Search results for: metabolic networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3553

Search results for: metabolic networks

1513 Anti-Western Sentiment amongst Arabs and How It Drives Support for Russia against Ukraine

Authors: Soran Tarkhani

Abstract:

A glance at social media shows that Russia's invasion of Ukraine receives considerable support among Arabs. This significant support for the Russian invasion of Ukraine is puzzling since most Arab leaders openly condemned the Russian invasion through the UN ES‑11/4 Resolution, and Arabs are among the first who experienced the devastating consequences of war firsthand. This article tries to answer this question by using multiple regression to analyze the online content of Arab responses to Russia's invasion of Ukraine on seven major news networks: CNN Arabic, BBC Arabic, Sky News Arabic, France24 Arabic, DW, Aljazeera, and Al-Arabiya. The article argues that the underlying reason for this Arab support is a reaction to the common anti-Western sentiments among Arabs. The empirical result from regression analysis supports the central arguments and uncovers the motivations behind the endorsement of the Russian invasion of Ukraine and the opposing Ukraine by many Arabs.

Keywords: Ukraine, Russia, Arabs, Ukrainians, Russians, Putin, invasion, Europe, war

Procedia PDF Downloads 76
1512 Net Folklore as a Part of Kazakhstani Internet Literature

Authors: Dina Sabirova, Madina Moldagali

Abstract:

The rapid development of new media, especially the Internet, has led to major changes in folk culture. The net space is increasingly becoming a creation of the ‘folk’ imagination, saturated with multimedia stories with collective authorship, like traditional folklore. Moreover, the Internet picks up and changes old folklore traditions, such as the form of publication, the way of storytelling, or gave a new morality to the ‘old tales’. In this article, the similarities and differences between Internet folklore/ cyber-folklore/ digital folklore and oral folk art were examined by using the material of modern Kazakh authors. The relationship between tradition and innovation was studied in order to interpret the sequence of the authors' research taking into account the realities. The material of the article was the prose texts of Kazakh writers published in internet magazines and social networks. An immanent and intertextual analysis of the text was carried out. Thus, the new forms of Internet folklore lead to new forms of expression and social morality in society

Keywords: internet literature, modern Kazakhstani authors, net folklore, oral folk art

Procedia PDF Downloads 99
1511 Indeterminacy: An Urban Design Tool to Measure Resilience to Climate Change, a Caribbean Case Study

Authors: Tapan Kumar Dhar

Abstract:

How well are our city forms designed to adapt to climate change and its resulting uncertainty? What urban design tools can be used to measure and improve resilience to climate change, and how would they do so? In addressing these questions, this paper considers indeterminacy, a concept originated in the resilience literature, to measure the resilience of built environments. In the realm of urban design, ‘indeterminacy’ can be referred to as built-in design capabilities of an urban system to serve different purposes which are not necessarily predetermined. An urban system, particularly that with a higher degree of indeterminacy, can enable the system to be reorganized and changed to accommodate new or unknown functions while coping with uncertainty over time. Underlying principles of this concept have long been discussed in the urban design and planning literature, including open architecture, landscape urbanism, and flexible housing. This paper argues that the concept indeterminacy holds the potential to reduce the impacts of climate change incrementally and proactively. With regard to sustainable development, both planning and climate change literature highly recommend proactive adaptation as it involves less cost, efforts, and energy than last-minute emergency or reactive actions. Nevertheless, the concept still remains isolated from resilience and climate change adaptation discourses even though the discourses advocate the incremental transformation of a system to cope with climatic uncertainty. This paper considers indeterminacy, as an urban design tool, to measure and increase resilience (and adaptive capacity) of Long Bay’s coastal settlements in Negril, Jamaica. Negril is one of the popular tourism destinations in the Caribbean highly vulnerable to sea-level rise and its associated impacts. This paper employs empirical information obtained from direct observation and informal interviews with local people. While testing the tool, this paper deploys an urban morphology study, which includes land use patterns and the physical characteristics of urban form, including street networks, block patterns, and building footprints. The results reveal that most resorts in Long Bay are designed for pre-determined purposes and offer a little potential to use differently if needed. Additionally, Negril’s street networks are found to be rigid and have limited accessibility to different points of interest. This rigidity can expose the entire infrastructure further to extreme climatic events and also impedes recovery actions after a disaster. However, Long Bay still has room for future resilient developments in other relatively less vulnerable areas. In adapting to climate change, indeterminacy can be reached through design that achieves a balance between the degree of vulnerability and the degree of indeterminacy: the more vulnerable a place is, the more indeterminacy is useful. This paper concludes with a set of urban design typologies to increase the resilience of coastal settlements.

Keywords: climate change adaptation, resilience, sea-level rise, urban form

Procedia PDF Downloads 367
1510 MEMS based Vibration Energy Harvesting: An overview

Authors: Gaurav Prabhudesai, Shaurya Kaushal, Pulkit Dubey, B. D. Pant

Abstract:

The current race of miniaturization of circuits, systems, modules and networks has resulted in portable and mobile wireless systems having tremendous capabilities with small volume and weight. The power drivers or the power pack, electrically driving these modules have also reduced in proportion. Normally, the power packs in these mobile or fixed systems are batteries, rechargeable or non-rechargeable, which need regular replacement or recharging. Another approach to power these modules is to utilize the ambient energy available for electrical driving to make the system self-sustained. The current paper presents an overview of the different MEMS (Micro-Electro-Mechanical Systems) based techniques used for the harvesting of vibration energy to electrically drive a WSN (wireless sensor network) or a mobile module. This kind of system would have enormous applications, the most significant one, may be in cell phones.

Keywords: energy harvesting, WSN, MEMS, piezoelectrics

Procedia PDF Downloads 502
1509 Analysis of Exponential Nonuniform Transmission Line Parameters

Authors: Mounir Belattar

Abstract:

In this paper the Analysis of voltage waves that propagate along a lossless exponential nonuniform line is presented. For this analysis the parameters of this line are assumed to be varying function of the distance x along the line from the source end. The approach is based on the tow-port networks cascading presentation to derive the ABDC parameters of transmission using Picard-Carson Method which is a powerful method in getting a power series solution for distributed network because it is easy to calculate poles and zeros and solves differential equations such as telegrapher equations by an iterative sequence. So the impedance, admittance voltage and current along the line are expanded as a Taylor series in x/l where l is the total length of the line to obtain at the end, the main transmission line parameters such as voltage response and transmission and reflexion coefficients represented by scattering parameters in frequency domain.

Keywords: ABCD parameters, characteristic impedance exponential nonuniform transmission line, Picard-Carson's method, S parameters, Taylor's series

Procedia PDF Downloads 444
1508 Effects of Organic Chromium and Propylene Glycol on Milk Yield and Some Serum Biochemical Parameters of Early Lactation Dairy Cows

Authors: Cangir Uyarlar, Ismail Bayram, Ibrahim Sadi Cetingul, Mustafa Kabu, Eyup Eren Gultepe

Abstract:

This study was conducted to determine the effects of organic chromium and organic chromium+propylene glycol on milk yield and some blood parameters related with liver fatty acid metabolism in early lactation dairy cows. Thirty multiparous Holstein dairy cows were used as study material. Cows assigned to three groups as control (C), chromium (Cr) and chromium+propylene glycol (CP). Live weight, parity and body condition score were used as covariates for statistical analyses. The study began at calving and finished at 3 weeks after calving. All cows were consumed same diet. Organic chromium and organic chromium+propylene glycol were orally administrated to cows in treatment groups shortly after the morning milking. Blood samples were collected from all cows on 0 (calving), 3rd, 6th, 9th, 12th, 15th, 18th, 21th days after calving. Then, samples were analyzed for BHBA (Betahydroxybutiric acids), NEFA (Non Esterified Fatty Acids), urea, total protein (TP) and glucose concentrations. Weekly milk yields were calculated from daily milk data on farm. Organic chromium treatment had no significant differences on serum biochemical parameters and milk yields. However, administration of organic chromium and propylene glycol combination decreased serum urea and total protein concentration, helped to protection from subclinical metabolic diseases via decreasing serum NEFA and BHBA concentrations. Also, this combination decreased serum glucose levels of cows. Neither only chromium nor chromium and propylene glycol combination did not affect milk yield throughout the study. These findings were suggested that orally administrations of chromium and propylene glycol combination improved liver glucose and fatty acid metabolism, decreased serum parameters which are representing subclinical diseases in early lactation dairy cows.

Keywords: chromium, early lactation dairy cows, propylene glycol, milk yield

Procedia PDF Downloads 497
1507 Multimodal Characterization of Emotion within Multimedia Space

Authors: Dayo Samuel Banjo, Connice Trimmingham, Niloofar Yousefi, Nitin Agarwal

Abstract:

Technological advancement and its omnipresent connection have pushed humans past the boundaries and limitations of a computer screen, physical state, or geographical location. It has provided a depth of avenues that facilitate human-computer interaction that was once inconceivable such as audio and body language detection. Given the complex modularities of emotions, it becomes vital to study human-computer interaction, as it is the commencement of a thorough understanding of the emotional state of users and, in the context of social networks, the producers of multimodal information. This study first acknowledges the accuracy of classification found within multimodal emotion detection systems compared to unimodal solutions. Second, it explores the characterization of multimedia content produced based on their emotions and the coherence of emotion in different modalities by utilizing deep learning models to classify emotion across different modalities.

Keywords: affective computing, deep learning, emotion recognition, multimodal

Procedia PDF Downloads 161
1506 A Bacterial Foraging Optimization Algorithm Applied to the Synthesis of Polyacrylamide Hydrogels

Authors: Florin Leon, Silvia Curteanu

Abstract:

The Bacterial Foraging Optimization (BFO) algorithm is inspired by the behavior of bacteria such as Escherichia coli or Myxococcus xanthus when searching for food, more precisely the chemotaxis behavior. Bacteria perceive chemical gradients in the environment, such as nutrients, and also other individual bacteria, and move toward or in the opposite direction to those signals. The application example considered as a case study consists in establishing the dependency between the reaction yield of hydrogels based on polyacrylamide and the working conditions such as time, temperature, monomer, initiator, crosslinking agent and inclusion polymer concentrations, as well as type of the polymer added. This process is modeled with a neural network which is included in an optimization procedure based on BFO. An experimental study of BFO parameters is performed. The results show that the algorithm is quite robust and can obtain good results for diverse combinations of parameter values.

Keywords: bacterial foraging, hydrogels, modeling and optimization, neural networks

Procedia PDF Downloads 154
1505 Examining the Effects of Exercise and Healthy Diet on Certain Blood Parameter Levels, Oxidative Stress and Anthropometric Measurements in Slightly Overweight Women

Authors: Nezihe Şengün, Ragip Pala

Abstract:

To prevent overweight and obesity, individuals need to consume food and beverages according to their nutritional needs, engage in regular exercises, and regularly monitor their body weight. This study aimed to examine the effects of exercise, diet, or combined intervention on changes in blood lipid parameters (total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides) and the level of malondialdehyde (MDA), a marker of oxidative stress, in parallel with the increase in body weight due to poor nutrition and sedentary lifestyle conditions. The study included a total of 48 female students aged 18-28 years with a BMI between 25.0 and 29.9 kg/m². They were divided into four groups: control (C), exercise (Ex), diet (D), and exercise+diet (Ex+D). Those in the exercise groups received aerobic exercises at 60-70% intensity (10 minutes warm-up, 30 minutes running, 10 minutes cool-down), while those in the diet groups were provided with a diet program based on the calculation of energy needs considering basal metabolic rate, physical activity level, age, and BMI. The students’ body weight, body fat mass, Body Mass Index (BMI), and waist-hip ratios were measured at the beginning (day 1) and end (day 60) of the 8-week intervention period. Their total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, and MDA levels were evaluated and analyzed, considering a statistical significance level of p<0.05. As a result, female students in the Ex+D group had the largest difference in body weight, body fat mass, BMI, and waist-hip ratios, and this difference was statistically significant. Except for those in the C group, those in the other groups experienced a decrease in their total cholesterol, LDL cholesterol, and triglyceride levels and an increase in their HDL cholesterol levels. The decrease in total cholesterol, LDL cholesterol, and triglyceride levels was statistically significant for those in the D group, and the increase in HDL cholesterol level was statistically significant for those in the Ex+D group (p<0.05). A decrease in MDA level was found in all groups except those in the C group, and this decrease was significantly higher in the Ex group. In conclusion, our study revealed that the most effective way to achieve weight loss is through a combination of exercise and diet. The application of Ex+D is considered to balance blood lipid levels and suppress oxidative stress.

Keywords: obesity, exercise, diet, body mass index, blood lipids

Procedia PDF Downloads 82
1504 Russian Law Enforcement Moonlighting Enterprise and Corruption after 2009 Police reform

Authors: Serguei Cheloukhine

Abstract:

This study examines corrupting and moonlighting enterprise among Russian law enforcement (Police) since the 2009 Police Reform (hereto forward referred to as Reform). This research is based on the survey of about two dozen police officers in Russia’s regions. In addition, we analyzed statistics on crime, policing and socio-economic situation in Russian regions. Congruently, some data on the police officer’s off-duty activities was collected from the Internet sites. These Reforms sought to curb corruption at all levels of the Russian civil service and among uniformed law enforcement (Police) personnel. Many thought that the rebranding of the Militsiya as ‘Politsiya’ (Police) would have a transformational effect, both within the organization as well as how others perceived it. Ultimately, the rebranding effort failed; the only actual changes were the organization’s name and its personnel's uniforms. In fact, the Reforms seems to have contributed to even more corruption and abuse of power, as well an expansion of Law Enforcement’s ties to Corrupt Networks.

Keywords: bribery, corruption, moonlighting, police reform, Russia

Procedia PDF Downloads 11
1503 PDDA: Priority-Based, Dynamic Data Aggregation Approach for Sensor-Based Big Data Framework

Authors: Lutful Karim, Mohammed S. Al-kahtani

Abstract:

Sensors are being used in various applications such as agriculture, health monitoring, air and water pollution monitoring, traffic monitoring and control and hence, play the vital role in the growth of big data. However, sensors collect redundant data. Thus, aggregating and filtering sensors data are significantly important to design an efficient big data framework. Current researches do not focus on aggregating and filtering data at multiple layers of sensor-based big data framework. Thus, this paper introduces (i) three layers data aggregation and framework for big data and (ii) a priority-based, dynamic data aggregation scheme (PDDA) for the lowest layer at sensors. Simulation results show that the PDDA outperforms existing tree and cluster-based data aggregation scheme in terms of overall network energy consumptions and end-to-end data transmission delay.

Keywords: big data, clustering, tree topology, data aggregation, sensor networks

Procedia PDF Downloads 347
1502 Approaching Collaborative Governance Legitimacy through Discursive Legitimation Analysis

Authors: Carlo Schick

Abstract:

Legitimacy can be regarded the very fabric of political orders. Up to this point, IR scholarship was particularly interested in the legitimacy of nation-states, international regimes and of non-governmental actors. The legitimacy of collaborative governance comprising public, private and civic actors, however, has not received much attention from an IR perspective. This is partly due to the fact that the concept of legitimacy is difficult to operationalise and measure in settings where there is no clear boundary between political authorities and those who are subject to collaborative governance. In this case, legitimacy cannot be empirically approached in its own terms, but can only be analysed in terms of dialectic legitimation processes. The author develops a three-fold analytical framework based on a dialogical understanding of legitimation. Legitimation first has to relate to public legitimacy demands and contestations of collaborative governance and second to legitimacy claims issued by collaborative governance networks themselves. Lastly, collaborative governance is dependent on constant self-legitimisation. The paper closes with suggesting a discourse analytic approach to further empirical research on the legitimacy of collaborative governance.

Keywords: legitimacy, collaborative governance, discourse analysis, dialectic legitimation

Procedia PDF Downloads 338
1501 Unzipping the Stress Response Genes in Moringa oleifera Lam. through Transcriptomics

Authors: Vivian A. Panes, Raymond John S. Rebong, Miel Q. Diaz

Abstract:

Moringa oleifera Lam. is known mainly for its high nutritional value and medicinal properties contributing to its popular reputation as a 'miracle plant' in the tropical climates where it usually grows. The main objective of this study is to discover the genes and gene products involved in abiotic stress-induced activity that may impact the M. oleifera Lam. mature seeds as well as their corresponding functions. In this study, RNA-sequencing and de novo transcriptome assembly were performed using two assemblers, Trinity and Oases, which produced 177,417 and 120,818 contigs respectively. These transcripts were then subjected to various bioinformatics tools such as Blast2GO, UniProt, KEGG, and COG for gene annotation and the analysis of relevant metabolic pathways. Furthermore, FPKM analysis was performed to identify gene expression levels. The sequences were filtered according to the 'response to stress' GO term since this study dealt with stress response. Clustered Orthologous Groups (COG) showed that the highest frequencies of stress response gene functions were those of cytoskeleton which make up approximately 14% and 23% of stress-related sequences under Trinity and Oases respectively, recombination, repair and replication at 11% and 14% respectively, carbohydrate transport and metabolism at 23% and 9% respectively and defense mechanisms 16% and 12% respectively. KEGG pathway analysis determined the most abundant stress-response genes in the phenylpropanoid biosynthesis at counts of 187 and 166 pathways for Oases and Trinity respectively, purine metabolism at 123 and 230 pathways, and biosynthesis of antibiotics at 105 and 102. Unique and cumulative GO term counts revealed that majority of the stress response genes belonged to the category of cellular response to stress at cumulative counts of 1,487 to 2,187 for Oases and Trinity respectively, defense response at 754 and 1,255, and response to heat at 213 and 208, response to water deprivation at 229 and 228, and oxidative stress at 508 and 488. Lastly, FPKM was used to determine the levels of expression of each stress response gene. The most upregulated gene encodes for thiamine thiazole synthase chloroplastic-like enzyme which plays a significant role in DNA damage tolerance. Data analysis implies that M. oleifera stress response genes are directed towards the effects of climate change more than other stresses indicating the potential of M. oleifera for cultivation in harsh environments because it is resistant to climate change, pathogens, and foreign invaders.

Keywords: stress response, genes, Moringa oleifera, transcriptomics

Procedia PDF Downloads 148
1500 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening

Authors: Ksheeraj Sai Vepuri, Nada Attar

Abstract:

We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.

Keywords: facial expression recognittion, image preprocessing, deep learning, CNN

Procedia PDF Downloads 145
1499 Performance Evaluation of an Efficient Asynchronous Protocol for WDM Ring MANs

Authors: Baziana Peristera

Abstract:

The idea of the asynchronous transmission in wavelength division multiplexing (WDM) ring MANs is studied in this paper. Especially, we present an efficient access technique to coordinate the collisions-free transmission of the variable sizes of IP traffic in WDM ring core networks. Each node is equipped with a tunable transmitter and a tunable receiver. In this way, all the wavelengths are exploited for both transmission and reception. In order to evaluate the performance measures of average throughput, queuing delay and packet dropping probability at the buffers, a simulation model that assumes symmetric access rights among the nodes is developed based on Poisson statistics. Extensive numerical results show that the proposed protocol achieves apart from high bandwidth exploitation for a wide range of offered load, fairness of queuing delay and dropping events among the different packets size categories.

Keywords: asynchronous transmission, collision avoidance, wavelength division multiplexing, WDM

Procedia PDF Downloads 376
1498 Management of Non-Revenue Municipal Water

Authors: Habib Muhammetoglu, I. Ethem Karadirek, Selami Kara, Ayse Muhammetoglu

Abstract:

The problem of non-revenue water (NRW) from municipal water distribution networks is common in many countries such as Turkey, where the average yearly water losses are around 50% . Water losses can be divided into two major types namely: 1) Real or physical water losses, and 2) Apparent or commercial water losses. Total water losses in Antalya city, Turkey is around 45%. Methods: A research study was conducted to develop appropriate methodologies to reduce NRW. A pilot study area of about 60 thousands inhabitants was chosen to apply the study. The pilot study area has a supervisory control and data acquisition (SCADA) system for the monitoring and control of many water quantity and quality parameters at the groundwater drinking wells, pumping stations, distribution reservoirs, and along the water mains. The pilot study area was divided into 18 District Metered Areas (DMAs) with different number of service connections that ranged between a few connections to less than 3000 connections. The flow rate and water pressure to each DMA were on-line continuously measured by an accurate flow meter and water pressure meter that were connected to the SCADA system. Customer water meters were installed to all billed and unbilled water users. The monthly water consumption as given by the water meters were recorded regularly. Water balance was carried out for each DMA using the well-know standard IWA approach. There were considerable variations in the water losses percentages and the components of the water losses among the DMAs of the pilot study area. Old Class B customer water meters at one DMA were replaced by more accurate new Class C water meters. Hydraulic modelling using the US-EPA EPANET model was carried out in the pilot study area for the prediction of water pressure variations at each DMA. The data sets required to calibrate and verify the hydraulic model were supplied by the SCADA system. It was noticed that a number of the DMAs exhibited high water pressure values. Therefore, pressure reducing valves (PRV) with constant head were installed to reduce the pressure up to a suitable level that was determined by the hydraulic model. On the other hand, the hydraulic model revealed that the water pressure at the other DMAs cannot be reduced when complying with the minimum pressure requirement (3 bars) as stated by the related standards. Results: Physical water losses were reduced considerably as a result of just reducing water pressure. Further physical water losses reduction was achieved by applying acoustic methods. The results of the water balances helped in identifying the DMAs that have considerable physical losses. Many bursts were detected especially in the DMAs that have high physical water losses. The SCADA system was very useful to assess the efficiency level of this method and to check the quality of repairs. Regarding apparent water losses reduction, changing the customer water meters resulted in increasing water revenue by more than 20%. Conclusions: DMA, SCADA, modelling, pressure management, leakage detection and accurate customer water meters are efficient for NRW.

Keywords: NRW, water losses, pressure management, SCADA, apparent water losses, urban water distribution networks

Procedia PDF Downloads 406
1497 Mobile Learning in Teacher Education: A Review in Context of Developing Countries

Authors: Mehwish Raza

Abstract:

Mobile learning (m-learning) offers unique affordances to learners, setting them free of limitations posed by time and geographic space; thus becoming an affordable device for convenient distant learning. There is a plethora of research available on mobile learning projects planned, implemented and evaluated across disciplines in the context of developed countries, however, the potential of m-learning at different educational levels remain unexplored with little evidence of research carried out in developing countries. Despite the favorable technical infrastructure offered by cellular networks and boom in mobile subscriptions in the developing world, there is limited focus on utilizing m-learning for education and development purposes. The objective of this review is to unify findings from m-learning projects that have been implemented in developing countries such as Pakistan, Bangladesh, Philippines, India, and Tanzania for teachers’ in-service training. The purpose is to draw upon key characteristics of mobile learning that would be useful for future researchers to inform conceptualizations of mobile learning for developing countries.

Keywords: design model, developing countries, key characteristics, mobile learning

Procedia PDF Downloads 449
1496 Social Aspects and Successfully Funding a Crowd-Funding Project: The Impact of Social Information

Authors: Peggy S. C. van Teunenbroek

Abstract:

Recently, philanthropic crowd-funding -the raising of external funding from a large audience via social networks or social media- emerged as a new funding instrument for the Dutch cultural sector. However, such philanthropic crowdfunding in the US and the Netherlands is less successful than any other form of crowdfunding. We argue that social aspects are an important stimulus in philanthropic crowd-funding since previous research has shown that crowdfunding is stimulated by something beyond financial merits. Put simply, crowd-funding seems to be a socially motivated activity. In this paper we focus on the effect of social information, described as information about the donation behavior of previous donors. Using a classroom experiment we demonstrated a positive effect of social information on the donation behavior in crowdfunding campaigns. Our study extends previous research by showing who is affected by social information and why, and highlights how social information can be used to stimulate individuals to donate more to crowdfunding projects.

Keywords: online donation behavior, philanthropic crowdfunding, social information, social influence, social motivation

Procedia PDF Downloads 407
1495 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm

Authors: Mohammadhosein Hasanbeig, Lacra Pavel

Abstract:

In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.

Keywords: distributed control, game theory, multi-agent learning, reinforcement learning

Procedia PDF Downloads 460
1494 The Relationship of Aromatase Activity and Being Very Overweight in East Indian Women with or Without Polycystic Ovary Disease

Authors: Dipanshu Sur, Ratnabali Chakravorty, Rimi Pal, Siddhartha Chatterjee, Joyshree Chaterjee, Amal Mallik

Abstract:

Background: Women with polycystic ovary disease (PCOD) frequently suffer from metabolic disturbances. PCOD is a common ovulatory disorder in young women, which affects 5-10% of the population and results in infertility due to anovulation. Importantly, aromatase in ovarian granulosa and luteinized granulosa cells plays an important role for women of reproductive age. Generation and metabolism of androgen is directly related to aromatase activity. The E2/T ratio provides important information about aromatase activity because conversion of androgens to estrogens is mediated by CYP19, suggesting that the E2/T ratio may be a direct marker of aromatase activity. The nature of the interaction between ovarian aromatase activity and PCOD in women has been controversial, and the impact of weight gain on aromatase activity as well as E2 levels is unknown. Aim: The objective of this study was to investigate the association and relation between aromatase activity and levels of body mass index (BMI) from a reproductive hormone perspective in a group of women with or without PCOD. Methods: We designed a cohort study which included 200 individuals. It enrolled 100 cases of PCOD based on 2006 Rotterdam criteria and 100 ovulatory normal- non PCOD, healthy, age-matched controls. Plasma sex hormones viz. estradiol (E2), testosterone (T), follicle stimulating hormone (FSH), and luteinizing hormone (LH) were measured by ELISA on the second day of the menstrual cycle, together with BMI and E2/T were calculated. Aromatase activity in PCOD patients with different BMI, T and E2 levels were compared. Results: PCOD patients showed significantly increased levels of BMI, E2 (P=0.004), T and LH, while their E2/T (P= <0.001), FSH and FSH/LH values were decreased compared with the control group. Higher E2 levels correlated with a relatively enhanced E2/T as well as T and LH levels but reduced BMI, FSH and FSH/LH levels in women with PCOD. Hyperandrogenic PCOD patients had increased E2 levels but their aromatase activity was markedly inhibited independent of their BMI values. Conclusions: We found a significant decrease of ovarian aromatase activity in women with PCOD as compared to controls. Our study showed that ovarian aromatase activity in PCOD was decreased which was independent of BMI. Enhancing aromatase activity may become an optimized strategy for developing therapies for PCOD women, especially those with obesity.

Keywords: aromatase activity, polycystic ovary disease, obesity, body mass index

Procedia PDF Downloads 223
1493 Times2D: A Time-Frequency Method for Time Series Forecasting

Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan

Abstract:

Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.

Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation

Procedia PDF Downloads 44
1492 Implementation of Deep Neural Networks for Pavement Condition Index Prediction

Authors: M. Sirhan, S. Bekhor, A. Sidess

Abstract:

In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.

Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction

Procedia PDF Downloads 138
1491 Platform Virtual for Joint Amplitude Measurement Based in MEMS

Authors: Mauro Callejas-Cuervo, Andrea C. Alarcon-Aldana, Andres F. Ruiz-Olaya, Juan C. Alvarez

Abstract:

Motion capture (MC) is the construction of a precise and accurate digital representation of a real motion. Systems have been used in the last years in a wide range of applications, from films special effects and animation, interactive entertainment, medicine, to high competitive sport where a maximum performance and low injury risk during training and competition is seeking. This paper presents an inertial and magnetic sensor based technological platform, intended for particular amplitude monitoring and telerehabilitation processes considering an efficient cost/technical considerations compromise. Our platform particularities offer high social impact possibilities by making telerehabilitation accessible to large population sectors in marginal socio-economic sector, especially in underdeveloped countries that in opposition to developed countries specialist are scarce, and high technology is not available or inexistent. This platform integrates high-resolution low-cost inertial and magnetic sensors with adequate user interfaces and communication protocols to perform a web or other communication networks available diagnosis service. The amplitude information is generated by sensors then transferred to a computing device with adequate interfaces to make it accessible to inexperienced personnel, providing a high social value. Amplitude measurements of the platform virtual system presented a good fit to its respective reference system. Analyzing the robotic arm results (estimation error RMSE 1=2.12° and estimation error RMSE 2=2.28°), it can be observed that during arm motion in any sense, the estimation error is negligible; in fact, error appears only during sense inversion what can easily be explained by the nature of inertial sensors and its relation to acceleration. Inertial sensors present a time constant delay which acts as a first order filter attenuating signals at large acceleration values as is the case for a change of sense in motion. It can be seen a damped response of platform virtual in other images where error analysis show that at maximum amplitude an underestimation of amplitude is present whereas at minimum amplitude estimations an overestimation of amplitude is observed. This work presents and describes the platform virtual as a motion capture system suitable for telerehabilitation with the cost - quality and precision - accessibility relations optimized. These particular characteristics achieved by efficiently using the state of the art of accessible generic technology in sensors and hardware, and adequate software for capture, transmission analysis and visualization, provides the capacity to offer good telerehabilitation services, reaching large more or less marginal populations where technologies and specialists are not available but accessible with basic communication networks.

Keywords: inertial sensors, joint amplitude measurement, MEMS, telerehabilitation

Procedia PDF Downloads 260
1490 Structure-Reactivity Relationship of Some Rhᴵᴵᴵ and Osᴵᴵᴵ Complexes with N-Inert Ligands in Ionic Liquids

Authors: Jovana Bogojeski, Dusan Cocic, Nenad Jankovic, Angelina Petrovic

Abstract:

Kinetically-inert transition metal complexes, such as Rh(III) and Os(III) complexes, attract increasing attention as leading scaffolds for the development of potential pharmacological agents due to their inertness and stability. Therefore, we have designed and fully characterized a few novel rhodium(III) and osmium(III) complexes with a tridentate nitrogen−donor chelate system. For some complexes, the crystal X-ray structure analysis was performed. Reactivity of the newly synthesized complexes towards small biomolecules, such as L-methionine (L-Met), guanosine-5’-monophosphate (5’-GMP), and glutathione (GSH) has been examined. Also, the reactivity of these complexes towards the DNA/RNA (Ribonucleic acid) duplexes was investigated. Obtained results show that the newly synthesized complexes exhibit good affinity towards the studied ligands. Results also show that the complexes react faster with the RNA duplex than with the DNA and that in the DNA duplex reaction is faster with 15mer GG than with the 22mer GG. The UV-Vis (Ultraviolet-visible spectroscopy) is absorption spectroscopy, and the EB (Ethidium bromide) displacement studies were used to examine the interaction of these complexes with CT-DNA and BSA (Bovine serum albumin). All studied complex showed good interaction ability with both the DNA and BSA. Furthermore, the DFT (Density-functional theory) calculation and docking studies were performed. The impact of the metal complex on the cytotoxicity was tested by MTT assay (a colorimetric assay for assessing cell metabolic activity) on HCT-116 lines (human colon cancer cell line). In addition, all these tests were repeated in the presence of several water-soluble biologically active ionic liquids. Attained results indicate that the ionic liquids increase the activity of the investigated complexes. All obtained results in this study imply that the introduction of different spectator ligand can be used to improve the reactivity of rhodium(III) and osmium(III) complexes. Finally, these results indicate that the examined complexes show reactivity characteristics needed for potential anti-tumor agents, with possible targets being both the DNA and proteins. Every new contribution in this field is highly warranted due to the current lack of clinically used Metallo-based alternatives to cisplatin.

Keywords: biomolecules, ionic liquids, osmium(III), rhodium(III)

Procedia PDF Downloads 152
1489 A Topological Study of an Urban Street Network and Its Use in Heritage Areas

Authors: Jose L. Oliver, Taras Agryzkov, Leandro Tortosa, Jose F. Vicent, Javier Santacruz

Abstract:

This paper aims to demonstrate how a topological study of an urban street network can be used as a tool to be applied to some heritage conservation areas in a city. In the last decades, we find different kinds of approaches in the discipline of Architecture and Urbanism based in the so-called Sciences of Complexity. In this context, this paper uses mathematics from the Network Theory. Hence, it proposes a methodology based in obtaining information from a graph, which is created from a network of urban streets. Then, it is used an algorithm that establishes a ranking of importance of the nodes of that network, from its topological point of view. The results are applied to a heritage area in a particular city, confronting the data obtained from the mathematical model, with the ones from the field work in the case study. As a result of this process, we may conclude the necessity of implementing some actions in the area, and where those actions would be more effective for the whole heritage site.

Keywords: graphs, heritage cities, spatial analysis, urban networks

Procedia PDF Downloads 398
1488 Neuro-Connectivity Analysis Using Abide Data in Autism Study

Authors: Dulal Bhaumik, Fei Jie, Runa Bhaumik, Bikas Sinha

Abstract:

Human brain is an amazingly complex network. Aberrant activities in this network can lead to various neurological disorders such as multiple sclerosis, Parkinson’s disease, Alzheimer’s disease and autism. fMRI has emerged as an important tool to delineate the neural networks affected by such diseases, particularly autism. In this paper, we propose mixed-effects models together with an appropriate procedure for controlling false discoveries to detect disrupted connectivities in whole brain studies. Results are illustrated with a large data set known as Autism Brain Imaging Data Exchange or ABIDE which includes 361 subjects from 8 medical centers. We believe that our findings have addressed adequately the small sample inference problem, and thus are more reliable for therapeutic target for intervention. In addition, our result can be used for early detection of subjects who are at high risk of developing neurological disorders.

Keywords: ABIDE, autism spectrum disorder, fMRI, mixed-effects model

Procedia PDF Downloads 291
1487 The Use of Nuclear Generation to Provide Power System Stability

Authors: Heather Wyman-Pain, Yuankai Bian, Furong Li

Abstract:

The decreasing use of fossil fuel power stations has a negative effect on the stability of the electricity systems in many countries. Nuclear power stations have traditionally provided minimal ancillary services to support the system but this must change in the future as they replace fossil fuel generators. This paper explains the development of the four most popular reactor types still in regular operation across the world which have formed the basis for most reactor development since their commercialisation in the 1950s. The use of nuclear power in four countries with varying levels of capacity provided by nuclear generators is investigated, using the primary frequency response provided by generators as a measure for the electricity networks stability, to assess the need for nuclear generators to provide additional support as their share of the generation capacity increases.

Keywords: frequency control, nuclear power generation, power system stability, system inertia

Procedia PDF Downloads 440
1486 The Role of Deformation Strain and Annealing Temperature on Grain Boundary Engineering and Texture Evolution of Haynes 230

Authors: Mohsen Sanayei, Jerzy Szpunar

Abstract:

The present study investigates the effects of deformation strain and annealing temperature on the formation of twin boundaries, deformation and recrystallization texture evolution and grain boundary networks and connectivity. The resulting microstructures were characterized using Electron Backscatter Diffraction (EBSD) and X-Ray Diffraction (XRD) both immediately following small amount of deformation and after short time annealing at high temperature to correlate the micro and macro texture evolution of these alloys. Furthermore, this study showed that the process of grain boundary engineering, consisting cycles of deformation and annealing, is found to substantially reduce the mass and size of random boundaries and increase the proportion of low Coincidence Site Lattice (CSL) grain boundaries.

Keywords: coincidence site lattice, grain boundary engineering, electron backscatter diffraction, texture, x-ray diffraction

Procedia PDF Downloads 315
1485 Using the GIS Technology for Erosion Risk Mapping of BEN EL WIDAN Dam Watershed in Beni Mallal, Marroco

Authors: Azzouzi Fadoua

Abstract:

This study focuses on the diagnosis of the dynamics of natural resources in a semi-arid mountainous weakened by natural vulnerability and anthropogenic action. This is evident in the forms of hydraulic erosion and degradation of agricultural land. The rate of this damaged land is 53%, with a strong presence of concentrated erosion; this shows that balanced and semi-balanced environments are less apparent to the Watershed, representing 47%. The results revealed the crucial role of the slopes and the density of the hydraulic networks to facilitate the transport of fine elements, at the level of the slopes with low vegetation intensity, to the lake of the dam. Something that endangers the siltation of the latter. After the study of natural and anthropogenic elements, it turned out that natural vulnerability is an integral part of the current dynamic, especially when it coincides with the overexploitation of natural resources, in this case, the exploitation of steep slopes for the cultivation of cereals and overgrazing. This causes the soil to pile up and increase the rate of runoff.

Keywords: watershed, erosion, natural vulnerability, anthropogenic

Procedia PDF Downloads 153
1484 Identification of Bioactive Substances of Opuntia ficus-indica By-Products

Authors: N. Chougui, R. Larbat

Abstract:

The first economic importance of Opuntia ficus-indica relies on the production of edible fruits. This food transformation generates a large amount of by-products (seeds and peels) in addition to cladodes produced by the plant. Several studies showed the richness of these products with bioactive substances like phenolics that have potential applications. Indeed, phenolics have been associated with protection against oxidation and several biological activities responsible of different pathologies. Consequently, there has been a growing interest in identifying natural antioxidants from plants. This study falls within the framework of the industrial exploitation of by-products of the plant. The study aims to investigate the metabolic profile of three by-products (cladodes, peel seeds) regarding total phenolic content by liquid chromatography coupled to mass spectrometry approach (LC-MSn). The byproducts were first washed, crushed and stored at negative temperature. The total phenolic compounds were then extracted by aqueous-ethanolic solvent in order to be quantified and characterized by LC-MS. According to the results obtained, the peel extract was the richest in phenolic compounds (1512.58 mg GAE/100 g DM) followed by the cladode extract (629.23 GAE/100 g DM) and finally by the seed extract (88.82 GAE/100 g DM) which is mainly used for its oil. The LC-MS analysis revealed diversity in phenolics in the three extracts and allowed the identification of hydroxybenzoic acids, hydroxycinnamic acids and flavonoids. The highest complexity was observed in the seed phenolic composition; more than twenty compounds were detected that belong to acids esters among which three feruloyl sucrose isomers. Sixteen compounds belonging to hydroxybenzoic acids, hydroxycinnamic acids and flavonoids were identified in the peel extract, whereas, only nine compounds were found in the cladode extract. It is interesting to highlight that the phenolic composition of the cladode extract was closer to that of the peel exact. However, from a quantitative viewpoint, the peel extract presented the highest amounts. Piscidic and eucomic acids were the two most concentrated molecules, corresponding to 271.3 and 121.6 mg GAE/ 100g DM respectively. The identified compounds were known to have high antioxidant and antiradical potential with the ability to inhibit lipid peroxidation and to exhibit a wide range of biological and therapeutic properties. The findings highlight the importance of using the Opuntia ficus-indica by-products.

Keywords: characterization, LC-MSn analysis, Opuntia ficus-indica, phenolics

Procedia PDF Downloads 233