Search results for: Bayesian hierarchical models
7242 Predictive Modelling of Curcuminoid Bioaccessibility as a Function of Food Formulation and Associated Properties
Authors: Kevin De Castro Cogle, Mirian Kubo, Maria Anastasiadi, Fady Mohareb, Claire Rossi
Abstract:
Background: The bioaccessibility of bioactive compounds is a critical determinant of the nutritional quality of various food products. Despite its importance, there is a limited number of comprehensive studies aimed at assessing how the composition of a food matrix influences the bioaccessibility of a compound of interest. This knowledge gap has prompted a growing need to investigate the intricate relationship between food matrix formulations and the bioaccessibility of bioactive compounds. One such class of bioactive compounds that has attracted considerable attention is curcuminoids. These naturally occurring phytochemicals, extracted from the roots of Curcuma longa, have gained popularity owing to their purported health benefits and also well known for their poor bioaccessibility Project aim: The primary objective of this research project is to systematically assess the influence of matrix composition on the bioaccessibility of curcuminoids. Additionally, this study aimed to develop a series of predictive models for bioaccessibility, providing valuable insights for optimising the formula for functional foods and provide more descriptive nutritional information to potential consumers. Methods: Food formulations enriched with curcuminoids were subjected to in vitro digestion simulation, and their bioaccessibility was characterized with chromatographic and spectrophotometric techniques. The resulting data served as the foundation for the development of predictive models capable of estimating bioaccessibility based on specific physicochemical properties of the food matrices. Results: One striking finding of this study was the strong correlation observed between the concentration of macronutrients within the food formulations and the bioaccessibility of curcuminoids. In fact, macronutrient content emerged as a very informative explanatory variable of bioaccessibility and was used, alongside other variables, as predictors in a Bayesian hierarchical model that predicted curcuminoid bioaccessibility accurately (optimisation performance of 0.97 R2) for the majority of cross-validated test formulations (LOOCV of 0.92 R2). These preliminary results open the door to further exploration, enabling researchers to investigate a broader spectrum of food matrix types and additional properties that may influence bioaccessibility. Conclusions: This research sheds light on the intricate interplay between food matrix composition and the bioaccessibility of curcuminoids. This study lays a foundation for future investigations, offering a promising avenue for advancing our understanding of bioactive compound bioaccessibility and its implications for the food industry and informed consumer choices.Keywords: bioactive bioaccessibility, food formulation, food matrix, machine learning, probabilistic modelling
Procedia PDF Downloads 677241 Environmental Radioactivity Analysis by a Sequential Approach
Authors: G. Medkour Ishak-Boushaki, A. Taibi, M. Allab
Abstract:
Quantitative environmental radioactivity measurements are needed to determine the level of exposure of a population to ionizing radiations and for the assessment of the associated risks. Gamma spectrometry remains a very powerful tool for the analysis of radionuclides present in an environmental sample but the basic problem in such measurements is the low rate of detected events. Using large environmental samples could help to get around this difficulty but, unfortunately, new issues are raised by gamma rays attenuation and self-absorption. Recently, a new method has been suggested, to detect and identify without quantification, in a short time, a gamma ray of a low count source. This method does not require, as usually adopted in gamma spectrometry measurements, a pulse height spectrum acquisition. It is based on a chronological record of each detected photon by simultaneous measurements of its energy ε and its arrival time τ on the detector, the pair parameters [ε,τ] defining an event mode sequence (EMS). The EMS serials are analyzed sequentially by a Bayesian approach to detect the presence of a given radioactive source. The main object of the present work is to test the applicability of this sequential approach in radioactive environmental materials detection. Moreover, for an appropriate health oversight of the public and of the concerned workers, the analysis has been extended to get a reliable quantification of the radionuclides present in environmental samples. For illustration, we consider as an example, the problem of detection and quantification of 238U. Monte Carlo simulated experience is carried out consisting in the detection, by a Ge(Hp) semiconductor junction, of gamma rays of 63 keV emitted by 234Th (progeny of 238U). The generated EMS serials are analyzed by a Bayesian inference. The application of the sequential Bayesian approach, in environmental radioactivity analysis, offers the possibility of reducing the measurements time without requiring large environmental samples and consequently avoids the attached inconvenient. The work is still in progress.Keywords: Bayesian approach, event mode sequence, gamma spectrometry, Monte Carlo method
Procedia PDF Downloads 4957240 Statistical Data Analysis of Migration Impact on the Spread of HIV Epidemic Model Using Markov Monte Carlo Method
Authors: Ofosuhene O. Apenteng, Noor Azina Ismail
Abstract:
Over the last several years, concern has developed over how to minimize the spread of HIV/AIDS epidemic in many countries. AIDS epidemic has tremendously stimulated the development of mathematical models of infectious diseases. The transmission dynamics of HIV infection that eventually developed AIDS has taken a pivotal role of much on building mathematical models. From the initial HIV and AIDS models introduced in the 80s, various improvements have been taken into account as how to model HIV/AIDS frameworks. In this paper, we present the impact of migration on the spread of HIV/AIDS. Epidemic model is considered by a system of nonlinear differential equations to supplement the statistical method approach. The model is calibrated using HIV incidence data from Malaysia between 1986 and 2011. Bayesian inference based on Markov Chain Monte Carlo is used to validate the model by fitting it to the data and to estimate the unknown parameters for the model. The results suggest that the migrants stay for a long time contributes to the spread of HIV. The model also indicates that susceptible individual becomes infected and moved to HIV compartment at a rate that is more significant than the removal rate from HIV compartment to AIDS compartment. The disease-free steady state is unstable since the basic reproduction number is 1.627309. This is a big concern and not a good indicator from the public heath point of view since the aim is to stabilize the epidemic at the disease equilibrium.Keywords: epidemic model, HIV, MCMC, parameter estimation
Procedia PDF Downloads 5997239 An Empirical Study to Predict Myocardial Infarction Using K-Means and Hierarchical Clustering
Authors: Md. Minhazul Islam, Shah Ashisul Abed Nipun, Majharul Islam, Md. Abdur Rakib Rahat, Jonayet Miah, Salsavil Kayyum, Anwar Shadaab, Faiz Al Faisal
Abstract:
The target of this research is to predict Myocardial Infarction using unsupervised Machine Learning algorithms. Myocardial Infarction Prediction related to heart disease is a challenging factor faced by doctors & hospitals. In this prediction, accuracy of the heart disease plays a vital role. From this concern, the authors have analyzed on a myocardial dataset to predict myocardial infarction using some popular Machine Learning algorithms K-Means and Hierarchical Clustering. This research includes a collection of data and the classification of data using Machine Learning Algorithms. The authors collected 345 instances along with 26 attributes from different hospitals in Bangladesh. This data have been collected from patients suffering from myocardial infarction along with other symptoms. This model would be able to find and mine hidden facts from historical Myocardial Infarction cases. The aim of this study is to analyze the accuracy level to predict Myocardial Infarction by using Machine Learning techniques.Keywords: Machine Learning, K-means, Hierarchical Clustering, Myocardial Infarction, Heart Disease
Procedia PDF Downloads 2027238 Modeling and Implementation of a Hierarchical Safety Controller for Human Machine Collaboration
Authors: Damtew Samson Zerihun
Abstract:
This paper primarily describes the concept of a hierarchical safety control (HSC) in discrete manufacturing to up-hold productivity with human intervention and machine failures using a systematic approach, through increasing the system availability and using additional knowledge on machines so as to improve the human machine collaboration (HMC). It also highlights the implemented PLC safety algorithm, in applying this generic concept to a concrete pro-duction line using a lab demonstrator called FATIE (Factory Automation Test and Integration Environment). Furthermore, the paper describes a model and provide a systematic representation of human-machine collabora-tion in discrete manufacturing and to this end, the Hierarchical Safety Control concept is proposed. This offers a ge-neric description of human-machine collaboration based on Finite State Machines (FSM) that can be applied to vari-ous discrete manufacturing lines instead of using ad-hoc solutions for each line. With its reusability, flexibility, and extendibility, the Hierarchical Safety Control scheme allows upholding productivity while maintaining safety with reduced engineering effort compared to existing solutions. The approach to the solution begins with a successful partitioning of different zones around the Integrated Manufacturing System (IMS), which are defined by operator tasks and the risk assessment, used to describe the location of the human operator and thus to identify the related po-tential hazards and trigger the corresponding safety functions to mitigate it. This includes selective reduced speed zones and stop zones, and in addition with the hierarchical safety control scheme and advanced safety functions such as safe standstill and safe reduced speed are used to achieve the main goals in improving the safe Human Ma-chine Collaboration and increasing the productivity. In a sample scenarios, It is shown that an increase of productivity in the order of 2.5% is already possible with a hi-erarchical safety control, which consequently under a given assumptions, a total sum of 213 € could be saved for each intervention, compared to a protective stop reaction. Thereby the loss is reduced by 22.8%, if occasional haz-ard can be refined in a hierarchical way. Furthermore, production downtime due to temporary unavailability of safety devices can be avoided with safety failover that can save millions per year. Moreover, the paper highlights the proof of the development, implementation and application of the concept on the lab demonstrator (FATIE), where it is realized on the new safety PLCs, Drive Units, HMI as well as Safety devices in addition to the main components of the IMS.Keywords: discrete automation, hierarchical safety controller, human machine collaboration, programmable logical controller
Procedia PDF Downloads 3687237 The Fabrication and Characterization of Hierarchical Carbon Nanotube/Carbon Fiber/High-Density Polyethylene Composites via Twin-Screw Extrusion
Authors: Chao Hu, Xinwen Liao, Qing-Hua Qin, Gang Wang
Abstract:
The hierarchical carbon nanotube (CNT)/carbon fiber (CF)/high density polyethylene (HDPE) was fabricated via compound extrusion and injection molding, in which to author’s best knowledge CNT was employed as a nano-coatings on the surface of CF for the first time by spray coating technique. The CNT coatings relative to CF was set at 1 wt% and the CF content relative to the composites varied from 0 to 25 wt% to study the influence of CNT coatings and CF contents on the mechanical, thermal and morphological performance of this hierarchical composites. The results showed that with the rise of CF contents, the mechanical properties, including the tensile properties, flexural properties, and hardness of CNT/CF/HDPE composites, were effectively improved. Furthermore, the CNT-coated composites showed overall higher mechanical performance than the uncoated counterparts. It can be ascribed to the enhancement of interfacial bonding between the CF and HDPE via the incorporation of CNT, which was demonstrated by the scanning electron microscopy observation. Meanwhile, the differential scanning calorimetry data indicated that by the introduction of CNT and CF, the crystallization temperature and crystallinity of HDPE were affected while the melting temperature did not have an obvious alteration.Keywords: carbon fibers, carbon nanotubes, extrusion, high density polyethylene
Procedia PDF Downloads 1387236 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence
Procedia PDF Downloads 1437235 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs
Authors: Queen Suraajini Rajendran, Sai Hung Cheung
Abstract:
Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.Keywords: statistical downscaling, global climate model, climate change, uncertainty
Procedia PDF Downloads 3677234 A Review on Water Models of Surface Water Environment
Authors: Shahbaz G. Hassan
Abstract:
Water quality models are very important to predict the changes in surface water quality for environmental management. The aim of this paper is to give an overview of the water qualities, and to provide directions for selecting models in specific situation. Water quality models include one kind of model based on a mechanistic approach, while other models simulate water quality without considering a mechanism. Mechanistic models can be widely applied and have capabilities for long-time simulation, with highly complexity. Therefore, more spaces are provided to explain the principle and application experience of mechanistic models. Mechanism models have certain assumptions on rivers, lakes and estuaries, which limits the application range of the model, this paper introduces the principles and applications of water quality model based on the above three scenarios. On the other hand, mechanistic models are more easily to compute, and with no limit to the geographical conditions, but they cannot be used with confidence to simulate long term changes. This paper divides the empirical models into two broad categories according to the difference of mathematical algorithm, models based on artificial intelligence and models based on statistical methods.Keywords: empirical models, mathematical, statistical, water quality
Procedia PDF Downloads 2637233 Building a Hierarchical, Granular Knowledge Cube
Authors: Alexander Denzler, Marcel Wehrle, Andreas Meier
Abstract:
A knowledge base stores facts and rules about the world that applications can use for the purpose of reasoning. By applying the concept of granular computing to a knowledge base, several advantages emerge. These can be harnessed by applications to improve their capabilities and performance. In this paper, the concept behind such a construct, called a granular knowledge cube, is defined, and its intended use as an instrument that manages to cope with different data types and detect knowledge domains is elaborated. Furthermore, the underlying architecture, consisting of the three layers of the storing, representing, and structuring of knowledge, is described. Finally, benefits as well as challenges of deploying it are listed alongside application types that could profit from having such an enhanced knowledge base.Keywords: granular computing, granular knowledge, hierarchical structuring, knowledge bases
Procedia PDF Downloads 4967232 Investigating Methanol Interaction on Hexagonal Ceria-BTC Microrods
Authors: Jamshid Hussain, Kuen Song Lin
Abstract:
For prospective applications, chemists and materials scientists are particularly interested in creating 3D-micro/nanocomposite structures with shapes and unique characteristics. Ceria has recently been produced with a variety of morphologies, including one-dimensional structures (nanoparticles, nanorods, nanowires, and nanotubes). It is anticipated that this material can be used in different fields, such as catalysis, methanol decomposition, carbon monoxide oxidation, optical materials, and environmental protection. Distinct three-dimensional hydrated ceria-BTC (CeO₂-1,3,5-Benzenetricarboxylic-acid) microstructures were successfully synthesized via a hydrothermal route in an aqueous solution. FE-SEM and XRD patterns reveal that a ceria-BTC framework diameter and length are approximately 1.45–2.4 and 5.5–6.5 µm, respectively, at 130 oC and with pH 2 for 72 h. It was demonstrated that the reaction conditions affected the 3D ceria-BTC architecture. The hexagonal ceria-BTC microrod comprises organic linkers, which are transformed into hierarchical ceria microrod in the presences of air at 400 oC was confirmed by Fourier transform infrared spectroscopy. The Ce-O bonding of the hierarchical ceria microrod (HCMs) species has a bond distance and coordination number of 2.44 and 6.89, respectively, which attenuates the EXAFS spectra. Compared to the ceria powder, the HCMs produced more oxygen vacancies and Ce3+ as shown by the XPS and XANES/EXAFS analyses.Keywords: hierarchical ceria microrod, three-dimensional ceria, methanol decomposition, reaction mechanism, XANES/EXAFS
Procedia PDF Downloads 77231 Management and Marketing Implications of Tourism Gravity Models
Authors: Clive L. Morley
Abstract:
Gravity models and panel data modelling of tourism flows are receiving renewed attention, after decades of general neglect. Such models have quite different underpinnings from conventional demand models derived from micro-economic theory. They operate at a different level of data and with different theoretical bases. These differences have important consequences for the interpretation of the results and their policy and managerial implications. This review compares and contrasts the two model forms, clarifying the distinguishing features and the estimation requirements of each. In general, gravity models are not recommended for use to address specific management and marketing purposes.Keywords: gravity models, micro-economics, demand models, marketing
Procedia PDF Downloads 4367230 A Reasoning Method of Cyber-Attack Attribution Based on Threat Intelligence
Authors: Li Qiang, Yang Ze-Ming, Liu Bao-Xu, Jiang Zheng-Wei
Abstract:
With the increasing complexity of cyberspace security, the cyber-attack attribution has become an important challenge of the security protection systems. The difficult points of cyber-attack attribution were forced on the problems of huge data handling and key data missing. According to this situation, this paper presented a reasoning method of cyber-attack attribution based on threat intelligence. The method utilizes the intrusion kill chain model and Bayesian network to build attack chain and evidence chain of cyber-attack on threat intelligence platform through data calculation, analysis and reasoning. Then, we used a number of cyber-attack events which we have observed and analyzed to test the reasoning method and demo system, the result of testing indicates that the reasoning method can provide certain help in cyber-attack attribution.Keywords: reasoning, Bayesian networks, cyber-attack attribution, Kill Chain, threat intelligence
Procedia PDF Downloads 4497229 Bayesian Hidden Markov Modelling of Blood Type Distribution for COVID-19 Cases Using Poisson Distribution
Authors: Johnson Joseph Kwabina Arhinful, Owusu-Ansah Emmanuel Degraft Johnson, Okyere Gabrial Asare, Adebanji Atinuke Olusola
Abstract:
This paper proposes a model to describe the blood types distribution of new Coronavirus (COVID-19) cases using the Bayesian Poisson - Hidden Markov Model (BP-HMM). With the help of the Gibbs sampler algorithm, using OpenBugs, the study first identifies the number of hidden states fitting European (EU) and African (AF) data sets of COVID-19 cases by blood type frequency. The study then compares the state-dependent mean of infection within and across the two geographical areas. The study findings show that the number of hidden states and infection rates within and across the two geographical areas differ according to blood type.Keywords: BP-HMM, COVID-19, blood types, GIBBS sampler
Procedia PDF Downloads 1287228 Use of Hierarchical Temporal Memory Algorithm in Heart Attack Detection
Authors: Tesnim Charrad, Kaouther Nouira, Ahmed Ferchichi
Abstract:
In order to reduce the number of deaths due to heart problems, we propose the use of Hierarchical Temporal Memory Algorithm (HTM) which is a real time anomaly detection algorithm. HTM is a cortical learning algorithm based on neocortex used for anomaly detection. In other words, it is based on a conceptual theory of how the human brain can work. It is powerful in predicting unusual patterns, anomaly detection and classification. In this paper, HTM have been implemented and tested on ECG datasets in order to detect cardiac anomalies. Experiments showed good performance in terms of specificity, sensitivity and execution time.Keywords: cardiac anomalies, ECG, HTM, real time anomaly detection
Procedia PDF Downloads 2277227 Integrated Nested Laplace Approximations For Quantile Regression
Authors: Kajingulu Malandala, Ranganai Edmore
Abstract:
The asymmetric Laplace distribution (ADL) is commonly used as the likelihood function of the Bayesian quantile regression, and it offers different families of likelihood method for quantile regression. Notwithstanding their popularity and practicality, ADL is not smooth and thus making it difficult to maximize its likelihood. Furthermore, Bayesian inference is time consuming and the selection of likelihood may mislead the inference, as the Bayes theorem does not automatically establish the posterior inference. Furthermore, ADL does not account for greater skewness and Kurtosis. This paper develops a new aspect of quantile regression approach for count data based on inverse of the cumulative density function of the Poisson, binomial and Delaporte distributions using the integrated nested Laplace Approximations. Our result validates the benefit of using the integrated nested Laplace Approximations and support the approach for count data.Keywords: quantile regression, Delaporte distribution, count data, integrated nested Laplace approximation
Procedia PDF Downloads 1617226 Effect of Plasticizer Additives on the Mechanical Properties of Cement Composite: A Molecular Dynamics Analysis
Authors: R. Mohan, V. Jadhav, A. Ahmed, J. Rivas, A. Kelkar
Abstract:
Cementitious materials are an excellent example of a composite material with complex hierarchical features and random features that range from nanometer (nm) to millimeter (mm) scale. Multi-scale modeling of complex material systems requires starting from fundamental building blocks to capture the scale relevant features through associated computational models. In this paper, molecular dynamics (MD) modeling is employed to predict the effect of plasticizer additive on the mechanical properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown molecular configuration of CSH, a representative configuration widely accepted in the field of mineral Jennite is employed. The effectiveness of the Molecular Dynamics modeling to understand the predictive influence of material chemistry changes based on molecular/nanoscale models is demonstrated.Keywords: cement composite, mechanical properties, molecular dynamics, plasticizer additives
Procedia PDF Downloads 4527225 Comparison of Methods of Estimation for Use in Goodness of Fit Tests for Binary Multilevel Models
Authors: I. V. Pinto, M. R. Sooriyarachchi
Abstract:
It can be frequently observed that the data arising in our environment have a hierarchical or a nested structure attached with the data. Multilevel modelling is a modern approach to handle this kind of data. When multilevel modelling is combined with a binary response, the estimation methods get complex in nature and the usual techniques are derived from quasi-likelihood method. The estimation methods which are compared in this study are, marginal quasi-likelihood (order 1 & order 2) (MQL1, MQL2) and penalized quasi-likelihood (order 1 & order 2) (PQL1, PQL2). A statistical model is of no use if it does not reflect the given dataset. Therefore, checking the adequacy of the fitted model through a goodness-of-fit (GOF) test is an essential stage in any modelling procedure. However, prior to usage, it is also equally important to confirm that the GOF test performs well and is suitable for the given model. This study assesses the suitability of the GOF test developed for binary response multilevel models with respect to the method used in model estimation. An extensive set of simulations was conducted using MLwiN (v 2.19) with varying number of clusters, cluster sizes and intra cluster correlations. The test maintained the desirable Type-I error for models estimated using PQL2 and it failed for almost all the combinations of MQL. Power of the test was adequate for most of the combinations in all estimation methods except MQL1. Moreover, models were fitted using the four methods to a real-life dataset and performance of the test was compared for each model.Keywords: goodness-of-fit test, marginal quasi-likelihood, multilevel modelling, penalized quasi-likelihood, power, quasi-likelihood, type-I error
Procedia PDF Downloads 1427224 Electric Models for Crosstalk Predection: Analysis and Performance Evaluation
Authors: Kachout Mnaouer, Bel Hadj Tahar Jamel, Choubani Fethi
Abstract:
In this paper, three electric equivalent models to evaluate crosstalk between three-conductor transmission lines are proposed. First, electric equivalent models for three-conductor transmission lines are presented. Secondly, rigorous equations to calculate the per-unit length inductive and capacitive parameters are developed. These models allow us to calculate crosstalk between conductors. Finally, to validate the presented models, we compare the theoretical results with simulation data. Obtained results show that proposed models can be used to predict crosstalk performance.Keywords: near-end crosstalk, inductive parameter, L, Π, T models
Procedia PDF Downloads 4507223 Hierarchical Filtering Method of Threat Alerts Based on Correlation Analysis
Authors: Xudong He, Jian Wang, Jiqiang Liu, Lei Han, Yang Yu, Shaohua Lv
Abstract:
Nowadays, the threats of the internet are enormous and increasing; however, the classification of huge alert messages generated in this environment is relatively monotonous. It affects the accuracy of the network situation assessment, and also brings inconvenience to the security managers to deal with the emergency. In order to deal with potential network threats effectively and provide more effective data to improve the network situation awareness. It is essential to build a hierarchical filtering method to prevent the threats. In this paper, it establishes a model for data monitoring, which can filter systematically from the original data to get the grade of threats and be stored for using again. Firstly, it filters the vulnerable resources, open ports of host devices and services. Then use the entropy theory to calculate the performance changes of the host devices at the time of the threat occurring and filter again. At last, sort the changes of the performance value at the time of threat occurring. Use the alerts and performance data collected in the real network environment to evaluate and analyze. The comparative experimental analysis shows that the threat filtering method can effectively filter the threat alerts effectively.Keywords: correlation analysis, hierarchical filtering, multisource data, network security
Procedia PDF Downloads 2007222 Analyzing the Impact of Migration on HIV and AIDS Incidence Cases in Malaysia
Authors: Ofosuhene O. Apenteng, Noor Azina Ismail
Abstract:
The human immunodeficiency virus (HIV) that causes acquired immune deficiency syndrome (AIDS) remains a global cause of morbidity and mortality. It has caused panic since its emergence. Relationships between migration and HIV/AIDS have become complex. In the absence of prospectively designed studies, dynamic mathematical models that take into account the migration movement which will give very useful information. We have explored the utility of mathematical models in understanding transmission dynamics of HIV and AIDS and in assessing the magnitude of how migration has impact on the disease. The model was calibrated to HIV and AIDS incidence data from Malaysia Ministry of Health from the period of 1986 to 2011 using Bayesian analysis with combination of Markov chain Monte Carlo method (MCMC) approach to estimate the model parameters. From the estimated parameters, the estimated basic reproduction number was 22.5812. The rate at which the susceptible individual moved to HIV compartment has the highest sensitivity value which is more significant as compared to the remaining parameters. Thus, the disease becomes unstable. This is a big concern and not good indicator from the public health point of view since the aim is to stabilize the epidemic at the disease-free equilibrium. However, these results suggest that the government as a policy maker should make further efforts to curb illegal activities performed by migrants. It is shown that our models reflect considerably the dynamic behavior of the HIV/AIDS epidemic in Malaysia and eventually could be used strategically for other countries.Keywords: epidemic model, reproduction number, HIV, MCMC, parameter estimation
Procedia PDF Downloads 3667221 Performance Evaluation of Hierarchical Location-Based Services Coupled to the Greedy Perimeter Stateless Routing Protocol for Wireless Sensor Networks
Authors: Rania Khadim, Mohammed Erritali, Abdelhakim Maaden
Abstract:
Nowadays Wireless Sensor Networks have attracted worldwide research and industrial interest, because they can be applied in various areas. Geographic routing protocols are very suitable to those networks because they use location information when they need to route packets. Obviously, location information is maintained by Location-Based Services provided by network nodes in a distributed way. In this paper we choose to evaluate the performance of two hierarchical rendezvous location based-services, GLS (Grid Location Service) and HLS (Hierarchical Location Service) coupled to the GPSR routing protocol (Greedy Perimeter Stateless Routing) for Wireless Sensor Network. The simulations were performed using NS2 simulator to evaluate the performance and power of the two services in term of location overhead, the request travel time (RTT) and the query Success ratio (QSR). This work presents also a new scalability performance study of both GLS and HLS, specifically, what happens if the number of nodes N increases. The study will focus on three qualitative metrics: The location maintenance cost, the location query cost and the storage cost.Keywords: location based-services, routing protocols, scalability, wireless sensor networks
Procedia PDF Downloads 3717220 Hierarchical Porous Carbon Composite Electrode for High Performance Supercapacitor Application
Authors: Chia-Chia Chang, Jhen-Ting Huang, Hu-Cheng Weng, An-Ya Lo
Abstract:
This study developed a simple hierarchical porous carbon (HPC) synthesis process and used for supercapacitor application. In which, mesopore provides huge specific surface area, meanwhile, macropore provides excellent mass transfer. Thus the hierarchical porous electrode improves the charge-discharge performance. On the other hand, cerium oxide (CeO2) have also got a lot research attention owing to its rich in content, low in price, environmentally friendly, good catalytic properties, and easy preparation. Besides, a rapid redox reaction occurs between trivalent cerium and tetravalent cerium releases oxygen atom and increase the conductivity. In order to prevent CeO2 from disintegration under long-term charge-discharge operation, the CeO2 carbon porous materials were was integrated as composite material in this study. For in the ex-situ analysis, scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscope (TEM) analysis were adopted to identify the surface morphology, crystal structure, and microstructure of the composite. 77K Nitrogen adsorption-desorption analysis was used to analyze the porosity of each specimen. For the in-situ test, cyclic voltammetry (CV) and chronopotentiometry (CP) were conducted by potentiostat to understand the charge and discharge properties. Ragone plot was drawn to further analyze the resistance properties. Based on above analyses, the effect of macropores/mespores and the CeO2/HPC ratios on charge-discharge performance were investigated. As a result, the capacitance can be greatly enhanced by 2.6 times higher than pristine mesoporous carbon electrode.Keywords: hierarchical porous carbon, cerium oxide, supercapacitor
Procedia PDF Downloads 1237219 The Grit in the Glamour: A Qualitative Study of the Well-Being of Fashion Models
Authors: Emily Fortune Super, Ameerah Khadaroo, Aurore Bardey
Abstract:
Fashion models are often assumed to have a glamorous job with limited consideration for their well-being. This study aims to assess the well-being of models through semi-structured interviews with six professional fashion models and six industry professionals. Thematic analysis revealed that although models experienced improved self-confidence, they also reported heightened anxiety levels, body image issues, and the negative influence of modelling on their self-esteem. By contrast, industry professionals reported no or minimum concerns about anxious behaviours or the general well-being of fashion models. Being resilient as a model was perceived as an essential attribute to have by both models and industry professionals as they face recurrent rejection in this industry. These results demonstrate a significant gap in the current understanding of the well-being of fashion models between industry professionals and the models themselves. Findings imply that there is an inherent need for change in the modelling industry to promote and enhance their well-being.Keywords: body image, fashion industry, modelling, well-being
Procedia PDF Downloads 1717218 Bayesian Locally Approach for Spatial Modeling of Visceral Leishmaniasis Infection in Northern and Central Tunisia
Authors: Kais Ben-Ahmed, Mhamed Ali-El-Aroui
Abstract:
This paper develops a Local Generalized Linear Spatial Model (LGLSM) to describe the spatial variation of Visceral Leishmaniasis (VL) infection risk in northern and central Tunisia. The response from each region is a number of affected children less than five years of age recorded from 1996 through 2006 from Tunisian pediatric departments and treated as a poison county level data. The model includes climatic factors, namely averages of annual rainfall, extreme values of low temperatures in winter and high temperatures in summer to characterize the climate of each region according to each continentality index, the pluviometric quotient of Emberger (Q2) to characterize bioclimatic regions and component for residual extra-poison variation. The statistical results show the progressive increase in the number of affected children in regions with high continentality index and low mean yearly rainfull. On the other hand, an increase in pluviometric quotient of Emberger contributed to a significant increase in VL incidence rate. When compared with the original GLSM, Bayesian locally modeling is improvement and gives a better approximation of the Tunisian VL risk estimation. According to the Bayesian approach inference, we use vague priors for all parameters model and Markov Chain Monte Carlo method.Keywords: generalized linear spatial model, local model, extra-poisson variation, continentality index, visceral leishmaniasis, Tunisia
Procedia PDF Downloads 3967217 Modern Machine Learning Conniptions for Automatic Speech Recognition
Authors: S. Jagadeesh Kumar
Abstract:
This expose presents a luculent of recent machine learning practices as employed in the modern and as pertinent to prospective automatic speech recognition schemes. The aspiration is to promote additional traverse ablution among the machine learning and automatic speech recognition factions that have transpired in the precedent. The manuscript is structured according to the chief machine learning archetypes that are furthermore trendy by now or have latency for building momentous hand-outs to automatic speech recognition expertise. The standards offered and convoluted in this article embraces adaptive and multi-task learning, active learning, Bayesian learning, discriminative learning, generative learning, supervised and unsupervised learning. These learning archetypes are aggravated and conferred in the perspective of automatic speech recognition tools and functions. This manuscript bequeaths and surveys topical advances of deep learning and learning with sparse depictions; further limelight is on their incessant significance in the evolution of automatic speech recognition.Keywords: automatic speech recognition, deep learning methods, machine learning archetypes, Bayesian learning, supervised and unsupervised learning
Procedia PDF Downloads 4467216 Simultaneous versus Sequential Model in Foreign Entry
Authors: Patricia Heredia, Isabel Saz, Marta Fernández
Abstract:
This article proposes that the decision regarding exporting and the choice of export channel are nested and non-independent decisions. We assume that firms make two sequential decisions before arriving at their final choice: the decision to access foreign markets and the decision about the type of channel. This hierarchical perspective of the choices involved in the process is appealing for two reasons. First, it supports the idea that people have a limited analytical capacity. Managers often break down a complex decision into a hierarchical process because this makes it more manageable. Secondly, it recognizes that important differences exist between entry modes. In light of the above, the objective of this study is to test different entry mode choice processes: independent decisions and nested and non-independent decisions. To do this, the methodology estimates and compares the following two models: (i) a simultaneous single-stage model with three entry mode choices (using a multinomial logit model); ii) a two-stage model with the export decision preceding the channel decision using a sequential logit model. The study uses resource-based factors in determining these decision processes concerning internationalization and the study carries out empirical analysis using a DOC Rioja sample of 177 firms.Using the Akaike and Schwarz Information Criteria, the empirical evidence supports the existence of a nested structure, where the decision about exporting precedes the export mode decision. The implications and contributions of the findings are discussed.Keywords: sequential logit model, two-stage choice process, export mode, wine industry
Procedia PDF Downloads 287215 Stock Market Developments, Income Inequality, Wealth Inequality
Authors: Quang Dong Dang
Abstract:
This paper examines the possible effects of stock market developments by channels on income and wealth inequality. We use the Bayesian Multilevel Model with the explanatory variables of the market’s channels, such as accessibility, efficiency, and market health in six selected countries: the US, UK, Japan, Vietnam, Thailand, and Malaysia. We found that generally, the improvements in the stock market alleviate income inequality. However, stock market expansions in higher-income countries are likely to trigger income inequality. We also found that while enhancing the quality of channels of the stock market has counter-effects on wealth equality distributions, open accessibilities help reduce wealth inequality distributions within the scope of the study. In addition, the inverted U-shaped hypothesis seems not to be valid in six selected countries between the period from 2006 to 2020.Keywords: Bayesian multilevel model, income inequality, inverted u-shaped hypothesis, stock market development, wealth inequality
Procedia PDF Downloads 1067214 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records
Authors: Sara ElElimy, Samir Moustafa
Abstract:
Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).Keywords: big data analytics, machine learning, CDRs, 5G
Procedia PDF Downloads 1387213 Fundamental Theory of the Evolution Force: Gene Engineering utilizing Synthetic Evolution Artificial Intelligence
Authors: L. K. Davis
Abstract:
The effects of the evolution force are observable in nature at all structural levels ranging from small molecular systems to conversely enormous biospheric systems. However, the evolution force and work associated with formation of biological structures has yet to be described mathematically or theoretically. In addressing the conundrum, we consider evolution from a unique perspective and in doing so we introduce the “Fundamental Theory of the Evolution Force: FTEF”. We utilized synthetic evolution artificial intelligence (SYN-AI) to identify genomic building blocks and to engineer 14-3-3 ζ docking proteins by transforming gene sequences into time-based DNA codes derived from protein hierarchical structural levels. The aforementioned served as templates for random DNA hybridizations and genetic assembly. The application of hierarchical DNA codes allowed us to fast forward evolution, while dampening the effect of point mutations. Natural selection was performed at each hierarchical structural level and mutations screened using Blosum 80 mutation frequency-based algorithms. Notably, SYN-AI engineered a set of three architecturally conserved docking proteins that retained motion and vibrational dynamics of native Bos taurus 14-3-3 ζ.Keywords: 14-3-3 docking genes, synthetic protein design, time-based DNA codes, writing DNA code from scratch
Procedia PDF Downloads 112