Search results for: predictive decision
2829 The Determinants of Customer’s Purchase Intention of Islamic Credit Card: Evidence from Pakistan
Authors: Nasir Mehmood, Muhammad Yar Khan, Anam Javeed
Abstract:
This study aims to scrutinize the dynamics which tend to impact customer’s purchasing intention of Islamic credit card and nexus of product’s knowledge and religiosity with the attitude of potential Islamic credit card’s customer. The theory of reasoned action strengthened the idea that intentions due to its proven predictive power are most likely to instigate intended consumer behavior. Particularly, the study examines the relationships of perceived financial cost (PFC), subjective norms (SN), and attitude (ATT) with the intention to purchase Islamic credit cards. Using a convenience sampling approach, data have been collected from 450 customers of banks located in Rawalpindi and Islamabad. A five-point Likert scale self-administered questionnaire was used to collect the data. The data were analyzed using the Statistical Package of Social Sciences (SPSS) through the procedures of principal component and multiple regression analysis. The results suggested that customer’s religiosity and product knowledge are strong indicators of attitude towards buying Islamic credit cards. Likewise, subjective norms, attitude, and perceived financial cost have a significant positive impact on customers’ purchase intent of Islamic bank’s credit cards. This study models a useful path for future researchers to further investigate the underlined phenomenon along with a variety of psychodynamic factors which are still in its infancy, at least in the Pakistani banking sector. The study also provides an insight to the practitioners and Islamic bank managers for directing their efforts toward educating customers regarding the use of Islamic credit cards and other financial products.Keywords: attitude, Islamic credit card, religiosity, subjective norms
Procedia PDF Downloads 1442828 Entrepreneurship Education and Student Entrepreneurial Intention: A Comprehensive Review, Synthesis of Empirical Findings, and Strategic Insights for Future Research Advancements
Authors: Abdul Waris Jalili, Yanqing Wang, Som Suor
Abstract:
This research paper explores the relationship between entrepreneurship education and students' entrepreneurial intentions. It aims to determine if entrepreneurship education reliably predicts students' intention to become entrepreneurs and how and when this relationship occurs. This study aims to investigate the predictive relationship between entrepreneurship education and student entrepreneurial intentions. The goal is to understand the factors that influence this relationship and to identify any mediating or moderating factors. A thorough and systematic search and review of empirical articles published between 2013 and 2023 were conducted. Three databases, Google Scholar, Science Direct, and PubMed, were explored to gather relevant studies. Criteria such as reporting empirical results, publication in English, and addressing the research questions were used to select 35 papers for analysis. The collective findings of the reviewed studies suggest a generally positive relationship between entrepreneurship education and student entrepreneurial intentions. However, recent findings indicate that this relationship may be more complex than previously thought. Mediators and moderators have been identified, highlighting instances where entrepreneurship education indirectly influences student entrepreneurial intentions. The review also emphasizes the need for more robust research designs to establish causality in this field. This research adds to the existing literature by providing a comprehensive review of the relationship between entrepreneurship education and student entrepreneurial intentions. It highlights the complexity of this relationship and the importance of considering mediators and moderators. The study also calls for future research to explore different facets of entrepreneurship education independently and examine complex relationships more comprehensively.Keywords: entrepreneurship, entrepreneurship education, entrepreneurial intention, entrepreneurial self-efficacy
Procedia PDF Downloads 662827 Capacity Optimization in Cooperative Cognitive Radio Networks
Authors: Mahdi Pirmoradian, Olayinka Adigun, Christos Politis
Abstract:
Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors.Keywords: cooperative networks, normalized capacity, sensing time
Procedia PDF Downloads 6332826 Exploring Coexisting Opportunity of Earthquake Risk and Urban Growth
Authors: Chang Hsueh-Sheng, Chen Tzu-Ling
Abstract:
Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience, and further increase vulnerability. Due to earthquakes do not kill people, buildings do. When buildings located nearby earthquake-prone areas and constructed upon poorer soil areas might result in earthquake-induced ground damage. In addition, many existing buildings built before any improved seismic provisions began to be required in building codes and inappropriate land usage with highly dense population might result in much serious earthquake disaster. Indeed, not only do earthquake disaster impact seriously on urban environment, but urban growth might increase the vulnerability. Since 1980s, ‘Cutting down risks and vulnerability’ has been brought up in both urban planning and architecture and such concept has way beyond retrofitting of seismic damages, seismic resistance, and better anti-seismic structures, and become the key action on disaster mitigation. Land use planning and zoning are two critical non-structural measures on controlling physical development while it is difficult for zoning boards and governing bodies restrict development of questionable lands to uses compatible with the hazard without credible earthquake loss projection. Therefore, identifying potential earthquake exposure, vulnerability people and places, and urban development areas might become strongly supported information for decision makers. Taiwan locates on the Pacific Ring of Fire where a seismically active zone is. Some of the active faults have been found close by densely populated and highly developed built environment in the cities. Therefore, this study attempts to base on the perspective of carrying capacity and draft out micro-zonation according to both vulnerability index and urban growth index while considering spatial variances of multi factors via geographical weighted principle components (GWPCA). The purpose in this study is to construct supported information for decision makers on revising existing zoning in high-risk areas for a more compatible use and the public on managing risks.Keywords: earthquake disaster, vulnerability, urban growth, carrying capacity, /geographical weighted principle components (GWPCA), bivariate spatial association statistic
Procedia PDF Downloads 2562825 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining
Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride
Abstract:
In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning
Procedia PDF Downloads 1342824 Prediction of Antibacterial Peptides against Propionibacterium acnes from the Peptidomes of Achatina fulica Mucus Fractions
Authors: Suwapitch Chalongkulasak, Teerasak E-Kobon, Pramote Chumnanpuen
Abstract:
Acne vulgaris is a common skin disease mainly caused by the Gram–positive pathogenic bacterium, Propionibacterium acnes. This bacterium stimulates inflammation process in human sebaceous glands. Giant African snail (Achatina fulica) is alien species that rapidly reproduces and seriously damages agricultural products in Thailand. There were several research reports on the medical and pharmaceutical benefits of this snail mucus peptides and proteins. This study aimed to in silico predict multifunctional bioactive peptides from A. fulica mucus peptidome using several bioinformatic tools for determination of antimicrobial (iAMPpred), anti–biofilm (dPABBs), cytotoxic (Toxinpred), cell membrane penetrating (CPPpred) and anti–quorum sensing (QSPpred) peptides. Three candidate peptides with the highest predictive score were selected and re-designed/modified to improve the required activities. Structural and physicochemical properties of six anti–P. acnes (APA) peptide candidates were performed by PEP–FOLD3 program and the five aforementioned tools. All candidates had random coiled structure and were named as APA1–ori, APA2–ori, APA3–ori, APA1–mod, APA2–mod and APA3–mod. To validate the APA activity, these peptide candidates were synthesized and tested against six isolates of P. acnes. The modified APA peptides showed high APA activity on some isolates. Therefore, our biomimetic mucus peptides could be useful for preventing acne vulgaris and further examined on other activities important to medical and pharmaceutical applications.Keywords: Propionibacterium acnes, Achatina fulica, peptidomes, antibacterial peptides, snail mucus
Procedia PDF Downloads 1332823 The Value of Job Security across Various Welfare Policies
Authors: Eithan Hourie, Miki Malul, Raphael Bar-El
Abstract:
To investigate the relationship between various welfare policies and the value of job security, we conducted a study with 201 people regarding their assessments of the value of job security with respect to three elements: income stability, assurance of continuity of employment, and security in the job. The experiment simulated different welfare policy scenarios, such as the amount and duration of unemployment benefits, workfare, and basic income. The participants evaluated the value of job security in various situations. We found that the value of job security is approximately 22% of the starting salary, which is distributed as follows: 13% reflects income security, 8.7% reflects job security, and about 0.3% is for being able to keep their current employment in the future. To the best of our knowledge, this article is one of the pioneers in trying to quantify the value of job security in different market scenarios and at varying levels of welfare policy. Our conclusions may help decision-makers when deciding on a welfare policy.Keywords: job security value, employment protection legislation, status quo bias, expanding welfare policy
Procedia PDF Downloads 1062822 Determinants of Conference Service Quality as Perceived by International Attendees
Authors: Shiva Hashemi, Azizan Marzuki, S. Kiumarsi
Abstract:
In recent years, conference destinations have been highly competitive; therefore, it is necessary to know about the behaviours of conference participants such as the process of their decision-making and the assessment of perceived conference quality. A conceptual research framework based on the Theory of Planned Behaviour model is presented in this research to get better understanding factors that influence it. This research study highlights key factors presented in previous studies in which behaviour intentions of participants are affected by the quality of conference. Therefore, this study is believed to provide an idea that conference participants should be encouraged to contribute to the quality and behaviour intention of the conference.Keywords: conference, attendees, service quality, perceives value, trust, behavioural intention.
Procedia PDF Downloads 3182821 Time Lag Analysis for Readiness Potential by a Firing Pattern Controller Model of a Motor Nerve System Considered Innervation and Jitter
Authors: Yuko Ishiwaka, Tomohiro Yoshida, Tadateru Itoh
Abstract:
Human makes preparation called readiness potential unconsciously (RP) before awareness of their own decision. For example, when recognizing a button and pressing the button, the RP peaks are observed 200 ms before the initiation of the movement. It has been known that the preparatory movements are acquired before actual movements, but it has not been still well understood how humans can obtain the RP during their growth. On the proposition of why the brain must respond earlier, we assume that humans have to adopt the dangerous environment to survive and then obtain the behavior to cover the various time lags distributed in the body. Without RP, humans cannot take action quickly to avoid dangerous situations. In taking action, the brain makes decisions, and signals are transmitted through the Spinal Cord to the muscles to the body moves according to the laws of physics. Our research focuses on the time lag of the neuron signal transmitting from a brain to muscle via a spinal cord. This time lag is one of the essential factors for readiness potential. We propose a firing pattern controller model of a motor nerve system considered innervation and jitter, which produces time lag. In our simulation, we adopt innervation and jitter in our proposed muscle-skeleton model, because these two factors can create infinitesimal time lag. Q10 Hodgkin Huxley model to calculate action potentials is also adopted because the refractory period produces a more significant time lag for continuous firing. Keeping constant power of muscle requires cooperation firing of motor neurons because a refractory period stifles the continuous firing of a neuron. One more factor in producing time lag is slow or fast-twitch. The Expanded Hill Type model is adopted to calculate power and time lag. We will simulate our model of muscle skeleton model by controlling the firing pattern and discuss the relationship between the time lag of physics and neurons. For our discussion, we analyze the time lag with our simulation for knee bending. The law of inertia caused the most influential time lag. The next most crucial time lag was the time to generate the action potential induced by innervation and jitter. In our simulation, the time lag at the beginning of the knee movement is 202ms to 203.5ms. It means that readiness potential should be prepared more than 200ms before decision making.Keywords: firing patterns, innervation, jitter, motor nerve system, readiness potential
Procedia PDF Downloads 8292820 The Theory of the Mystery: Unifying the Quantum and Cosmic Worlds
Authors: Md. Najiur Rahman
Abstract:
This hypothesis reveals a profound and symmetrical connection that goes beyond the boundaries of quantum physics and cosmology, revolutionizing our understanding of the fundamental building blocks of the cosmos, given its name ‘The Theory of the Mystery’. This theory has an elegantly simple equation, “R = ∆r / √∆m” which establishes a beautiful and well-crafted relationship between the radius (R) of an elementary particle or galaxy, the relative change in radius (∆r), and the mass difference (∆m) between related entities. It is fascinating to note that this formula presents a super synchronization, one which involves the convergence of every basic particle and any single celestial entity into perfect alignment with its respective mass and radius. In addition, we have a Supporting equation that defines the mass-radius connection of an entity by the equation: R=√m/N, where N is an empirically established constant, determined to be approximately 42.86 kg/m, representing the proportionality between mass and radius. It provides precise predictions, collects empirical evidence, and explores the far-reaching consequences of theories such as General Relativity. This elegant symmetry reveals a fundamental principle that underpins the cosmos: each component, whether small or large, follows a precise mass-radius relationship to exert gravity by a universal law. This hypothesis represents a transformative process towards a unified theory of physics, and the pursuit of experimental verification will show that each particle and galaxy is bound by gravity and plays a unique but harmonious role in shaping the universe. It promises to reveal the great symphony of the mighty cosmos. The predictive power of our hypothesis invites the exploration of entities at the farthest reaches of the cosmos, providing a bridge between the known and the unknown.Keywords: unified theory, quantum gravity, mass-radius relationship, dark matter, uniform gravity
Procedia PDF Downloads 1052819 Development of Technologies for the Treatment of Nutritional Problems in Primary Care
Authors: Marta Fernández Batalla, José María Santamaría García, Maria Lourdes Jiménez Rodríguez, Roberto Barchino Plata, Adriana Cercas Duque, Enrique Monsalvo San Macario
Abstract:
Background: Primary Care Nursing is taking more autonomy in clinical decisions. One of the most frequent therapies to solve is related to the problems of maintaining a sufficient supply of food. Nursing diagnoses related to food are addressed by the nurse-family and community as the first responsible. Objectives and interventions are set according to each patient. To improve the goal setting and the treatment of these care problems, a technological tool is developed to help nurses. Objective: To evaluate the computational tool developed to support the clinical decision in feeding problems. Material and methods: A cross-sectional descriptive study was carried out at the Meco Health Center, Madrid, Spain. The study population consisted of four specialist nurses in primary care. These nurses tested the tool on 30 people with ‘need for nutritional therapy’. Subsequently, the usability of the tool and the satisfaction of the professional were sought. Results: A simple and convenient computational tool is designed for use. It has 3 main entrance fields: age, size, sex. The tool returns the following information: BMI (Body Mass Index) and caloric consumed by the person. The next step is the caloric calculation depending on the activity. It is possible to propose a goal of BMI or weight to achieve. With this, the amount of calories to be consumed is proposed. After using the tool, it was determined that the tool calculated the BMI and calories correctly (in 100% of clinical cases). satisfaction on nutritional assessment was ‘satisfactory’ or ‘very satisfactory’, linked to the speed of operations. As a point of improvement, the options of ‘stress factor’ linked to weekly physical activity. Conclusion: Based on the results, it is clear that the computational tools of decision support are useful in the clinic. Nurses are not only consumers of computational tools, but can develop their own tools. These technological solutions improve the effectiveness of nutrition assessment and intervention. We are currently working on improvements such as the calculation of protein percentages as a function of protein percentages as a function of stress parameters.Keywords: feeding behavior health, nutrition therapy, primary care nursing, technology assessment
Procedia PDF Downloads 2272818 Comparison of Due Date Assignment Rules in a Dynamic Job Shop
Authors: Mumtaz Ipek, Burak Erkayman
Abstract:
Due date is assigned as an input for scheduling problems. At the same time, due date is selected as a decision variable for real time scheduling applications. Correct determination of due dates increases shop floor performance and number of jobs completed on time. This subject has been mentioned widely in the literature. Moreover rules for due date determination have been developed from analytical analysis. When a job arrives to the shop floor, a due date is assigned for delivery. Various due date determination methods are used in the literature. In this study six different due date methods are implemented for a hypothetical dynamic job shop and the performances of the due date methods are compared.Keywords: scheduling, dynamic job shop, due date assignment, management engineering
Procedia PDF Downloads 5532817 Mixed Integer Programming-Based One-Class Classification Method for Process Monitoring
Authors: Younghoon Kim, Seoung Bum Kim
Abstract:
One-class classification plays an important role in detecting outlier and abnormality from normal observations. In the previous research, several attempts were made to extend the scope of application of the one-class classification techniques to statistical process control problems. For most previous approaches, such as support vector data description (SVDD) control chart, the design of the control limits is commonly based on the assumption that the proportion of abnormal observations is approximately equal to an expected Type I error rate in Phase I process. Because of the limitation of the one-class classification techniques based on convex optimization, we cannot make the proportion of abnormal observations exactly equal to expected Type I error rate: controlling Type I error rate requires to optimize constraints with integer decision variables, but convex optimization cannot satisfy the requirement. This limitation would be undesirable in theoretical and practical perspective to construct effective control charts. In this work, to address the limitation of previous approaches, we propose the one-class classification algorithm based on the mixed integer programming technique, which can solve problems formulated with continuous and integer decision variables. The proposed method minimizes the radius of a spherically shaped boundary subject to the number of normal data to be equal to a constant value specified by users. By modifying this constant value, users can exactly control the proportion of normal data described by the spherically shaped boundary. Thus, the proportion of abnormal observations can be made theoretically equal to an expected Type I error rate in Phase I process. Moreover, analogous to SVDD, the boundary can be made to describe complex structures by using some kernel functions. New multivariate control chart applying the effectiveness of the algorithm is proposed. This chart uses a monitoring statistic to characterize the degree of being an abnormal point as obtained through the proposed one-class classification. The control limit of the proposed chart is established by the radius of the boundary. The usefulness of the proposed method was demonstrated through experiments with simulated and real process data from a thin film transistor-liquid crystal display.Keywords: control chart, mixed integer programming, one-class classification, support vector data description
Procedia PDF Downloads 1742816 A Review on Stormwater Harvesting and Reuse
Authors: Fatema Akram, Mohammad G. Rasul, M. Masud K. Khan, M. Sharif I. I. Amir
Abstract:
Australia is a country of some 7,700 million square kilometres with a population of about 22.6 million. At present water security is a major challenge for Australia. In some areas the use of water resources is approaching and in some parts it is exceeding the limits of sustainability. A focal point of proposed national water conservation programs is the recycling of both urban storm-water and treated wastewater. But till now it is not widely practiced in Australia, and particularly storm-water is neglected. In Australia, only 4% of storm-water and rainwater is recycled, whereas less than 1% of reclaimed wastewater is reused within urban areas. Therefore, accurately monitoring, assessing and predicting the availability, quality and use of this precious resource are required for better management. As storm-water is usually of better quality than untreated sewage or industrial discharge, it has better public acceptance for recycling and reuse, particularly for non-potable use such as irrigation, watering lawns, gardens, etc. Existing storm-water recycling practice is far behind of research and no robust technologies developed for this purpose. Therefore, there is a clear need for using modern technologies for assessing feasibility of storm-water harvesting and reuse. Numerical modelling has, in recent times, become a popular tool for doing this job. It includes complex hydrological and hydraulic processes of the study area. The hydrologic model computes storm-water quantity to design the system components, and the hydraulic model helps to route the flow through storm-water infrastructures. Nowadays water quality module is incorporated with these models. Integration of Geographic Information System (GIS) with these models provides extra advantage of managing spatial information. However for the overall management of a storm-water harvesting project, Decision Support System (DSS) plays an important role incorporating database with model and GIS for the proper management of temporal information. Additionally DSS includes evaluation tools and Graphical user interface. This research aims to critically review and discuss all the aspects of storm-water harvesting and reuse such as available guidelines of storm-water harvesting and reuse, public acceptance of water reuse, the scopes and recommendation for future studies. In addition to these, this paper identifies, understand and address the importance of modern technologies capable of proper management of storm-water harvesting and reuse.Keywords: storm-water management, storm-water harvesting and reuse, numerical modelling, geographic information system, decision support system, database
Procedia PDF Downloads 3722815 Familiarity with Intercultural Conflicts and Global Work Performance: Testing a Theory of Recognition Primed Decision-Making
Authors: Thomas Rockstuhl, Kok Yee Ng, Guido Gianasso, Soon Ang
Abstract:
Two meta-analyses show that intercultural experience is not related to intercultural adaptation or performance in international assignments. These findings have prompted calls for a deeper grounding of research on international experience in the phenomenon of global work. Two issues, in particular, may limit current understanding of the relationship between international experience and global work performance. First, intercultural experience is too broad a construct that may not sufficiently capture the essence of global work, which to a large part involves sensemaking and managing intercultural conflicts. Second, the psychological mechanisms through which intercultural experience affects performance remains under-explored, resulting in a poor understanding of how experience is translated into learning and performance outcomes. Drawing on recognition primed decision-making (RPD) research, the current study advances a cognitive processing model to highlight the importance of intercultural conflict familiarity. Compared to intercultural experience, intercultural conflict familiarity is a more targeted construct that captures individuals’ previous exposure to dealing with intercultural conflicts. Drawing on RPD theory, we argue that individuals’ intercultural conflict familiarity enhances their ability to make accurate judgments and generate effective responses when intercultural conflicts arise. In turn, the ability to make accurate situation judgements and effective situation responses is an important predictor of global work performance. A relocation program within a multinational enterprise provided the context to test these hypotheses using a time-lagged, multi-source field study. Participants were 165 employees (46% female; with an average of 5 years of global work experience) from 42 countries who relocated from country to regional offices as part a global restructuring program. Within the first two weeks of transfer to the regional office, employees completed measures of their familiarity with intercultural conflicts, cultural intelligence, cognitive ability, and demographic information. They also completed an intercultural situational judgment test (iSJT) to assess their situation judgment and situation response. The iSJT comprised four validated multimedia vignettes of challenging intercultural work conflicts and prompted employees to provide protocols of their situation judgment and situation response. Two research assistants, trained in intercultural management but blind to the study hypotheses, coded the quality of employee’s situation judgment and situation response. Three months later, supervisors rated employees’ global work performance. Results using multilevel modeling (vignettes nested within employees) support the hypotheses that greater familiarity with intercultural conflicts is positively associated with better situation judgment, and that situation judgment mediates the effect of intercultural familiarity on situation response quality. Also, aggregated situation judgment and situation response quality both predicted supervisor-rated global work performance. Theoretically, our findings highlight the important but under-explored role of familiarity with intercultural conflicts; a shift in attention from the general nature of international experience assessed in terms of number and length of overseas assignments. Also, our cognitive approach premised on RPD theory offers a new theoretical lens to understand the psychological mechanisms through which intercultural conflict familiarity affects global work performance. Third, and importantly, our study contributes to the global talent identification literature by demonstrating that the cognitive processes engaged in resolving intercultural conflicts predict actual performance in the global workplace.Keywords: intercultural conflict familiarity, job performance, judgment and decision making, situational judgment test
Procedia PDF Downloads 1792814 Organizational Stress in Women Executives
Authors: Poornima Gupta, Sadaf Siraj
Abstract:
The study examined the organizational causes of organizational stress in women executives and entrepreneurs in India. This was done so that mediation strategies could be developed to combat the organizational stress experienced by them, in order to retain the female employees as well as attract quality talent. The data for this research was collected through the self- administered survey, from the women executives across various industries working at different levels in management. The research design of the study was descriptive and cross-sectional. It was carried out through a self-administered questionnaire filled in by the women executives and entrepreneurs in the NCR region. Multistage sampling involving stratified random sampling was employed. A total of 1000 questionnaires were distributed out of which 450 were returned and after cleaning the data 404 were fit to be considered for analyses. The overall findings of the study suggested that there were various job-related factors that induce stress. Fourteen factors were identified which were a major cause of stress among the working women by applying Factor analysis. The study also assessed the demographic factors which influence the stress in women executives across various industries. The findings show that the women, no doubt, were stressed by organizational factors. The mean stress score was 153 (out of a possible score of 196) indicating high stress. There appeared to be an inverse relationship between the marital status, age, education, work experience, and stress. Married women were less stressed compared to single women employees. Similarly, female employees 29 years or younger experienced more stress at work. Women having education up to 12th standard or less were more stressed compared to graduates and post graduates. Women who had spent more than two years in the same organization perceived more stress compared to their counterparts. Family size and income, interestingly, had no significant impact on stress. The study also established that the level of stress experienced by women across industries differs considerably. Banking sector emerged as the industry where the women experienced the most stress followed by Entrepreneurs, Medical, BPO, Advertising, Government, Academics, and Manufacturing, in that order. The results contribute to the better understanding of the personal and economic factors surrounding job stress and working women. It concludes that the organizations need to be sensitive to the women’s needs. Organizations are traditionally designed around men with the rules made by the men for the men. Involvement of women in top positions, decision making, would make them feel more useful and less stressed. The invisible glass ceiling causes more stress than realized among women. Less distinction between the men and women colleagues in terms of giving responsibilities, involvement in decision making, framing policies, etc. would go a long way to reduce stress in women.Keywords: women, stress, gender in management, women in management
Procedia PDF Downloads 2572813 Location Quotient Analysis: Case Study
Authors: Seyed Habib A. Rahmati, Mohamad Hasan Sadeghpour, Parsa Fallah Sheikhlari
Abstract:
Location quotient (LQ) is a comparison technique that represents emphasized economic structure of single zone versus the standard area to identify specialty for every zone. In another words, the exact calculation of this metric can show the main core competencies and critical capabilities of an area to the decision makers. This research focus on the exact calculation of the LQ for an Iranian Province called Qazvin and within a case study introduces LQ of the capable industries of Qazvin. Finally, through different graphs and tables, it creates an opportunity to compare the recognized capabilities.Keywords: location quotient, case study, province analysis, core competency
Procedia PDF Downloads 6552812 Challenges of School Leadership
Authors: Stefan Ninković
Abstract:
The main purpose of this paper is to examine the different theoretical approaches and relevant empirical evidence and thus, recognize some of the most pressing challenges faced by school leaders. This paper starts from the fact that the new mission of the school is characterized by the need for stronger coordination among students' academic, social and emotional learning. In this sense, school leaders need to focus their commitment, vision and leadership on the issues of students' attitudes, language, cultural and social background, and sexual orientation. More specifically, they should know what a good teaching is for student’s at-risk, students whose first language is not dominant in school, those who’s learning styles are not in accordance with usual teaching styles, or who are stigmatized. There is a rather wide consensus around the fact that the traditionally popular concept of instructional leadership of the school principal is no longer sufficient. However, in a number of "pro-leadership" circles, including certain groups of academic researchers, consultants and practitioners, there is an established tendency of attributing school principal an extraordinary influence towards school achievements. On the other hand, the situation in which all employees in the school are leaders is a utopia par excellence. Although leadership obviously can be efficiently distributed across the school, there are few findings that speak about sources of this distribution and factors making it sustainable. Another idea that is not particularly new, but has only recently gained in importance is related to the fact that the collective capacity of the school is an important resource that often remains under-cultivated. To understand the nature and power of collaborative school cultures, it is necessary to know that these operate in a way that they make their all collective members' tacit knowledge explicit. In this sense, the question is how leaders in schools can shape collaborative culture and create social capital in the school. Pressure exerted on schools to systematically collect and use the data has been accompanied by the need for school leaders to develop new competencies. The role of school leaders is critical in the process of assessing what data are needed and for what purpose. Different types of data are important: test results, data on student’s absenteeism, satisfaction with school, teacher motivation, etc. One of the most important tasks of school leaders are data-driven decision making as well as ensuring transparency of the decision-making process. Finally, the question arises whether the existing models of school leadership are compatible with the current social and economic trends. It is necessary to examine whether and under what conditions schools are in need for forms of leadership that are different from those that currently prevail. Closely related to this issue is also to analyze the adequacy of different approaches to leadership development in the school.Keywords: educational changes, leaders, leadership, school
Procedia PDF Downloads 3362811 Impacts of School-Wide Positive Behavioral Interventions and Supports on Student Academics, Behavior and Mental Health
Authors: Catherine Bradshaw
Abstract:
Educators often report difficulty managing behavior problems and other mental health concerns that students display at school. These concerns also interfere with the learning process and can create distraction for teachers and other students. As such, schools play an important role in both preventing and intervening with students who experience these types of challenges. A number of models have been proposed to serve as a framework for delivering prevention and early intervention services in schools. One such model is called Positive Behavioral Interventions and Supports (PBIS), which has been scaled-up to over 26,000 schools in the U.S. and many other countries worldwide. PBIS aims to improve a range of student outcomes through early detection of and intervention related to behavioral and mental health symptoms. PBIS blends and applies social learning, behavioral, and organizational theories to prevent disruptive behavior and enhance the school’s organizational health. PBIS focuses on creating and sustaining tier 1 (universal), tier 2 (selective), and tier 3 (individual) systems of support. Most schools using PBIS have focused on the core elements of the tier 1 supports, which includes the following critical features. The formation of a PBIS team within the school to lead implementation. Identification and training of a behavioral support ‘coach’, who serves as a on-site technical assistance provider. Many of the individuals identified to serve as a PBIS coach are also trained as a school psychologist or guidance counselor; coaches typically have prior PBIS experience and are trained to conduct functional behavioral assessments. The PBIS team also identifies a set of three to five positive behavioral expectations that are implemented for all students and by all staff school-wide (e.g., ‘be respectful, responsible, and ready to learn’); these expectations are posted in all settings across the school, including in the classroom, cafeteria, playground etc. All school staff define and teach the school-wide behavioral expectations to all students and review them regularly. Finally, PBIS schools develop or adopt a school-wide system to reward or reinforce students who demonstrate those 3-5 positive behavioral expectations. Staff and administrators create an agreed upon system for responding to behavioral violations that include definitions about what constitutes a classroom-managed vs. an office-managed discipline problem. Finally, a formal system is developed to collect, analyze, and use disciplinary data (e.g., office discipline referrals) to inform decision-making. This presentation provides a brief overview of PBIS and reports findings from a series of four U.S. based longitudinal randomized controlled trials (RCTs) documenting the impacts of PBIS on school climate, discipline problems, bullying, and academic achievement. The four RCTs include 80 elementary, 40 middle, and 58 high schools and results indicate a broad range of impacts on multiple student and school-wide outcomes. The session will highlight lessons learned regarding PBIS implementation and scale-up. We also review the ways in which PBIS can help educators and school leaders engage in data-based decision-making and share data with other decision-makers and stakeholders (e.g., students, parents, community members), with the overarching goal of increasing use of evidence-based programs in schools.Keywords: positive behavioral interventions and supports, mental health, randomized trials, school-based prevention
Procedia PDF Downloads 2302810 Intergenerational Succession within Family Businesses: The Role of Sharing and Creation Knowledge
Authors: Wissal Ben Arfi, Jean-Michel Sahut
Abstract:
The purpose of this paper is to provide a deeper understanding of the succession process from a knowledge management perspective. By doing that, succession process in family businesses, as an environment for creating and sharing knowledge, was explored. Design/Methodology/Approach: To support our reasoning, we collected qualitative data through 16 in-depth interviews conducted with all decision makers involved in the family businesses succession process in France. These open-ended responses were subsequently exposed to thematic discourse analysis. Findings: Central to this exhibit is the nature and magnitude of knowledge creation and sharing among the actors within the family succession context and how can tacit knowledge sharing facilitate the succession process. We also identified factors that inhibit down the knowledge creation and sharing processes. The sharing and creation of knowledge among members of a family business appear to be a complex process that must be part of a strategy for change. This implies that it requests trust and takes a certain amount of time because it requires organizational change and a clear and coherent strategic vision that is accepted and assimilated by all the members. Professional and leadership skills are of particular importance in knowledge sharing and creation processes. In most cases, tacit knowledge is crucial when it is shared and accumulated collectively. Our findings reveal that managers should find ways of implementing knowledge sharing and creation processes while acknowledging the succession process within family firms. This study highlights the importance of generating knowledge strategies in order to enhance the performance and the success of intergenerational succession. The empirical outcomes contribute to enrich the field of succession management process and enhance the role of knowledge in shaping family performance and longevity. To a large extent, the lessons learned from the study of succession processes in family-owned businesses are that when there is a deliberate effort to introduce a knowledge-based approach, this action becomes a seminal event in the life of the organization. Originality/Value: The paper contributes to the deep understanding of interactions among actors by examining the knowledge creation and sharing processes since current researches in family succession focused on aspects such as personal development of potential, intra-family succession intention, decision-making processes in family businesses. Besides, as succession is one of the key factors that determine the longevity and the performance of family businesses, it also contributes to literature by examining how tacit knowledge is transferred, shared and created in family businesses and how this can facilitate the intergenerational succession process.Keywords: family-owned businesses, succession process, knowledge, performance
Procedia PDF Downloads 2082809 Comparison of Different Machine Learning Algorithms for Solubility Prediction
Authors: Muhammet Baldan, Emel Timuçin
Abstract:
Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.Keywords: random forest, machine learning, comparison, feature extraction
Procedia PDF Downloads 402808 Portable Palpation Probe for Diabetic Foot Ulceration Monitoring
Authors: Bummo Ahn
Abstract:
Palpation is widely used to measure soft tissue firmness or stiffness in the living condition in order to apply detection, diagnosis, and treatment of tumors, scar tissue, abnormal muscle tone, or muscle spasticity. Since these methods are subjective and depend on the proficiency level, it is concluded that there are other diagnoses depending on the condition of the experts and the results are not objective. The mechanical property obtained by using the elasticity of the tissue is important to calculate a predictive variable for monitoring abnormal tissues. If the mechanical load such as reaction force on the foot increases in the same region under the same conditions, the mechanical property of the tissue is changed. Therefore, objective diagnosis is possible not only for experts but also for patients using this quantitative information. Furthermore, the portable system also allows non-experts to easily diagnose at home, not in hospitals or institutions. In this paper, we introduce a portable palpation system that can be used to measure the mechanical properties of human tissue, which can be applied to monitor diabetic foot ulceration patients with measuring the mechanical property change of foot tissue. The system was designed to be smaller and portable in comparison with the conventional palpation systems. It is consists of the probe, the force sensor, linear actuator, micro control unit, the display module, battery, and housing. Using this system, we performed validation experiments by applying different palpations (3 and 5 mm) to soft tissue (silicone rubber) and measured reaction forces. In addition, we estimated the elastic moduli of the soft tissue against different palpations and compare the estimated elastic moduli that show similar value even if the palpation depths are different.Keywords: palpation probe, portable, diabetic foot ulceration, monitoring, mechanical property
Procedia PDF Downloads 1202807 Identification and Selection of a Supply Chain Target Process for Re-Design
Authors: Jaime A. Palma-Mendoza
Abstract:
A supply chain consists of different processes and when conducting supply chain re-design is necessary to identify the relevant processes and select a target for re-design. A solution was developed which consists to identify first the relevant processes using the Supply Chain Operations Reference (SCOR) model, then to use Analytical Hierarchy Process (AHP) for target process selection. An application was conducted in an Airline MRO supply chain re-design project which shows this combination can clearly aid the identification of relevant supply chain processes and the selection of a target process for re-design.Keywords: decision support systems, multiple criteria analysis, supply chain management
Procedia PDF Downloads 4922806 Cognitive Rehabilitation in Schizophrenia: A Review of the Indian Scenario
Authors: Garima Joshi, Pratap Sharan, V. Sreenivas, Nand Kumar, Kameshwar Prasad, Ashima N. Wadhawan
Abstract:
Schizophrenia is a debilitating disorder and is marked by cognitive impairment, which deleteriously impacts the social and professional functioning along with the quality of life of the patients and the caregivers. Often the cognitive symptoms are in their prodromal state and worsen as the illness progresses; they have proven to have a good predictive value for the prognosis of the illness. It has been shown that intensive cognitive rehabilitation (CR) leads to improvements in the healthy as well as cognitively-impaired subjects. As the majority of population in India falls in the lower to middle socio-economic status and have low education levels, using the existing packages, a majority of which are developed in the West, for cognitive rehabilitation becomes difficult. The use of technology is also restricted due to the high costs involved and the limited availability and familiarity with computers and other devices, which pose as an impedance for continued therapy. Cognitive rehabilitation in India uses a plethora of retraining methods for the patients with schizophrenia targeting the functions of attention, information processing, executive functions, learning and memory, and comprehension along with Social Cognition. Psychologists often have to follow an integrative therapy approach involving social skills training, family therapy and psychoeducation in order to maintain the gains from the cognitive rehabilitation in the long run. This paper reviews the methodologies and cognitive retaining programs used in India. It attempts to elucidate the evolution and development of methodologies used, from traditional paper-pencil based retraining to more sophisticated neuroscience-informed techniques in cognitive rehabilitation of deficits in schizophrenia as home-based or supervised and guided programs for cognitive rehabilitation.Keywords: schizophrenia, cognitive rehabilitation, neuropsychological interventions, integrated approached to rehabilitation
Procedia PDF Downloads 3632805 A Mathematical-Based Formulation of EEG Fluctuations
Authors: Razi Khalafi
Abstract:
Brain is the information processing center of the human body. Stimuli in form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modeling of the EEG signal in case external stimuli but it can be used for the modeling of brain response in case of internal stimuli.Keywords: Brain, stimuli, partial differential equation, response, eeg signal
Procedia PDF Downloads 4332804 An Institutional Mapping and Stakeholder Analysis of ASEAN’s Preparedness for Nuclear Power Disaster
Authors: Nur Azha Putra Abdul Azim, Denise Cheong, S. Nivedita
Abstract:
Currently, there are no nuclear power reactors among the Association of Southeast Asian Nations (ASEAN) member states (AMS) but there are seven operational nuclear research reactors, and Indonesia is about to construct the region’s first experimental power reactor by the end of the decade. If successful, the experimental power reactor will lay the foundation for the country’s and region’s first nuclear power plant. Despite projecting confidence during the period of nuclear power renaissance in the region in the last decade, none of the AMS has committed to a political decision on the use of nuclear energy and this is largely due to the Fukushima nuclear power accident in 2011. Of the ten AMS, Vietnam, Indonesia and Malaysia have demonstrated the most progress in developing nuclear energy based on the nuclear power infrastructure development assessments made by the International Atomic Energy Agency. Of these three states, Vietnam came closest to building its first nuclear power plant but decided to delay construction further due to safety and security concerns. Meanwhile, Vietnam along with Indonesia and Malaysia continue with their nuclear power infrastructure development and the remaining SEA states, with the exception of Brunei and Singapore, continue to build their expertise and capacity for nuclear power energy. At the current rate of progress, Indonesia is expected to make a national decision on the use of nuclear power by 2023 while Malaysia, the Philippines, and Thailand have included the use of nuclear power in their mid to long-term power development plans. Vietnam remains open to nuclear power but has not placed a timeline. The medium to short-term power development projection in the region suggests that the use of nuclear energy in the region is a matter of 'when' rather than 'if'. In lieu of the prospects for nuclear energy in Southeast Asia (SEA), this presentation will review the literature on ASEAN radiological emergency and preparedness response (EPR) plans and examine ASEAN’s disaster management and emergency framework. Through a combination of institutional mapping and stakeholder analysis methods, which we examine in the context of the international EPR, and nuclear safety and security regimes, we will identify the issues and challenges in developing a regional radiological EPR framework in the SEA. We will conclude with the observation that ASEAN faces serious structural, institutional and governance challenges due to the AMS inherent political structures and history of interstate conflicts, and propose that ASEAN should either enlarge the existing scope of its disaster management and response framework or that its radiological EPR framework should exist as a separate entity.Keywords: nuclear power, nuclear accident, ASEAN, Southeast Asia
Procedia PDF Downloads 1522803 Factors Associated with Non-Adherence to Antiretroviral Treatment among HIV Infected Patients in Ukraine
Authors: Larissa Burruano, Sergey Grabovyj, Irina Nguen
Abstract:
The study aimed to assess the level of adherence to anti retroviral therapy (ART) and to examine the relationship between adherence and risk behavior factor (drug use) among patients infected with HIV. The patients with newly diagnosed or established HIV infection under follow-up at the Sumskij Regional Centre for AIDS Prevention in Ukraine were eligible for this study. Medical records were used to measure the patient’s adherence to medication. Measurements were obtained at month 6 and at month 12 to calculate the number of medication omission during the past 30 days: (on a 2-point scale – once until three in a month – were considered adherent, three and more in a month – were considered non-adherent). Of the 50 study participants, 27 (54.0%) were men and 23 (46.0%) women. The mean age is 35.2 years (SD= 5.1). A majority of the patients (82.0%) is in the age group of 25-30 years. The main level of adherence was 74.0% and 66.0% at 6 and 12 months, respectively. The main routes of HIV transmission were drug injection among men 12 (44.4%) and sexual contact among women 11 (47.8%). Univariate analyses indicated that patients who had lower level of education were more likely to have been non-adherent at month 6- (X2 =5.1, n=50, p < .05) and at month 12 (X2 = 4.34, n=50, p < .05). Multivariate tests showed that only age (OR= 1.163 [95% CI 0.98–1.370]) was significant independent predictor of treatment adherence, while gender, education, employment status were not predictive for the risk of developing non-compliance. There was not a significant interaction between non-adherence and intravenous drug use. Consistent with these findings, younger people were more likely to have missed a dose of their medication because they had a greater sense of invulnerability than older patients. The study indicates that the socio demographic characteristic should be taken into an account in the future research regarding adherence in the case of HIV infection. If the patient anti retroviral adherence can be improved by qualitatively better medical care in all regions of the Ukraine, behavioral changes in the population can to be expected in the long term.Keywords: HIV, antiretroviral therapy, adherence, Ukraine, Eastern Europe
Procedia PDF Downloads 2892802 Fine-Grained Sentiment Analysis: Recent Progress
Authors: Jie Liu, Xudong Luo, Pingping Lin, Yifan Fan
Abstract:
Facebook, Twitter, Weibo, and other social media and significant e-commerce sites generate a massive amount of online texts, which can be used to analyse people’s opinions or sentiments for better decision-making. So, sentiment analysis, especially fine-grained sentiment analysis, is a very active research topic. In this paper, we survey various methods for fine-grained sentiment analysis, including traditional sentiment lexicon-based methods, machine learning-based methods, and deep learning-based methods in aspect/target/attribute-based sentiment analysis tasks. Besides, we discuss their advantages and problems worthy of careful studies in the future.Keywords: sentiment analysis, fine-grained, machine learning, deep learning
Procedia PDF Downloads 2622801 A Human Activity Recognition System Based on Sensory Data Related to Object Usage
Authors: M. Abdullah, Al-Wadud
Abstract:
Sensor-based activity recognition systems usually accounts which sensors have been activated to perform an activity. The system then combines the conditional probabilities of those sensors to represent different activities and takes the decision based on that. However, the information about the sensors which are not activated may also be of great help in deciding which activity has been performed. This paper proposes an approach where the sensory data related to both usage and non-usage of objects are utilized to make the classification of activities. Experimental results also show the promising performance of the proposed method.Keywords: Naïve Bayesian, based classification, activity recognition, sensor data, object-usage model
Procedia PDF Downloads 3222800 Enhancing Project Performance Forecasting using Machine Learning Techniques
Authors: Soheila Sadeghi
Abstract:
Accurate forecasting of project performance metrics is crucial for successfully managing and delivering urban road reconstruction projects. Traditional methods often rely on static baseline plans and fail to consider the dynamic nature of project progress and external factors. This research proposes a machine learning-based approach to forecast project performance metrics, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category in an urban road reconstruction project. The proposed model utilizes time series forecasting techniques, including Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance based on historical data and project progress. The model also incorporates external factors, such as weather patterns and resource availability, as features to enhance the accuracy of forecasts. By applying the predictive power of machine learning, the performance forecasting model enables proactive identification of potential deviations from the baseline plan, which allows project managers to take timely corrective actions. The research aims to validate the effectiveness of the proposed approach using a case study of an urban road reconstruction project, comparing the model's forecasts with actual project performance data. The findings of this research contribute to the advancement of project management practices in the construction industry, offering a data-driven solution for improving project performance monitoring and control.Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, earned value management
Procedia PDF Downloads 49