Search results for: latent heat flux
1651 Anticancer Effect of Isolated from the Methanolic Extract of Triticum Aestivum Straw in Mice
Authors: Savita Dixit
Abstract:
Rutin is the bioactive flavonoid isolated from the straw part of Triticum aestivum and possess various pharmacological applications. The aim of this study is to evaluate the chemopreventive potential of rutin in an experimental skin carcinogenesis mice model system. Skin tumor was induced by topical application of 7, 12-dimethyl benz(a) anthracene (DMBA) and promoted by croton oil in Swiss albino mice. To assess the chemopreventive potential of rutin, it was orally administered at a concentration of (200 mg/kg and 400 mg/kg body weight) continued three times weekly for 16th weeks. The development of skin carcinogenesis was assessed by histopathological analysis. Reductions in tumor size and cumulative number of papillomas were seen due to rutin treatment. Average latent period was significantly increased as compared to carcinogen-treated control. Rutin produced a significant decrease in the activity of serum enzyme serum glutamate oxalate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP) and bilirubin when compared with the control. They significantly increased the levels of enzyme involved in oxidative stress glutathione (GSH), superoxide dismutase (SOD) and catalase. The elevated level of lipid peroxidase in the control group was significantly inhibited by rutin administration. The results of the present study suggest the chemopreventive effect of rutin in DMBA and croton oil-induced skin carcinogenesis in swiss albino mice and one of the probable reasons would be its antioxidant potential.Keywords: chemoprevention, papilloma, rutin, skin carcinogenesis
Procedia PDF Downloads 3371650 Investigation of Light Transmission Characteristics and CO2 Capture Potential of Microalgae Panel Bioreactors for Building Façade Applications
Authors: E. S. Umdu, Ilker Kahraman, Nurdan Yildirim, Levent Bilir
Abstract:
Algae-culture offers new applications in sustainable architecture with its continuous productive cycle, and a potential for high carbon dioxide capture. Microalgae itself has multiple functions such as carbon dioxide fixation, biomass production, oxygen generation and waste water treatment. Incorporating microalgae cultivation processes and systems to building design to utilize this potential is promising. Microalgae cultivation systems, especially closed photo bioreactors can be implemented as components in buildings. And these systems be accommodated in the façade of a building, or in other urban infrastructure in the future. Application microalgae bio-reactors of on building’s façade has the added benefit of acting as an effective insulation system, keeping out the heat of the summer and the chill of the winter. Furthermore, microalgae can give a dynamic appearance with a liquid façade that also works as an adaptive sunshade. Recently, potential of microalgae to use as a building component to reduce net energy demand in buildings becomes a popular topic and innovative design proposals and a handful of pilot applications appeared. Yet there is only a handful of examples in application and even less information on how these systems affect building energy behavior. Further studies on microalgae mostly focused on single application approach targeting either carbon dioxide utilization through biomass production or biofuel production. The main objective of this study is to investigate effects of design parameters of microalgae panel bio-reactors on light transmission characteristics and CO2 capture potential during growth of Nannochloropsis occulata sp. A maximum reduction of 18 ppm in CO2 levels of input air during the experiments with a % light transmission of 14.10, was achieved in 6 day growth cycles. Heat transfer behavior during these cycles was also inspected for possible façade applications.Keywords: building façade, CO2 capture, light transmittance, microalgae
Procedia PDF Downloads 1891649 Effect of Baffles on the Cooling of Electronic Components
Authors: O. Bendermel, C. Seladji, M. Khaouani
Abstract:
In this work, we made a numerical study of the thermal and dynamic behaviour of air in a horizontal channel with electronic components. The influence to use baffles on the profiles of velocity and temperature is discussed. The finite volume method and the algorithm Simple are used for solving the equations of conservation of mass, momentum and energy. The results found show that baffles improve heat transfer between the cooling air and electronic components. The velocity will increase from 3 times per rapport of the initial velocity.Keywords: electronic components, baffles, cooling, fluids engineering
Procedia PDF Downloads 2951648 Towards Law Data Labelling Using Topic Modelling
Authors: Daniel Pinheiro Da Silva Junior, Aline Paes, Daniel De Oliveira, Christiano Lacerda Ghuerren, Marcio Duran
Abstract:
The Courts of Accounts are institutions responsible for overseeing and point out irregularities of Public Administration expenses. They have a high demand for processes to be analyzed, whose decisions must be grounded on severity laws. Despite the existing large amount of processes, there are several cases reporting similar subjects. Thus, previous decisions on already analyzed processes can be a precedent for current processes that refer to similar topics. Identifying similar topics is an open, yet essential task for identifying similarities between several processes. Since the actual amount of topics is considerably large, it is tedious and error-prone to identify topics using a pure manual approach. This paper presents a tool based on Machine Learning and Natural Language Processing to assists in building a labeled dataset. The tool relies on Topic Modelling with Latent Dirichlet Allocation to find the topics underlying a document followed by Jensen Shannon distance metric to generate a probability of similarity between documents pairs. Furthermore, in a case study with a corpus of decisions of the Rio de Janeiro State Court of Accounts, it was noted that data pre-processing plays an essential role in modeling relevant topics. Also, the combination of topic modeling and a calculated distance metric over document represented among generated topics has been proved useful in helping to construct a labeled base of similar and non-similar document pairs.Keywords: courts of accounts, data labelling, document similarity, topic modeling
Procedia PDF Downloads 1771647 Iron Extraction from Bog Iron Ore in Early French Colonial America
Authors: Yves Monette, Brad Loewen, Louise Pothier
Abstract:
This study explores the first bog iron ore extraction activities which took place in colonial New France. Archaeological excavations carried on the founding site of Montreal in the last ten years have revealed the remains of Fort Ville-Marie erected in 1642. In a level related to the fort occupation between 1660 and 1680, kilos of scories, a dozen of half-finished iron artefacts and a light yellow clayey ore material have recovered that point to extractive metallurgy activities at the fort. Examples of scories, artefacts and of a possible bog iron ore were submitted to SEM-EDS analysis. The results clearly indicate that iron was extracted from local limonite ores in a bloomery. We discovered that the gangue material could be traced from the ore to the scories. However, some lime silicates and some accessory minerals found in the scories, like barite and celestine for example, were absent from the ore but present in dolomite fragments found in the same archaeological context. The tracing of accessory minerals suggests that the ironmaster introduced a lime flux in the bloomery charge to maximize the separation of the iron ore. Before the introduction of the blast furnace in Western Europe during the first half of the 18th Century, the use of fluxes in iron bloomery was not a common practice.Keywords: bog iron ore, extractive metallurgy, French colonial America, Montreal, scanning electron microscopy (SEM)
Procedia PDF Downloads 3531646 Using Scilab® as New Introductory Method in Numerical Calculations and Programming for Computational Fluid Dynamics (CFD)
Authors: Nicoly Coelho, Eduardo Vieira Vilas Boas, Paulo Orestes Formigoni
Abstract:
Faced with the remarkable developments in the various segments of modern engineering, provided by the increasing technological development, professionals of all educational areas need to overcome the difficulties generated due to the good understanding of those who are starting their academic journey. Aiming to overcome these difficulties, this article aims at an introduction to the basic study of numerical methods applied to fluid mechanics and thermodynamics, demonstrating the modeling and simulations with its substance, and a detailed explanation of the fundamental numerical solution for the use of finite difference method, using SCILAB, a free software easily accessible as it is free and can be used for any research center or university, anywhere, both in developed and developing countries. It is known that the Computational Fluid Dynamics (CFD) is a necessary tool for engineers and professionals who study fluid mechanics, however, the teaching of this area of knowledge in undergraduate programs faced some difficulties due to software costs and the degree of difficulty of mathematical problems involved in this way the matter is treated only in postgraduate courses. This work aims to bring the use of DFC low cost in teaching Transport Phenomena for graduation analyzing a small classic case of fundamental thermodynamics with Scilab® program. The study starts from the basic theory involving the equation the partial differential equation governing heat transfer problem, implies the need for mastery of students, discretization processes that include the basic principles of series expansion Taylor responsible for generating a system capable of convergence check equations using the concepts of Sassenfeld, finally coming to be solved by Gauss-Seidel method. In this work we demonstrated processes involving both simple problems solved manually, as well as the complex problems that required computer implementation, for which we use a small algorithm with less than 200 lines in Scilab® in heat transfer study of a heated plate in rectangular shape on four sides with different temperatures on either side, producing a two-dimensional transport with colored graphic simulation. With the spread of computer technology, numerous programs have emerged requiring great researcher programming skills. Thinking that this ability to program DFC is the main problem to be overcome, both by students and by researchers, we present in this article a hint of use of programs with less complex interface, thus enabling less difficulty in producing graphical modeling and simulation for DFC with an extension of the programming area of experience for undergraduates.Keywords: numerical methods, finite difference method, heat transfer, Scilab
Procedia PDF Downloads 3851645 Homogenization of Cocoa Beans Fermentation to Upgrade Quality Using an Original Improved Fermenter
Authors: Aka S. Koffi, N’Goran Yao, Philippe Bastide, Denis Bruneau, Diby Kadjo
Abstract:
Cocoa beans (Theobroma cocoa L.) are the main components for chocolate manufacturing. The beans must be correctly fermented at first. Traditional process to perform the first fermentation (lactic fermentation) often consists in confining cacao beans using banana leaves or a fermentation basket, both of them leading to a poor product thermal insulation and to an inability to mix the product. Box fermenter reduces this loss by using a wood with large thickness (e>3cm), but mixing to homogenize the product is still hard to perform. Automatic fermenters are not rentable for most of producers. Heat (T>45°C) and acidity produced during the fermentation by microbiology activity of yeasts and bacteria are enabling the emergence of potential flavor and taste of future chocolate. In this study, a cylindro-rotative fermenter (FCR-V1) has been built and coconut fibers were used in its structure to confine heat. An axis of rotation (360°) has been integrated to facilitate the turning and homogenization of beans in the fermenter. This axis permits to put fermenter in a vertical position during the anaerobic alcoholic phase of fermentation, and horizontally during acetic phase to take advantage of the mid height filling. For circulation of air flow during turning in acetic phase, two woven rattan with grid have been made, one for the top and second for the bottom of the fermenter. In order to reduce air flow during acetic phase, two airtight covers are put on each grid cover. The efficiency of the turning by this kind of rotation, coupled with homogenization of the temperature, caused by the horizontal position in the acetic phase of the fermenter, contribute to having a good proportion of well-fermented beans (83.23%). In addition, beans’pH values ranged between 4.5 and 5.5. These values are ideal for enzymatic activity in the production of the aromatic compounds inside beans. The regularity of mass loss during all fermentation makes it possible to predict the drying surface corresponding to the amount being fermented.Keywords: cocoa fermentation, fermenter, microbial activity, temperature, turning
Procedia PDF Downloads 2611644 An Entropy Stable Three Dimensional Ideal MHD Solver with Guaranteed Positive Pressure
Authors: Andrew R. Winters, Gregor J. Gassner
Abstract:
A high-order numerical magentohydrodynamics (MHD) solver built upon a non-linear entropy stable numerical flux function that supports eight traveling wave solutions will be described. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver is especially well-suited for flows involving strong discontinuities due to its strong stability without the need to enforce artificial low density or energy limits. Furthermore, a new formulation of the numerical algorithm to guarantee positivity of the pressure during the simulation is described and presented. By construction, the solver conserves mass, momentum, and energy and is entropy stable. High spatial order is obtained through the use of a third order limiting technique. High temporal order is achieved by utilizing the family of strong stability preserving (SSP) Runge-Kutta methods. Main attributes of the solver are presented as well as details on an implementation of the new solver into the multi-physics, multi-scale simulation code FLASH. The accuracy, robustness, and computational efficiency is demonstrated with a variety of numerical tests. Comparisons are also made between the new solver and existing methods already present in FLASH framework.Keywords: entropy stability, finite volume scheme, magnetohydrodynamics, pressure positivity
Procedia PDF Downloads 3411643 The Dynamics of a Droplet Spreading on a Steel Surface
Authors: Evgeniya Orlova, Dmitriy Feoktistov, Geniy Kuznetsov
Abstract:
Spreading of a droplet over a solid substrate is a key phenomenon observed in the following engineering applications: thin film coating, oil extraction, inkjet printing, and spray cooling of heated surfaces. Droplet cooling systems are known to be more effective than film or rivulet cooling systems. It is caused by the greater evaporation surface area of droplets compared with the film of the same mass and wetting surface. And the greater surface area of droplets is connected with the curvature of the interface. Location of the droplets on the cooling surface influences on the heat transfer conditions. The close distance between the droplets provides intensive heat removal, but there is a possibility of their coalescence in the liquid film. The long distance leads to overheating of the local areas of the cooling surface and the occurrence of thermal stresses. To control the location of droplets is possible by changing the roughness, structure and chemical composition of the surface. Thus, control of spreading can be implemented. The most important characteristic of spreading of droplets on solid surfaces is a dynamic contact angle, which is a function of the contact line speed or capillary number. However, there is currently no universal equation, which would describe the relationship between these parameters. This paper presents the results of the experimental studies of water droplet spreading on metal substrates with different surface roughness. The effect of the droplet growth rate and the surface roughness on spreading characteristics was studied at low capillary numbers. The shadow method using high speed video cameras recording up to 10,000 frames per seconds was implemented. A droplet profile was analyzed by Axisymmetric Drop Shape Analyses techniques. According to change of the dynamic contact angle and the contact line speed three sequential spreading stages were observed: rapid increase in the dynamic contact angle; monotonous decrease in the contact angle and the contact line speed; and form of the equilibrium contact angle at constant contact line. At low droplet growth rate, the dynamic contact angle of the droplet spreading on the surfaces with the maximum roughness is found to increase throughout the spreading time. It is due to the fact that the friction force on such surfaces is significantly greater than the inertia force; and the contact line is pinned on microasperities of a relief. At high droplet growth rate the contact angle decreases during the second stage even on the surfaces with the maximum roughness, as in this case, the liquid does not fill the microcavities, and the droplet moves over the “air cushion”, i.e. the interface is a liquid/gas/solid system. Also at such growth rates pulsation of liquid flow was detected; and the droplet oscillates during the spreading. Thus, obtained results allow to conclude that it is possible to control spreading by using the surface roughness and the growth rate of droplets on surfaces as varied factors. Also, the research findings may be used for analyzing heat transfer in rivulet and drop cooling systems of high energy equipment.Keywords: contact line speed, droplet growth rate, dynamic contact angle, shadow system, spreading
Procedia PDF Downloads 3281642 Study on the DC Linear Stepper Motor to Industrial Applications
Authors: Nolvi Francisco Baggio Filho, Roniele Belusso
Abstract:
Many industrial processes require a precise linear motion. Usually, this movement is achieved with the use of rotary motors combined with electrical control systems and mechanical systems such as gears, pulleys and bearings. Other types of devices are based on linear motors, where the linear motion is obtained directly. The Linear Stepper Motor (MLP) is an excellent solution for industrial applications that require precise positioning and high speed. This study presents an MLP formed by a linear structure and static ferromagnetic material, and a mover structure in which three coils are mounted. Mechanical suspension systems allow a linear movement between static and mover parts, maintaining a constant air gap. The operating principle is based on the tendency of alignment of magnetic flux through the path of least reluctance. The force proportional to the intensity of the electric current and the speed proportional to the frequency of the excitation coils. The study of this device is still based on the use of a numerical and experimental analysis to verify the relationship among electric current applied and planar force developed. In addition, the magnetic field in the air gap region is also monitored.Keywords: linear stepper motor, planar traction force, reluctance magnetic, industry applications
Procedia PDF Downloads 4971641 CFD Modeling of Boiling in a Microchannel Based On Phase-Field Method
Authors: Rahim Jafari, Tuba Okutucu-Özyurt
Abstract:
The hydrodynamics and heat transfer characteristics of a vaporized elongated bubble in a rectangular microchannel have been simulated based on Cahn-Hilliard phase-field method. In the simulations, the initially nucleated bubble starts growing as it comes in contact with superheated water. The growing shape of the bubble compared with the available experimental data in the literature.Keywords: microchannel, boiling, Cahn-Hilliard method, simulation
Procedia PDF Downloads 4211640 Future Education: Changing Paradigms
Authors: Girish Choudhary
Abstract:
Education is in a state of flux. Not only one need to acquire skills in order to cope with a fast changing global world, an explosive growth in technology, on the other hand is providing a new wave of teaching tools - computer aided video instruction, hypermedia, multimedia, CD-ROMs, Internet connections, and collaborative software environments. The emerging technology incorporates the group qualities of interactive, classroom-based learning while providing individual students the flexibility to participate in an educational programme at their own time and place. The technology facilitating self learning also seems to provide a cost effective solution to the dilemma of delivering education to masses. Online education is a unique learning domain that provides for many to many communications as well. The computer conferencing software defines the boundaries of the virtual classroom. The changing paradigm provides access of instruction to a large proportion of society, promises a qualitative change in the quality of learning and echoes a new way of thinking in educational theory that promotes active learning and open new learning approaches. Putting it to practice is challenging and may fundamentally alter the nature of educational institutions. The subsequent part of paper addresses such questions viz. 'Do we need to radically re-engineer the curriculum and foster an alternate set of skills in students?' in the onward journey.Keywords: on-line education, self learning, energy and power engineering, future education
Procedia PDF Downloads 3281639 Friction Stir Processing of the AA7075T7352 Aluminum Alloy Microstructures Mechanical Properties and Texture Characteristics
Authors: Roopchand Tandon, Zaheer Khan Yusufzai, R. Manna, R. K. Mandal
Abstract:
Present work describes microstructures, mechanical properties, and texture characteristics of the friction stir processed AA7075T7352 aluminum alloy. Phases were analyzed with the help of x-ray diffractometre (XRD), transmission electron microscope (TEM) along with the differential scanning calorimeter (DSC). Depth-wise microstructures and dislocation characteristics from the nugget-zone of the friction stir processed specimens were studied using the bright field (BF) and weak beam dark-field (WBDF) TEM micrographs, and variation in the microstructures as well as dislocation characteristics were the noteworthy features found. XRD analysis display changes in the chemistry as well as size of the phases in the nugget and heat affected zones (Nugget and HAZ). Whereas the base metal (BM) microstructures remain un-affected. High density dislocations were noticed in the nugget regions of the processed specimen, along with the formation of dislocation contours and tangles. .The ɳ’ and ɳ phases, along with the GP-Zones were completely dissolved and trapped by the dislocations. Such an observations got corroborated to the improved mechanical as well as stress corrosion cracking (SCC) performances. Bulk texture and residual stress measurements were done by the Panalytical Empyrean MRD system with Co- kα radiation. Nugget zone (NZ) display compressive residual stress as compared to thermo-mechanically(TM) and heat affected zones (HAZ). Typical f.c.c. deformation texture components (e.g. Copper, Brass, and Goss) were seen. Such a phenomenon is attributed to the enhanced hardening as well as other mechanical performance of the alloy. Mechanical characterizations were done using the tensile test and Anton Paar Instrumented Micro Hardness tester. Enhancement in the yield strength value is reported from the 89MPa to the 170MPa; on the other hand, highest hardness value was reported in the nugget-zone of the processed specimens.Keywords: aluminum alloy, mechanical characterization, texture characterstics, friction stir processing
Procedia PDF Downloads 1061638 Influence of Degassing on the Curing Behaviour and Void Occurrence Properties of Epoxy / Anhydride Resin System
Authors: Latha Krishnan, Andrew Cobley
Abstract:
Epoxy resin is most widely used as matrices for composites of aerospace, automotive and electronic applications due to its outstanding mechanical properties. These properties are chiefly predetermined by the chemical structure of the prepolymer and type of hardener but can also be varied by the processing conditions such as prepolymer and hardener mixing, degassing and curing conditions. In this research, the effect of degassing on the curing behaviour and the void occurrence is experimentally evaluated for epoxy /anhydride resin system. The epoxy prepolymer was mixed with an anhydride hardener and accelerator in an appropriate quantity. In order to investigate the effect of degassing on the curing behaviour and void content of the resin, the uncured resin samples were prepared using three different methods: 1) no degassing 2) degassing on prepolymer and 3) degassing on mixed solution of prepolymer and hardener with an accelerator. The uncured resins were tested in differential scanning calorimeter (DSC) to observe the changes in curing behaviour of the above three resin samples by analysing factors such as gel temperature, peak cure temperature and heat of reaction/heat flow in curing. Additionally, the completely cured samples were tested in DSC to identify the changes in the glass transition temperature (Tg) between the three samples. In order to evaluate the effect of degassing on the void content and morphology changes in the cured epoxy resin, the fractured surfaces of cured epoxy resin were examined under the scanning electron microscope (SEM). In addition, the amount of void, void geometry and void fraction were also investigated using an optical microscope and image J software (image analysis software). It was found that degassing at different stages of resin mixing had significant effects on properties such as glass transition temperature, the void content and void size of the epoxy/anhydride resin system. For example, degassing (vacuum applied on the mixed resin) has shown higher glass transition temperature (Tg) with lower void content.Keywords: anhydride epoxy, curing behaviour, degassing, void occurrence
Procedia PDF Downloads 2141637 Supply, Trade-offs, and Synergies Estimation for Regulating Ecosystem Services of a Local Forest
Authors: Jang-Hwan Jo
Abstract:
The supply management of ecosystem services of local forests is an essential issue as it is linked to the ecological welfare of local residents. This study aims to estimate the supply, trade-offs, and synergies of local forest regulating ecosystem services using a land cover classification map (LCCM) and a forest types map (FTM). Rigorous literature reviews and Expert Delphi analysis were conducted using the detailed variables of 1:5,000 LCCM and FTM. Land-use scoring method and Getis-Ord Gi* Analysis were utilized on detailed variables to propose a method for estimating supply, trade-offs, and synergies of the local forest regulating ecosystem services. The analysis revealed that the rank order (1st to 5th) of supply of regulating ecosystem services was Erosion prevention, Air quality regulation, Heat island mitigation, Water quality regulation, and Carbon storage. When analyzing the correlation between defined services of the entire city, almost all services showed a synergistic effect. However, when analyzing locally, trade-off effects (Heat island mitigation – Air quality regulation, Water quality regulation – Air quality regulation) appeared in the eastern and northwestern forest areas. This suggests the need to consider not only the synergy and trade-offs of the entire forest between specific ecosystem services but also the synergy and trade-offs of local areas in managing the regulating ecosystem services of local forests. The study result can provide primary data for the stakeholders to determine the initial conditions of the planning stage when discussing the establishment of policies related to the adjustment of the supply of regulating ecosystem services of the forests with limited access. Moreover, the study result can also help refine the estimation of the supply of the regulating ecosystem services with the availability of other forms of data.Keywords: ecosystem service, getis ord gi* analysis, land use scoring method, regional forest, regulating service, synergies, trade-offs
Procedia PDF Downloads 851636 The Influence of Bentonite on the Rheology of Geothermal Grouts
Authors: A. N. Ghafar, O. A. Chaudhari, W. Oettel, P. Fontana
Abstract:
This study is a part of the EU project GEOCOND-Advanced materials and processes to improve performance and cost-efficiency of shallow geothermal systems and underground thermal storage. In heat exchange boreholes, to improve the heat transfer between the pipes and the surrounding ground, the space between the pipes and the borehole wall is normally filled with geothermal grout. Traditionally, bentonite has been a crucial component in most commercially available geothermal grouts to assure the required stability and impermeability. The investigations conducted in the early stage of this project during the benchmarking tests on some commercial grouts showed considerable sensitivity of the rheological properties of the tested grouts to the mixing parameters, i.e., mixing time and velocity. Further studies on this matter showed that bentonite, which has been one of the important constituents in most grout mixes, was probably responsible for such behavior. Apparently, proper amount of shear should be applied during the mixing process to sufficiently activate the bentonite. The higher the amount of applied shear the more the activation of bentonite, resulting in change in the grout rheology. This explains why, occasionally in the field applications, the flow properties of the commercially available geothermal grouts using different mixing conditions (mixer type, mixing time, mixing velocity) are completely different than expected. A series of tests were conducted on the grout mixes, with and without bentonite, using different mixing protocols. The aim was to eliminate/reduce the sensitivity of the rheological properties of the geothermal grouts to the mixing parameters by replacing bentonite with polymeric (non-clay) stabilizers. The results showed that by replacing bentonite with a proper polymeric stabilizer, the sensitivity of the grout mix on mixing time and velocity was to a great extent diminished. This can be considered as an alternative for the developers/producers of geothermal grouts to provide enhanced materials with less uncertainty in obtained results in the field applications.Keywords: flow properties, geothermal grout, mixing time, mixing velocity, rheological properties
Procedia PDF Downloads 1231635 Numerical Modeling of Turbulent Natural Convection in a Square Cavity
Authors: Mohammadreza Sedighi, Mohammad Said Saidi, Hesamoddin Salarian
Abstract:
A numerical study has been performed to investigate the effect of using different turbulent models on natural convection flow field and temperature distributions in partially heated square cavity compare to benchmark. The temperature of the right vertical wall is lower than that of heater while other walls are insulated. The commercial CFD codes are used to model. Standard k-w model provided good agreement with the experimental data.Keywords: Buoyancy, Cavity, CFD, Heat Transfer, Natural Convection, Turbulence
Procedia PDF Downloads 3401634 An Experimental Study on the Effects of Aspect Ratio of a Rectangular Microchannel on the Two-Phase Frictional Pressure Drop
Authors: J. A. Louw Coetzee, Josua P. Meyer
Abstract:
The thermodynamic properties of different refrigerants in combination with the variation in geometrical properties (hydraulic diameter, aspect ratio, and inclination angle) of a rectangular microchannel determine the two-phase frictional pressure gradient. The effect of aspect ratio on frictional pressure drop had not been investigated enough during adiabatic two-phase flow and condensation in rectangular microchannels. This experimental study was concerned with measurement of the frictional pressure gradient in a rectangular microchannel, with hydraulic diameter of 900 μm. The aspect ratio of this microchannel was varied over a range that stretched from 0.3 to 3 in order to capture the effect of aspect ratio variation. A commonly used refrigerant, R134a, was used in the tests that spanned over a mass flux range of 100 to 1000 kg m-2 s-1 as well as the whole vapour quality range. This study formed part of a refrigerant condensation experiment and was therefore conducted at a saturation temperature of 40 °C. The study found that there was little influence of the aspect ratio on the frictional pressure drop at the test conditions. The data was compared to some of the well known micro- and macro-channel two-phase pressure drop correlations. Most of the separated flow correlations predicted the pressure drop data well at mass fluxes larger than 400 kg m-2 s-1 and vapour qualities above 0.2.Keywords: aspect ratio, microchannel, two-phase, pressure gradient
Procedia PDF Downloads 3651633 Molecular Dynamic Simulation of CO2 Absorption into Mixed Aqueous Solutions MDEA/PZ
Authors: N. Harun, E. E. Masiren, W. H. W. Ibrahim, F. Adam
Abstract:
Amine absorption process is an approach for mitigation of CO2 from flue gas that produces from power plant. This process is the most common system used in chemical and oil industries for gas purification to remove acid gases. On the challenges of this process is high energy requirement for solvent regeneration to release CO2. In the past few years, mixed alkanolamines have received increasing attention. In most cases, the mixtures contain N-methyldiethanolamine (MDEA) as the base amine with the addition of one or two more reactive amines such as PZ. The reason for the application of such blend amine is to take advantage of high reaction rate of CO2 with the activator combined with the advantages of the low heat of regeneration of MDEA. Several experimental and simulation studies have been undertaken to understand this process using blend MDEA/PZ solvent. Despite those studies, the mechanism of CO2 absorption into the aqueous MDEA is not well understood and available knowledge within the open literature is limited. The aim of this study is to investigate the intermolecular interaction of the blend MDEA/PZ using Molecular Dynamics (MD) simulation. MD simulation was run under condition 313K and 1 atm using NVE ensemble at 200ps and NVT ensemble at 1ns. The results were interpreted in term of Radial Distribution Function (RDF) analysis through two system of interest i.e binary and tertiary. The binary system will explain the interaction between amine and water molecule while tertiary system used to determine the interaction between the amine and CO2 molecule. For the binary system, it was observed that the –OH group of MDEA is more attracted to water molecule compared to –NH group of MDEA. The –OH group of MDEA can form the hydrogen bond with water that will assist the solubility of MDEA in water. The intermolecular interaction probability of –OH and –NH group of MDEA with CO2 in blended MDEA/PZ is higher than using single MDEA. This findings show that PZ molecule act as an activator to promote the intermolecular interaction between MDEA and CO2.Thus, blend of MDEA with PZ is expecting to increase the absorption rate of CO2 and reduce the heat regeneration requirement.Keywords: amine absorption process, blend MDEA/PZ, CO2 capture, molecular dynamic simulation, radial distribution function
Procedia PDF Downloads 2931632 Analysis of Extreme Case of Urban Heat Island Effect and Correlation with Global Warming
Authors: Kartikey Gupta
Abstract:
Global warming and environmental degradation are at their peak today, with the years after 2000A.D. giving way to 15 hottest years in terms of average temperatures. In India, much of the standard temperature measuring equipment are located in ‘developed’ urban areas, hence showing us an incomplete picture in terms of the climate across many rural areas, which comprises most of the landmass. This study showcases data studied by the author since 3 years at Vatsalya’s Children’s village, in outskirts of Jaipur, Rajasthan, India; in the midst of semi-arid topography, where consistently huge temperature differences of up to 15.8 degrees Celsius from local Jaipur weather only 30 kilometers away, are stunning yet scary at the same time, encouraging analysis of where the natural climatic pattern is heading due to rapid unrestricted urbanization. Record-breaking data presented in this project enforces the need to discuss causes and recovery techniques. This research further explores how and to what extent we are causing phenomenal disturbances in the natural meteorological pattern by urban growth. Detailed data observations using a standardized ambient weather station at study site and comparing it with closest airport weather data, evaluating the patterns and differences, show striking differences in temperatures, wind patterns and even rainfall quantity, especially during high-pressure zone days. Winter-time lows dip to 8 degrees below freezing with heavy frost and ice, while only 30 kms away minimum figures barely touch single-digit temperatures. Human activity is having an unprecedented effect on climatic patterns in record-breaking trends, which is a warning of what may follow in the next 15-25 years for the next generation living in cities, and a serious exploration into possible solutions is a must.Keywords: climate change, meteorology, urban heat island, urbanization
Procedia PDF Downloads 841631 Improvement in Blast Furnace Performance Using Softening - Melting Zone Profile Prediction Model at G Blast Furnace, Tata Steel Jamshedpur
Authors: Shoumodip Roy, Ankit Singhania, K. R. K. Rao, Ravi Shankar, M. K. Agarwal, R. V. Ramna, Uttam Singh
Abstract:
The productivity of a blast furnace and the quality of the hot metal produced are significantly dependent on the smoothness and stability of furnace operation. The permeability of the furnace bed, as well as the gas flow pattern, influences the steady control of process parameters. The softening – melting zone that is formed inside the furnace contributes largely in distribution of the gas flow and the bed permeability. A better shape of softening-melting zone enhances the performance of blast furnace, thereby reducing the fuel rates and improving furnace life. Therefore, predictive model of the softening- melting zone profile can be utilized to control and improve the furnace operation. The shape of softening-melting zone depends upon the physical and chemical properties of the agglomerates and iron ore charged in the furnace. The variations in the agglomerate proportion in the burden at G Blast furnace disturbed the furnace stability. During such circumstances, it was analyzed that a w-shape softening-melting zone profile was formed inside the furnace. The formation of w-shape zone resulted in poor bed permeability and non-uniform gas flow. There was a significant increase in the heat loss at the lower zone of the furnace. The fuel demand increased, and the huge production loss was incurred. Therefore, visibility of softening-melting zone profile was necessary in order to pro-actively optimize the process parameters and thereby to operate the furnace smoothly. Using stave temperatures, a model was developed that predicted the shape of the softening-melting zone inside the furnace. It was observed that furnace operated smoothly during inverse V-shape of the zone and vice-versa during w-shape. This model helped to control the heat loss, optimize the burden distribution and lower the fuel rate at G Blast Furnace, TSL Jamshedpur. As a result of furnace stabilization productivity increased by 10% and fuel rate reduced by 80 kg/thm. Details of the process have been discussed in this paper.Keywords: agglomerate, blast furnace, permeability, softening-melting
Procedia PDF Downloads 2501630 Optimum Design of Heat Exchanger in Diesel Engine Cold EGR for Pollutants Reduction
Authors: Nasser Ghassembaglou, Armin Rahmatfam, Faramarz Ranjbar
Abstract:
Using of cold EGR method with variable venturi and turbocharger has a very significant affection on the reduction of NOX and grime simultaneously. EGR cooler is one of the most important parts in the cold EGR circuit. In this paper optimum design of cooler for working in different percents of EGR and for determining of optimum temperature of exhausted gases, growth of efficiency, reduction of weight, reduction of dimension and expenditures, and reduction of sediment and optimum performance by using gas oil which has significant amounts of brimstone are investigated and optimized.Keywords: cold EGR, NOX, cooler, gas oil
Procedia PDF Downloads 4911629 Application of Electrochromic Glazing for Reducing Peak Cooling Loads
Authors: Ranojoy Dutta
Abstract:
HVAC equipment capacity has a direct impact on occupant comfort and energy consumption of a building. Glazing gains, especially in buildings with high window area, can be a significant contributor to the total peak load on the HVAC system, leading to over-sized systems that mostly operate at poor part load efficiency. In addition, radiant temperature, which largely drives occupant comfort in glazed perimeter zones, is often not effectively controlled despite the HVAC being designed to meet the air temperature set-point. This is due to short wave solar radiation transmitted through windows, that is not sensed by the thermostat until much later when the thermal mass in the room releases the absorbed solar heat to the indoor air. The implication of this phenomenon is increased cooling energy despite poor occupant comfort. EC glazing can significantly eliminate direct solar transmission through windows, reducing both the space cooling loads for the building and improving comfort for occupants near glazing. This paper will review the exact mechanism of how EC glazing would reduce the peak load under design day conditions, leading to reduced cooling capacity vs regular high-performance glazing. Since glazing heat transfer only affects the sensible load, system sizing will be evaluated both with and without the availability of a DOAS to isolate the downsizing potential of the primary cooling equipment when outdoor air is conditioned separately. Given the dynamic nature of glazing gains due to the sun’s movement, effective peak load mitigation with EC requires an automated control system that can predict solar movement and radiation levels so that the right tint state with the appropriate SHGC is utilized at any given time for a given façade orientation. Such an automated EC product will be evaluated for a prototype commercial office model situated in four distinct climate zones.Keywords: electrochromic glazing, peak sizing, thermal comfort, glazing load
Procedia PDF Downloads 1281628 Enhanced Method of Conceptual Sizing of Aircraft Electro-Thermal De-Icing System
Authors: Ahmed Shinkafi, Craig Lawson
Abstract:
There is a great advancement towards the All-Electric Aircraft (AEA) technology. The AEA concept assumes that all aircraft systems will be integrated into one electrical power source in the future. The principle of the electro-thermal system is to transfer the energy required for anti/de-icing to the protected areas in electrical form. However, powering a large aircraft anti-icing system electrically could be quite excessive in cost and system weight. Hence, maximising the anti/de-icing efficiency of the electro-thermal system in order to minimise its power demand has become crucial to electro-thermal de-icing system sizing. In this work, an enhanced methodology has been developed for conceptual sizing of aircraft electro-thermal de-icing System. The work factored those critical terms overlooked in previous studies which were critical to de-icing energy consumption. A case study of a typical large aircraft wing de-icing was used to test and validate the model. The model was used to optimise the system performance by a trade-off between the de-icing peak power and system energy consumption. The optimum melting surface temperatures and energy flux predicted enabled the reduction in the power required for de-icing. The weight penalty associated with electro-thermal anti-icing/de-icing method could be eliminated using this method without under estimating the de-icing power requirement.Keywords: aircraft, de-icing system, electro-thermal, in-flight icing
Procedia PDF Downloads 5161627 Evaluating the Effectiveness of Combined Psychiatric and Psychotherapeutic Care versus Psychotherapy Alone in the Treatment of Depression and Anxiety in Cancer Patients
Authors: Nathen A. Spitz, Dennis Martin Kivlighan III, Arwa Aburizik
Abstract:
Background and Purpose: Presently, there is a paucity of naturalistic studies that directly compare the effectiveness of psychotherapy versus concurrent psychotherapy and psychiatric care for the treatment of depression and anxiety in cancer patients. Informed by previous clinical trials examining the efficacy of concurrent approaches, this study sought to test the hypothesis that a combined approach would result in the greatest reduction of depression and anxiety symptoms. Methods: Data for this study consisted of 433 adult cancer patients, with 252 receiving only psychotherapy and 181 receiving concurrent psychotherapy and psychiatric care at the University of Iowa Hospitals and Clinics. Longitudinal PHQ9 and GAD7 data were analyzed between both groups using latent growth curve analyses. Results: After controlling for treatment length and provider effects, results indicated that concurrent care was more effective than psychotherapy alone for depressive symptoms (γ₁₂ = -0.12, p = .037). Specifically, the simple slope for concurrent care was -0.25 (p = .022), and the simple slope for psychotherapy alone was -0.13 (p = .006), suggesting that patients receiving concurrent care experienced a greater reduction in depressive symptoms compared to patients receiving psychotherapy alone. In contrast, there were no significant differences between psychotherapy alone and concurrent psychotherapy and psychiatric care in the reduction of anxious symptoms. Conclusions: Overall, as both psychotherapy and psychiatric care may address unique aspects of mental health conditions, in addition to potentially providing synergetic support to each other, a combinatorial approach to mental healthcare for cancer patients may improve outcomes.Keywords: psychiatry, psychology, psycho-oncology, combined care, psychotherapy, behavioral psychology
Procedia PDF Downloads 1181626 Isolation and Elimination of Latent and Productive Herpes Simplex Virus from the Sacral and Trigeminal Ganglions
Authors: Bernard L. Middleton, Susan P. Cosgrove
Abstract:
There is an immediate need for alternative anti-herpetic treatment options effective for both primary infections and reoccurring reactivations of herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). Alternatives currently approved for the purposes of clinical administration includes antivirals and a reduced set of nucleoside analogues. The present article tests a treatment based on a systemic understanding of how the herpes virus affects cell inhibition and breakdown and targets different phases of the viral cycle, including the entry stage, reproductive cross mutation, and cell-to-cell infection. The treatment consisted of five immunotherapeutic core compounds (5CC), which were hypothesized to be capable of neutralizing human monoclonal antibodies. The tested 5CC were noted as being functional in the application of eliminating the DNA synthesis of herpes viral interferon (IFN) - induced cellular antiviral response. They were here found to neutralize antiviral reproduction by blocking cell-to-cell infection. The activity of the 5CC was tested on RC-37 in vitro using an assay plaque reduction and in vivo against HSV-1 and HSV-2. The 50% inhibitory concentration (IC50) of 5CC was 0.0009% for HSV-1 plaque formation and 0.0008% for HSV-2 plaque formation. Further tests were performed to evaluate the susceptibility of HSV-1 and HSV-2 to anti-herpetic drugs in Vero cells after virus entry. There were high-level markers of the 5CC virucidal activity in the viral suspension of HSV-1 and HSV-2. These concentrations of the 5CC are nontoxic and reduced plaque formation by 98.2% for HSV-1 and 93.0% for HSV-2. Virus HSV-1 and HSV-2 titers were reduced significantly by 5CC to the point of being negative, ranging 0.01–0.09 in 72%. The results concluded the 5CC as being an effective treatment option for the herpes simplex virus.Keywords: synergy pharmaceuticals, herpes treatment, herpes cure, synergy pharmaceuticals treatment
Procedia PDF Downloads 2401625 Thermodynamic Evaluation of Coupling APR-1400 with a Thermal Desalination Plant
Authors: M. Gomaa Abdoelatef, Robert M. Field, Lee, Yong-Kwan
Abstract:
Growing human populations have placed increased demands on water supplies and a heightened interest in desalination infrastructure. Key elements of the economics of desalination projects are thermal and electrical inputs. With growing concerns over the use of fossil fuels to (indirectly) supply these inputs, coupling of desalination with nuclear power production represents a significant opportunity. Individually, nuclear and desalination technologies have a long history and are relatively mature. For desalination, Reverse Osmosis (RO) has the lowest energy inputs. However, the economically driven output quality of the water produced using RO, which uses only electrical inputs, is lower than the output water quality from thermal desalination plants. Therefore, modern desalination projects consider that RO should be coupled with thermal desalination technologies (MSF, MED, or MED-TVC) with attendant steam inputs to permit blending to produce various qualities of water. A large nuclear facility is well positioned to dispatch large quantities of both electrical and thermal power. This paper considers the supply of thermal energy to a large desalination facility to examine heat balance impact on the nuclear steam cycle. The APR1400 nuclear plant is selected as prototypical from both a capacity and turbine cycle heat balance perspective to examine steam supply and the impact on electrical output. Extraction points and quantities of steam are considered parametrically along with various types of thermal desalination technologies to form the basis for further evaluations of economically optimal approaches to the interface of nuclear power production with desalination projects. In our study, the thermodynamic evaluation will be executed by DE-TOP which is the IAEA desalination program, it is approved to be capable of analyzing power generation systems coupled to desalination systems through various steam extraction positions, taking into consideration the isolation loop between the APR-1400 and the thermal desalination plant for safety concern.Keywords: APR-1400, desalination, DE-TOP, IAEA, MSF, MED, MED-TVC, RO
Procedia PDF Downloads 5271624 The Use of Additives to Prevent Fouling in Polyethylene and Polypropylene Gas and Slurry Phase Processes
Abstract:
All polyethylene processes are highly exothermic, and the safe removal of the heat of reaction is a fundamental issue in the process design. In slurry and gas processes, the velocity of the polymer particles in the reactor and external coolers can be very high, and under certain conditions, this can lead to static charging of these particles. Such static charged polymer particles may start building up on the reactor wall, limiting heat transfer, and ultimately leading to severe reactor fouling and forced reactor shut down. Statsafe™ is an FDA approved anti-fouling additive currently used around the world for polyolefin production as an anti-fouling additive. The unique polymer chemistry aids static discharge, which prevents the build-up of charged polyolefin particles, which could lead to fouling. Statsafe™ is being used and trailed in gas, slurry, and a combination of these technologies around the world. We will share data to demonstrate how the use of Statsafe™ allows more stable operation at higher solids level by eliminating static, which would otherwise prevent closer packing of particles in the hydrocarbon slurry. Because static charge generation depends also on the concentration of polymer particles in the slurry, the maximum slurry concentration can be higher when using Statsafe™, leading to higher production rates. The elimination of fouling also leads to less downtime. Special focus will be made on the impact anti-static additives have on catalyst performance within the polymerization process and how this has been measured. Lab-scale studies have investigated the effect on the activity of Ziegler Natta catalysts when anti-static additives are used at various concentrations in gas and slurry, polyethylene and polypropylene processes. An in-depth gas phase study investigated the effect of additives on the final polyethylene properties such as particle size, morphology, fines, bulk density, melt flow index, gradient density, and melting point.Keywords: anti-static additives, catalyst performance, FDA approved anti-fouling additive, polymerisation
Procedia PDF Downloads 2011623 Phase Composition Analysis of Ternary Alloy Materials for Gas Turbine Applications
Authors: Mayandi Ramanathan
Abstract:
Gas turbine blades see the most aggressive thermal stress conditions within the engine, due to high Turbine Entry Temperatures in the range of 1500 to 1600°C. The blades rotate at very high rotation rates and remove a significant amount of thermal power from the gas stream. At high temperatures, the major component failure mechanism is a creep. During its service over time under high thermal loads, the blade will deform, lengthen and rupture. High strength and stiffness in the longitudinal direction up to elevated service temperatures are certainly the most needed properties of turbine blades and gas turbine components. The proposed advanced Ti alloy material needs a process that provides a strategic orientation of metallic ordering, uniformity in composition and high metallic strength. The chemical composition of the proposed Ti alloy material (25% Ta/(Al+Ta) ratio), unlike Ti-47Al-2Cr-2Nb, has less excess Al that could limit the service life of turbine blades. Properties and performance of Ti-47Al-2Cr-2Nb and Ti-6Al-4V materials will be compared with that of the proposed Ti alloy material to generalize the performance metrics of various gas turbine components. This paper will involve the summary of the effects of additive manufacturing and heat treatment process conditions on the changes in the phase composition, grain structure, lattice structure of the material, tensile strength, creep strain rate, thermal expansion coefficient and fracture toughness at different temperatures. Based on these results, additive manufacturing and heat treatment process conditions will be optimized to fabricate turbine blade with Ti-43Al matrix alloyed with an optimized amount of refractory Ta metal. Improvement in service temperature of the turbine blades and corrosion resistance dependence on the coercivity of the alloy material will be reported. A correlation of phase composition and creep strain rate will also be discussed.Keywords: high temperature materials, aerospace, specific strength, creep strain, phase composition
Procedia PDF Downloads 1141622 Experimental and Simulation Results for the Removal of H2S from Biogas by Means of Sodium Hydroxide in Structured Packed Columns
Authors: Hamadi Cherif, Christophe Coquelet, Paolo Stringari, Denis Clodic, Laura Pellegrini, Stefania Moioli, Stefano Langè
Abstract:
Biogas is a promising technology which can be used as a vehicle fuel, for heat and electricity production, or injected in the national gas grid. It is storable, transportable, not intermittent and substitutable for fossil fuels. This gas produced from the wastewater treatment by degradation of organic matter under anaerobic conditions is mainly composed of methane and carbon dioxide. To be used as a renewable fuel, biogas, whose energy comes only from methane, must be purified from carbon dioxide and other impurities such as water vapor, siloxanes and hydrogen sulfide. Purification of biogas for this application particularly requires the removal of hydrogen sulfide, which negatively affects the operation and viability of equipment especially pumps, heat exchangers and pipes, causing their corrosion. Several methods are available to eliminate hydrogen sulfide from biogas. Herein, reactive absorption in structured packed column by means of chemical absorption in aqueous sodium hydroxide solutions is considered. This study is based on simulations using Aspen Plus™ V8.0, and comparisons are done with data from an industrial pilot plant treating 85 Nm3/h of biogas which contains about 30 ppm of hydrogen sulfide. The rate-based model approach has been used for simulations in order to determine the efficiencies of separation for different operating conditions. To describe vapor-liquid equilibrium, a γ/ϕ approach has been considered: the Electrolyte NRTL model has been adopted to represent non-idealities in the liquid phase, while the Redlich-Kwong equation of state has been used for the vapor phase. In order to validate the thermodynamic model, Henry’s law constants of each compound in water have been verified against experimental data. Default values available in Aspen Plus™ V8.0 for the properties of pure components properties as heat capacity, density, viscosity and surface tension have also been verified. The obtained results for physical and chemical properties are in a good agreement with experimental data. Reactions involved in the process have been studied rigorously. Equilibrium constants for equilibrium reactions and the reaction rate constant for the kinetically controlled reaction between carbon dioxide and the hydroxide ion have been checked. Results of simulations of the pilot plant purification section show the influence of low temperatures, concentration of sodium hydroxide and hydrodynamic parameters on the selective absorption of hydrogen sulfide. These results show an acceptable degree of accuracy when compared with the experimental data obtained from the pilot plant. Results show also the great efficiency of sodium hydroxide for the removal of hydrogen sulfide. The content of this compound in the gas leaving the column is under 1 ppm.Keywords: biogas, hydrogen sulfide, reactive absorption, sodium hydroxide, structured packed column
Procedia PDF Downloads 353