred unmilled rice producing dark violet grain, is a combination of Hom Nin Rice and Thai Jasmine/ Fragrant Rice 105. Rice Berry has a very high nutrition and nice aroma so the product is in the growth stage of the product cycle. The problem for the Rice Berry product in Thailand is the production and the distribution channel. This study is to confirm that the social media is another option as the distribution channel for the product which is not a mass production product. This will be the role model for the other niche market product to select the distribution channel.

Keywords: distribution, social media, rice berry, distribution channel

Procedia PDF Downloads 428
8369 Identification of the Key Enzyme of Roseoflavin Biosynthesis

Authors: V. Konjik, J. Schwartz, R. Sandhoff, M. Mack

Abstract:

The rising number of multi-resistant pathogens demands the development of new antibiotics in order to reduce the lethal risk of infections. Here, we investigate roseoflavin, a vitamin B2 analogue which is produced by Streptomyces davawensis and Streptomyces cinnabarinus. We consider roseoflavin to be a 'Trojan horse' compound. Its chemical structure is very similar to riboflavin but in fact it is a toxin. Furthermore, it is a clever strategy with regard to the delivery of an antibiotic to its site of action but also with regard to the production of this chemical: The producer cell has only to convert a vitamin (which is already present in the cytoplasm) into a vitamin analog. Roseoflavin inhibits the activity of Flavin depending proteins, which makes up to 3.5 % of predicted proteins in organisms sequenced so far. We sequentially knocked out gene clusters and later on single genes in order to find the ones which are involved in the roseoflavin biosynthesis. Consequently, we identified the gene rosB, coding for the protein carrying out the first step of roseoflavin biosynthesis, starting form Flavin mononucleotide. Here we show, that the protein RosB has so far unknown features. It is per se an oxidoreductase, a decarboxylase and an aminotransferase, all rolled into one enzyme. A screen of cofactors revealed needs of oxygen, NAD+, thiamine and glutamic acid to carry out its function. Surprisingly, thiamine is not only needed for the decaboxylation step, but also for the oxidation of 8-demethyl-8-formyl Flavin mononucleotide. We had managed to isolate three different Flavin intermediates with different oxidation states, which gave us a mechanistic insight of RosB functionality. Our work points to a so far new function of thiamine in Streptomyces davawensis. Additionally, RosB could be extremely useful for chemical synthesis. Careful engineering of RosB may allow the site-specific replacement of methyl groups by amino groups in polyaromatic compounds of commercial interest. Finally, the complete clarification of the roseoflavin biosynthesis opens the possibility of engineering cost-effective roseoflavin producing strains.

Keywords: antibiotic, flavin analogue, roseoflavin biosynthesis, vitamin B2

Procedia PDF Downloads 238
8368 Transfer Learning for Protein Structure Classification at Low Resolution

Authors: Alexander Hudson, Shaogang Gong

Abstract:

Structure determination is key to understanding protein function at a molecular level. Whilst significant advances have been made in predicting structure and function from amino acid sequence, researchers must still rely on expensive, time-consuming analytical methods to visualise detailed protein conformation. In this study, we demonstrate that it is possible to make accurate (≥80%) predictions of protein class and architecture from structures determined at low (>3A) resolution, using a deep convolutional neural network trained on high-resolution (≤3A) structures represented as 2D matrices. Thus, we provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function. We investigate the impact of the input representation on classification performance, showing that side-chain information may not be necessary for fine-grained structure predictions. Finally, we confirm that high resolution, low-resolution and NMR-determined structures inhabit a common feature space, and thus provide a theoretical foundation for boosting with single-image super-resolution.

Keywords: transfer learning, protein distance maps, protein structure classification, neural networks

Procedia PDF Downloads 129
8367 Fire Smoke Removal over Cu-Mn-Ce Oxide Catalyst with CO₂ Sorbent Addition: Co Oxidation and in-situ CO₂ Sorption

Authors: Jin Lin, Shouxiang Lu, Kim Meow Liew

Abstract:

In a fire accident, fire smoke often poses a serious threat to human safety especially in the enclosed space such as submarine and space-crafts environment. Efficient removal of the hazardous gas products particularly a large amount of CO and CO₂ gases from these confined space is critical for the security of the staff and necessary for the post-fire environment recovery. In this work, Cu-Mn-Ce composite oxide catalysts coupled with CO₂ sorbents were prepared using wet impregnation method, solid-state impregnation method and wet/solid-state impregnation method. The as-prepared samples were tested dynamically and isothermally for CO oxidation and CO₂ sorption and further characterized by the X-ray diffraction (XRD), nitrogen adsorption and desorption, and field emission scanning electron microscopy (FE-SEM). The results showed that all the samples were able to catalyze CO into CO₂ and capture CO₂ in situ by chemisorption. Among all the samples, the sample synthesized by the wet/solid-state impregnation method showed the highest catalytic activity toward CO oxidation and the fine ability of CO₂ sorption. The sample prepared by the solid-state impregnation method showed the second CO oxidation performance, while the coupled sample using the wet impregnation method exhibited much poor CO oxidation activity. The various CO oxidation and CO₂ sorption properties of the samples might arise from the different dispersed states of the CO₂ sorbent in the CO catalyst, owing to the different preparation methods. XRD results confirmed the high-dispersed sorbent phase in the samples prepared by the wet and solid impregnation method, while that of the sample prepared by wet/solid-state impregnation method showed the larger bulk phase as indicated by the high-intensity diffraction peaks. Nitrogen adsorption and desorption results further revealed that the latter sample had a higher surface area and pore volume, which were beneficial for the CO oxidation over the catalyst. Hence, the Cu-Mn-Ce oxide catalyst coupled with CO₂ sorbent using wet/solid-state impregnation method could be a good choice for fire smoke removal in the enclosed space.

Keywords: CO oxidation, CO₂ sorption, preparation methods, smoke removal

Procedia PDF Downloads 136
8366 Potential Use of Cnidoscolus Chayamansa Leaf from Mexico as High-Quality Protein Source

Authors: Diana Karina Baigts Allende, Mariana Gonzalez Diaz, Luis Antonio Chel Guerrero, Mukthar Sandoval Peraza

Abstract:

Poverty and food insecurity are still incident problems in the developing countries, where population´s diet is based on cereals which are lack in protein content. Nevertheless, during last years the use of native plants has been studied as an alternative source of protein in order to improve the nutritional intake. Chaya crop also called Spinach tree, is a prehispanic plant native from Central America and South of Mexico (Mayan culture), which has been especially valued due to its high nutritional content particularly protein and some medicinal properties. The aim of this work was to study the effect of protein isolation processing from Chaya leaf harvest in Yucatan, Mexico on its structure quality in order: i) to valorize the Chaya crop and ii) to produce low-cost and high-quality protein. Chaya leaf was extruded, clarified and recovered using: a) acid precipitation by decreasing the pH value until reach the isoelectric point (3.5) and b) thermal coagulation, by heating the protein solution at 80 °C during 30 min. Solubilized protein was re-dissolved in water and spray dried. The presence of Fraction I protein, known as RuBisCO (Rubilose-1,5-biphosfate carboxylase/oxygenase) was confirmed by gel electrophoresis (SDS-PAGE) where molecular weight bands of 55 KDa and 12 KDa were observed. The infrared spectrum showed changes in protein structure due to the isolation method. The use of high temperatures (thermal coagulation) highly decreased protein solubility in comparison to isoelectric precipitated protein, the nutritional properties according to amino acid profile was also disturbed, showing minor amounts of overall essential amino acids from 435.9 to 367.8 mg/g. Chaya protein isolate obtained by acid precipitation showed higher protein quality according to essential amino acid score compared to FAO recommendations, which could represent an important sustainable source of protein for human consumption.

Keywords: chaya leaf, nutritional properties, protein isolate, protein structure

Procedia PDF Downloads 336