Search results for: digital surface model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24240

Search results for: digital surface model

22200 Alternating Current Photovoltaic Module Model

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents modeling of a Alternating Current (AC) Photovoltaic (PV) module using Matlab/Simulink. The proposed AC-PV module model is simple, realistic, and application oriented. The model is derived on module level as compared to cell level directly from the information provided by the manufacturer data sheet. DC-PV module, MPPT control, BC, VSI and LC filter, all were treated as a single unit. The model accounts for changes in variations of both irradiance and temperature. The AC-PV module proposed model is simulated and the results are compared with the datasheet projected numbers to validate model’s accuracy and effectiveness. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.

Keywords: PV modeling, AC PV Module, datasheet, VI curves irradiance, temperature, MPPT, Matlab/Simulink

Procedia PDF Downloads 575
22199 Effect of Fluidized Granular Activated Carbon for the Mitigation of Membrane Fouling in Wastewater Treatment

Authors: Jingwei Wang, Anthony G. Fane, Jia Wei Chew

Abstract:

The use of fluidized Granular Activated Carbon (GAC) as a means of mitigation membrane fouling in membrane bioreactors (MBRs) has received much attention in recent years, especially in anaerobic fluidized bed membrane bioreactors (AFMBRs). It has been affirmed that the unsteady-state tangential shear conferred by GAC fluidization on membrane surface suppressed the extent of membrane fouling with energy consumption much lower than that of bubbling (i.e., air sparging). In a previous work, the hydrodynamics of the fluidized GAC particles were correlated with membrane fouling mitigation effectiveness. Results verified that the momentum transfer from particle to membrane held a key in fouling mitigation. The goal of the current work is to understand the effect of fluidized GAC on membrane critical flux. Membrane critical flux values were measured by a vertical Direct Observation Through the Membrane (DOTM) setup. The polystyrene particles (known as latex particles) with the particle size of 5 µm were used as model foulant thus to give the number of the foulant on the membrane surface. Our results shed light on the positive effect of fluidized GAC enhancing the critical membrane flux by an order-of-magnitude as compared to that of liquid shear alone. Membrane fouling mitigation was benefitted by the increasing of power input.

Keywords: membrane fouling mitigation, liquid-solid fluidization, critical flux, energy input

Procedia PDF Downloads 408
22198 E-Procurement Adoption and Effective Service Delivery in the Uganda Coffee Industry

Authors: Taus Muganda

Abstract:

This research explores the intricate relationship between e-procurement adoption and effective service delivery in the Uganda Coffee Industry, focusing on the processes involved, key actors, and the impact of digital transformation. The study is guided by three prominent theories, Actor-Network Theory, Resource-Based View Theory, and Institutional Theory to comprehensively explore the dynamics of e-procurement in the context of the coffee sector. The primary aim of this project is to examine the e-procurement adoption process and its role in enhancing service delivery within the Uganda Coffee Industry. The research questions guiding this inquiry are: firstly, whether e-procurement adoption and implementation contribute to achieving quality service delivery; and secondly, how e-procurement adoption can be effectively realized within the Uganda Coffee Industry. To address these questions, the study has laid out specific objectives. Firstly, it seeks to investigate the impact of e-procurement on effective service delivery, analysing how the integration of digital processes influences the overall quality of services provided in the coffee industry. Secondly, it aims to critically analyse the measures required to achieve effective delivery outcomes through the adoption and implementation of e-procurement, assessing the strategies that can maximize the benefits of digital transformation. Furthermore, the research endeavours to identify and examine the key actor’s instrumental in achieving effective service delivery within the Uganda Coffee Industry. By utilizing Actor-Network Theory, the study will elucidate the network of relationships and collaborations among actors involved in the e-procurement process. The research contributes to addressing a critical gap in the sector. Despite coffee being the leading export crop in Uganda, constituting 16% of total exports, there is a recognized need for digital transformation, specifically in the realm of e-procurement, to enhance the productivity of producers and contribute to the economic growth of the country. The study aims to provide insights into transforming the Uganda Coffee Industry by focusing on improving the e-procurement services delivered to actors in the coffee sector. The three forms of e-procurement investigated in this research—E-Sourcing, E-Payment, and E-Invoicing—serve as focal points in understanding the multifaceted dimensions of digital integration within the Uganda Coffee Industry. This research endeavours to offer practical recommendations for policymakers, industry stakeholders, and the UCDA to strategically leverage e-procurement for the benefit of the entire coffee value chain.

Keywords: e-procurement, effective service delivery, actors, actor-network theory, resource-based view theory, institutional theory, e-invocing, e-payment, e-sourcing

Procedia PDF Downloads 75
22197 Model of Optimal Centroids Approach for Multivariate Data Classification

Authors: Pham Van Nha, Le Cam Binh

Abstract:

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.

Keywords: analysis of optimization, artificial intelligence based optimization, optimization for learning and data analysis, global optimization

Procedia PDF Downloads 210
22196 Examining French Teachers’ Teaching and Learning Approaches in Some Selected Junior High Schools in Ghana

Authors: Paul Koffitse Agobia

Abstract:

In 2020 the Ministry of Education in Ghana and the National Council for Curriculum and Assessment (NaCCA) rolled out a new curriculum, Common Core Programme (CCP) for Basic 7 to 10, that lays emphasis on character building and values which are important to the Ghanaian society by providing education that will produce character–minded learners, with problem solving skills, who can play active roles in dealing with the increasing challenges facing Ghana and the global society. Therefore, learning and teaching approaches that prioritise the use of digital learning resources and active learning are recommended. The new challenge facing Ghanaian teachers is the ability to use new technologies together with the appropriate content pedagogical knowledge to help learners develop, aside the communication skills in French, the essential 21st century skills as recommended in the new curriculum. This article focusses on the pedagogical approaches that are recommended by NaCCA. The study seeks to examine French language teachers’ understanding of the recommended pedagogical approaches and how they use digital learning resources in class to foster the development of these essential skills and values. 54 respondents, comprised 30 teachers and 24 head teachers, were selected in 6 Junior High schools in rural districts (both private and public) and 6 from Junior High schools in an urban setting. The schools were selected in three regions: Volta, Central and Western regions. A class observation checklist and an interview guide were used to collect data for the study. The study reveals that some teachers adopt teaching techniques that do not promote active learning. They demonstrate little understanding of the core competences and values, therefore, fail to integrate them in their lessons. However, some other teachers, despite their lack of understanding of learning and teaching philosophies, adopted techniques that can help learners develop some of the core competences and values. In most schools, digital learning resources are not utilized, though teachers have smartphones or laptops.

Keywords: active learning, core competences, digital learning resources, pedagogical approach, values.

Procedia PDF Downloads 78
22195 Leveraging Digital Transformation Initiatives and Artificial Intelligence to Optimize Readiness and Simulate Mission Performance across the Fleet

Authors: Justin Woulfe

Abstract:

Siloed logistics and supply chain management systems throughout the Department of Defense (DOD) has led to disparate approaches to modeling and simulation (M&S), a lack of understanding of how one system impacts the whole, and issues with “optimal” solutions that are good for one organization but have dramatic negative impacts on another. Many different systems have evolved to try to understand and account for uncertainty and try to reduce the consequences of the unknown. As the DoD undertakes expansive digital transformation initiatives, there is an opportunity to fuse and leverage traditionally disparate data into a centrally hosted source of truth. With a streamlined process incorporating machine learning (ML) and artificial intelligence (AI), advanced M&S will enable informed decisions guiding program success via optimized operational readiness and improved mission success. One of the current challenges is to leverage the terabytes of data generated by monitored systems to provide actionable information for all levels of users. The implementation of a cloud-based application analyzing data transactions, learning and predicting future states from current and past states in real-time, and communicating those anticipated states is an appropriate solution for the purposes of reduced latency and improved confidence in decisions. Decisions made from an ML and AI application combined with advanced optimization algorithms will improve the mission success and performance of systems, which will improve the overall cost and effectiveness of any program. The Systecon team constructs and employs model-based simulations, cutting across traditional silos of data, aggregating maintenance, and supply data, incorporating sensor information, and applying optimization and simulation methods to an as-maintained digital twin with the ability to aggregate results across a system’s lifecycle and across logical and operational groupings of systems. This coupling of data throughout the enterprise enables tactical, operational, and strategic decision support, detachable and deployable logistics services, and configuration-based automated distribution of digital technical and product data to enhance supply and logistics operations. As a complete solution, this approach significantly reduces program risk by allowing flexible configuration of data, data relationships, business process workflows, and early test and evaluation, especially budget trade-off analyses. A true capability to tie resources (dollars) to weapon system readiness in alignment with the real-world scenarios a warfighter may experience has been an objective yet to be realized to date. By developing and solidifying an organic capability to directly relate dollars to readiness and to inform the digital twin, the decision-maker is now empowered through valuable insight and traceability. This type of educated decision-making provides an advantage over the adversaries who struggle with maintaining system readiness at an affordable cost. The M&S capability developed allows program managers to independently evaluate system design and support decisions by quantifying their impact on operational availability and operations and support cost resulting in the ability to simultaneously optimize readiness and cost. This will allow the stakeholders to make data-driven decisions when trading cost and readiness throughout the life of the program. Finally, sponsors are available to validate product deliverables with efficiency and much higher accuracy than in previous years.

Keywords: artificial intelligence, digital transformation, machine learning, predictive analytics

Procedia PDF Downloads 162
22194 Sunflower Irrigation with Two Different Types of Soil Moisture Sensors

Authors: C. D. Papanikolaou, V. A. Giouvanis, E. A. Karatasiou, D. S. Dimakas, M. A. Sakellariou-Makrantonaki

Abstract:

Irrigation is one of the most important cultivation practices for each crop, especially in areas where rainfall is enough to cover the crop water needs. In such areas, the farmers must irrigate in order to achieve high economical results. The precise irrigation scheduling contributes to irrigation water saving and thus a valuable natural resource is protected. Under this point of view, in the experimental field of the Laboratory of Agricultural Hydraulics of the University of Thessaly, a research was conducted during the growing season of 2012 in order to evaluate the growth, seed and oil production of sunflower as well as the water saving, by applying different methods of irrigation scheduling. Three treatments in four replications were organized. These were: a) surface drip irrigation where the irrigation scheduling based on the Penman-Monteith (PM) method (control); b) surface drip irrigation where the irrigation scheduling based on a soil moisture sensor (SMS); and c) surface drip irrigation, where the irrigation scheduling based on a soil potential sensor (WM).

Keywords: irrigation, energy production, soil moisture sensor, sunflower, water saving

Procedia PDF Downloads 181
22193 Hydrodynamic Behaviour Study of Fast Mono-Hull and Catamaran Vessels in Calm Waters Using Free Surface Flow Analysis

Authors: Mohammad Sadeghian, Mohsen Sadeghian

Abstract:

In this paper, planning catamaran and mono-hull vessels resistance and trim in calm waters were considered. Hydrodynamic analysis of fast mono-hull planning vessel was also investigated. For hull form geometry optimization, numerical methods of different parameters were used for this type of vessels. Hull material was selected as carbon fiber composite. Exact architectural aspects were specified and stability calculations were performed, as well. Hydrodynamic calculations to extract the resistance force using semi-analytical methods and numerical modeling were carried out. Free surface numerical analysis of vessel in designed draft using finite volume method and double phase were evaluated and verified by experimental tests.

Keywords: fast vessel, hydrostatic and hydrodynamic optimization, free surface flow, computational fluid dynamics

Procedia PDF Downloads 282
22192 Roughness Discrimination Using Bioinspired Tactile Sensors

Authors: Zhengkun Yi

Abstract:

Surface texture discrimination using artificial tactile sensors has attracted increasing attentions in the past decade as it can endow technical and robot systems with a key missing ability. However, as a major component of texture, roughness has rarely been explored. This paper presents an approach for tactile surface roughness discrimination, which includes two parts: (1) design and fabrication of a bioinspired artificial fingertip, and (2) tactile signal processing for tactile surface roughness discrimination. The bioinspired fingertip is comprised of two polydimethylsiloxane (PDMS) layers, a polymethyl methacrylate (PMMA) bar, and two perpendicular polyvinylidene difluoride (PVDF) film sensors. This artificial fingertip mimics human fingertips in three aspects: (1) Elastic properties of epidermis and dermis in human skin are replicated by the two PDMS layers with different stiffness, (2) The PMMA bar serves the role analogous to that of a bone, and (3) PVDF film sensors emulate Meissner’s corpuscles in terms of both location and response to the vibratory stimuli. Various extracted features and classification algorithms including support vector machines (SVM) and k-nearest neighbors (kNN) are examined for tactile surface roughness discrimination. Eight standard rough surfaces with roughness values (Ra) of 50 μm, 25 μm, 12.5 μm, 6.3 μm 3.2 μm, 1.6 μm, 0.8 μm, and 0.4 μm are explored. The highest classification accuracy of (82.6 ± 10.8) % can be achieved using solely one PVDF film sensor with kNN (k = 9) classifier and the standard deviation feature.

Keywords: bioinspired fingertip, classifier, feature extraction, roughness discrimination

Procedia PDF Downloads 313
22191 Mechanical Behavior of 16NC6 Steel Hardened by Burnishing

Authors: Litim Tarek, Taamallah Ouahiba

Abstract:

This work relates to the physico-geometrical aspect of the surface layers of 16NC6 steel having undergone the burnishing treatment by hard steel ball. The results show that the optimal effects of burnishing are closely linked to the shape and the material of the active part of the device as well as to the surface plastic deformation ability of the material to be treated. Thus the roughness is improved by more than 70%, and the consolidation rate is increased by 30%. In addition, modeling of the rational traction curves provides a work hardening coefficient of up to 0.3 in the presence of burnishing.

Keywords: 16NC6 steel, burnishing, hardening, roughness

Procedia PDF Downloads 165
22190 Effects of Canned Cycles and Cutting Parameters on Hole Quality in Cryogenic Drilling of Aluminum 6061-6T

Authors: M. N. Islam, B. Boswell, Y. R. Ginting

Abstract:

The influence of canned cycles and cutting parameters on hole quality in cryogenic drilling has been investigated experimentally and analytically. A three-level, three-parameter experiment was conducted by using the design-of-experiment methodology. The three levels of independent input parameters were the following: for canned cycles—a chip-breaking canned cycle (G73), a spot drilling canned cycle (G81), and a deep hole canned cycle (G83); for feed rates—0.2, 0.3, and 0.4 mm/rev; and for cutting speeds—60, 75, and 100 m/min. The selected work and tool materials were aluminum 6061-6T and high-speed steel (HSS), respectively. For cryogenic cooling, liquid nitrogen (LN2) was used and was applied externally. The measured output parameters were the three widely used quality characteristics of drilled holes—diameter error, circularity, and surface roughness. Pareto ANOVA was applied for analyzing the results. The findings revealed that the canned cycle has a significant effect on diameter error (contribution ratio 44.09%) and small effects on circularity and surface finish (contribution ratio 7.25% and 6.60%, respectively). The best results for the dimensional accuracy and surface roughness were achieved by G81. G73 produced the best circularity results; however, for dimensional accuracy, it was the worst level.

Keywords: circularity, diameter error, drilling canned cycle, pareto ANOVA, surface roughness

Procedia PDF Downloads 287
22189 Lean Impact Analysis Assessment Models: Development of a Lean Measurement Structural Model

Authors: Catherine Maware, Olufemi Adetunji

Abstract:

The paper is aimed at developing a model to measure the impact of Lean manufacturing deployment on organizational performance. The model will help industry practitioners to assess the impact of implementing Lean constructs on organizational performance. It will also harmonize the measurement models of Lean performance with the house of Lean that seems to have become the industry standard. The sheer number of measurement models for impact assessment of Lean implementation makes it difficult for new adopters to select an appropriate assessment model or deployment methodology. A literature review is conducted to classify the Lean performance model. Pareto analysis is used to select the Lean constructs for the development of the model. The model is further formalized through the use of Structural Equation Modeling (SEM) in defining the underlying latent structure of a Lean system. An impact assessment measurement model developed can be used to measure Lean performance and can be adopted by different industries.

Keywords: impact measurement model, lean bundles, lean manufacturing, organizational performance

Procedia PDF Downloads 486
22188 Surface Sterilization of Aquatic Plant, Cryptopcoryne affinis by Using Clorox and Mercury Chloride

Authors: Sridevi Devadas

Abstract:

This study was aimed to examine the combination efficiency of Clorox (5.25% Sodium Hypochlorite) and mercury chloride (HgCl2) as reagent for surface sterilization process of aquatic plant, Cryptocoryne affinis (C. affinis). The treatment applied 10% of the Clorox and 0.1 ppm of mercury chloride. The maximum exposure time for Clorox and mercury chloride was 10 min and 60 sec respectively. After exposed to the treatments protocols (T1-T15) the explants were transferred to culture room under control temperature at 25°C ± 2°C and subjected to 16 hours fluorescence light (2000 lumens) for 30 days. The both sterilizing agents were not applied on control specimens. Upon analysis, the result indicates all of the treatments protocols produced sterile explants at range of minimum 1.5 ± 0.7 (30%) to maximum 5.0 ± 0.0 (100%). Meanwhile, maximum 1.0 ± 0.7 numbers of leaves and 1.4 ± 0.6 numbers of roots have been produced. The optimized exposure time was 0 to 15 min for Clorox and 30 sec for HgCl2 whereby 90% to 100% sterilization was archived at this condition.

Keywords: Cryptocoryne affinis, surface sterilization, tissue culture, clorox, mercury chloride

Procedia PDF Downloads 601
22187 The Role of Halloysite’s Surface Area and Aspect Ratio on Tensile Properties of Ethylene Propylene Diene Monomer Nanocomposites

Authors: Pooria Pasbakhsh, Rangika T. De Silva, Vahdat Vahedi, Hanafi Ismail

Abstract:

The influence of three different types of halloysite nanotubes (HNTs) with different dimensions, namely as camel lake (CLA), Jarrahdale (JA) and Matauri Bay (MB), on their reinforcing ability of ethylene propylene dine monomer (EPDM) were investigated by varying the HNTs loading (from 0-15 phr). Mechanical properties of the nanocomposites improved with addition of all three HNTs, but CLA based nanocomposites exhibited a significant enhancement compared to the other HNTs. For instance, tensile properties of EPDM nanocomposites increased by 120%, 256% and 340% for MB, JA, and CLA, respectively with addition of 15 phr of HNTs. This could be due to the higher aspect ratio and higher surface area of CLA compared to others. Scanning electron microscopy (SEM) of nanocomposites at 15 phr of HNT loadings showed low amounts of pulled-out nanotubes which confirmed the presence of more embedded nanotubes inside the EPDM matrix, as well as aggregates within the fracture surface of EPDM/HNT nanocomposites.

Keywords: aspect ratio, halloysite nanotubes (HNTs), mechanical properties, rubber/clay nanocomposites

Procedia PDF Downloads 375
22186 Model-Based Fault Diagnosis in Carbon Fiber Reinforced Composites Using Particle Filtering

Authors: Hong Yu, Ion Matei

Abstract:

Carbon fiber reinforced composites (CFRP) used as aircraft structure are subject to lightning strike, putting structural integrity under risk. Indirect damage may occur after a lightning strike where the internal structure can be damaged due to excessive heat induced by lightning current, while the surface of the structures remains intact. Three damage modes may be observed after a lightning strike: fiber breakage, inter-ply delamination and intra-ply cracks. The assessment of internal damage states in composite is challenging due to complicated microstructure, inherent uncertainties, and existence of multiple damage modes. In this work, a model based approach is adopted to diagnose faults in carbon composites after lighting strikes. A resistor network model is implemented to relate the overall electrical and thermal conduction behavior under simulated lightning current waveform to the intrinsic temperature dependent material properties, microstructure and degradation of materials. A fault detection and identification (FDI) module utilizes the physics based model and a particle filtering algorithm to identify damage mode as well as calculate the probability of structural failure. Extensive simulation results are provided to substantiate the proposed fault diagnosis methodology with both single fault and multiple faults cases. The approach is also demonstrated on transient resistance data collected from a IM7/Epoxy laminate under simulated lightning strike.

Keywords: carbon composite, fault detection, fault identification, particle filter

Procedia PDF Downloads 196
22185 Frictional Effects on the Dynamics of a Truncated Double-Cone Gravitational Motor

Authors: Barenten Suciu

Abstract:

In this work, effects of the friction and truncation on the dynamics of a double-cone gravitational motor, self-propelled on a straight V-shaped horizontal rail, are evaluated. Such mechanism has a variable radius of contact, and, on one hand, it is similar to a pulley mechanism that changes the potential energy into the kinetic energy of rotation, but on the other hand, it is similar to a pendulum mechanism that converts the potential energy of the suspended body into the kinetic energy of translation along a circular path. Movies of the self- propelled double-cones, made of S45C carbon steel and wood, along rails made of aluminum alloy, were shot for various opening angles of the rails. Kinematical features of the double-cones were estimated through the slow-motion processing of the recorded movies. Then, a kinematical model is derived under assumption that the distance traveled by the contact points on the rectilinear rails is identical with the distance traveled by the contact points on the truncated conical surface. Additionally, a dynamic model, for this particular contact problem, was proposed and validated against the experimental results. Based on such model, the traction force and the traction torque acting on the double-cone are identified. One proved that the rolling traction force is always smaller than the sliding friction force; i.e., the double-cone is rolling without slipping. Results obtained in this work can be used to achieve the proper design of such gravitational motor.

Keywords: Truncated double-cone, friction, rolling and sliding, dynamic model, gravitational motor

Procedia PDF Downloads 276
22184 Radiology Information System’s Mechanisms: HL7-MHS & HL7/DICOM Translation

Authors: Kulwinder Singh Mann

Abstract:

The innovative features of information system, known as Radiology Information System (RIS), for electronic medical records has shown a good impact in the hospital. The objective is to help and make their work easier; such as for a physician to access the patient’s data and for a patient to check their bill transparently. The interoperability of RIS with the other intra-hospital information systems it interacts with, dealing with the compatibility and open architecture issues, are accomplished by two novel mechanisms. The first one is the particular message handling system that is applied for the exchange of information, according to the Health Level Seven (HL7) protocol’s specifications and serves the transfer of medical and administrative data among the RIS applications and data store unit. The second one implements the translation of information between the formats that HL7 and Digital Imaging and Communication in Medicine (DICOM) protocols specify, providing the communication between RIS and Picture and Archive Communication System (PACS) which is used for the increasing incorporation of modern medical imaging equipment.

Keywords: RIS, PACS, HIS, HL7, DICOM, messaging service, interoperability, digital images

Procedia PDF Downloads 301
22183 Promoting Social Advocacy through Digital Storytelling: The Case of Ocean Acidification

Authors: Chun Chen Yea, Wen Huei Chou

Abstract:

Many chemical changes in the atmosphere and the ocean are invisible to the naked eye, but they have profound impacts. These changes not only confirm the phenomenon of global carbon pollution, but also forewarn that more changes are coming. The carbon dioxide gases emitted from the burning of fossil fuels dissolve into the ocean and chemically react with seawater to form carbonic acid, which increases the acidity of the originally alkaline seawater. This gradual acidification is occurring at an unprecedented rate and will affect the effective formation of carapace of some marine organisms such as corals and crustaceans, which are almost entirely composed of calcium carbonate. The carapace of these organisms will become more dissoluble. Acidified seawater not only threatens the survival of marine life, but also negatively impacts the global ecosystem via the food chain. Faced with the threat of ocean acidification, all humans are duty-bound. The industrial sector outputs the highest level of carbon dioxide emissions in Taiwan, and the petrochemical industry is the major contributor. Ever since the construction of Formosa Plastics Group's No. 6 Naphtha Cracker Plant in Yunlin County, there have been many environmental concerns such as air pollution and carbon dioxide emission. The marine life along the coast of Yunlin is directly affected by ocean acidification arising from the carbon emissions. Societal change demands our willingness to act, which is what social advocacy promotes. This study uses digital storytelling for social advocacy and ocean acidification as the subject of a visual narrative in visualization to demonstrate the subsequent promotion of social advocacy. Storytelling can transform dull knowledge into an engaging narrative of the crisis faced by marine life. Digital dissemination is an effective social-work practice. The visualization promoting awareness on ocean acidification disseminated via social media platforms, such as Facebook and Instagram. Social media enables users to compose their own messages and share information across different platforms, which helps disseminate the core message of social advocacy.

Keywords: digital storytelling, visualization, ocean acidification, social advocacy

Procedia PDF Downloads 120
22182 Accelerating Decision-Making in Oil and Gas Wells: 'A Digital Transformation Journey for Rapid and Precise Insights from Well History Data'

Authors: Linung Kresno Adikusumo, Ivan Ramos Sampe Immanuel, Liston Sitanggang

Abstract:

An excellent, well work program in the oil and gas industry can have numerous positive business impacts, contributing to operational efficiency, increased production, enhanced safety, and improved financial performance. In summary, an excellent, well work program not only ensures the immediate success of specific projects but also has a broader positive impact on the overall business performance and reputation of the oil and gas company. It positions the company for long-term success in a competitive and dynamic industry. Nevertheless, a number of challenges were encountered when developing a good work program, such as the poor quality and lack of integration of well documentation, the incompleteness of the well history, and the low accessibility of well documentation. As a result, the well work program was delivered less accurately, plus well damage was managed slowly. Our solution implementing digital technology by developing a web-based database and application not only solves those issues but also provides an easy-to-access report and user-friendly display for management as well as engineers to analyze the report’s content. This application aims to revolutionize the documentation of well history in the field of oil and gas exploration and production. The current lack of a streamlined and comprehensive system for capturing, organizing, and accessing well-related data presents challenges in maintaining accurate and up-to-date records. Our innovative solution introduces a user-friendly and efficient platform designed to capture well history documentation seamlessly.

Keywords: digital, drilling, well work, application

Procedia PDF Downloads 78
22181 Fake news and Conspiracy Narratives in the Covid-19 Crisis: An International Comparison

Authors: Caja Thimm

Abstract:

Already well before the Corona pandemic hit the world, ‘fake news‘ were no longer regarded as harmless twists of the truth but as intentionally composed disinformation, often with the goal of manipulative populist propaganda. During the Corona crisis, particularly conspiracy narratives have become a worldwide phenomenon with dangerous consequences (anti vaccination myths). The success of these manipulated news need s to be counteracted by trustworthy news, which in Europe particularly includes public broadcasting media and their social media channels. To understand better how the main public broadcasters in Germany, the UK, and France used Instagram strategically, a comparative study was carried out. The study – comparative analysis of Instagram during the Corona Crisis In our empirical study, we compared the activities by selected formats during the Corona crisis in order to see how the public broadcasters reached their audiences and how this might, in the longer run, affect journalistic strategies on social media platforms. First analysis showed that the increase in the use of social media overall was striking. Almost one in two adult online users (48 %) obtained information about the virus in social media, and in total, 38% of the younger age group (18-24) looked for Covid19 information on Instagram, so the platform can be regarded as one of the central digital spaces for Corona related information searches. Quantitative measures showed that 47% of recent posts by the broadcasters were related to Corona, and 7% treated conspiracy myths. For the more detailed content analysis, the following categories of analysis were applied: • Digital storytelling and instastories • Textuality and semantic keys • links to information • stickers • videochat • fact checking • news ticker • service • infografics and animated tables Additionally to these basic features, we particularly looked for new formats created during the crisis. Journalistic use of social media platforms opens up immediate and creative ways of applying the media logics of the respective platforms, and particularly the BBC and ARD formats proved to be interactive, responsive, and entertaining. Among them were new formats such as a space for user questions and personal uploads, interviews, music, comedy, etc. Particularly the fact checking channel got a lot of attention, as many user questions were focused on the conspiracy theories, which dominated the public discourse during many weeks in 2020. In the presentation, we will introduce eight particular strategies that show how public broadcasting journalism can adopt digital platforms and use them creatively and, hence help to counteract against conspiracy narratives and fake news.

Keywords: fake news, social media, digital journalism, digital methods

Procedia PDF Downloads 157
22180 Cities Idioms Together with ICT and Countries Interested in the Smart City: A Review of Current Status

Authors: Qasim HamaKhurshid HamaMurad, Normal Mat Jusoh, Uznir Ujang

Abstract:

The concept of the city with an infrastructure of (information and communication) Technology embraces several definitions depending on the meanings of the word "smart" are (intelligent city, smart city, knowledge city, ubiquitous city, sustainable city, digital city). Many definitions of the city exist, but this chapter explores which one has been universally acknowledged. From literature analysis, it emerges that Smart City is the most used terminologies in literature through the digital database to indicate the smartness of a city. This paper share exploration the research from main seven website digital databases and journal about Smart City from "January 2015 to the February of 2020" to (a) Time research, to examine the causes of the Smart City phenomenon and other concept literature in the last five years (b) Review of words, to see how and where the smart city specification and relation different definition And(c) Geographical research to consider where Smart Cities' greatest concentrations are in the world and are Malaysia has interacting with the smart city, and (d) how many papers published from all Malaysia from 2015 to 2020 about smart citie. Three steps are followed to accomplish the goal. (1)The analysis covered publications Build a systematic literature review search strategy to gather a representative sub-set of papers on Smart City and other definitions utilizing (GoogleScholar, Elsevier, Scopus, ScienceDirect, IEEEXplore, WebofScience, Springer) January2015-February2020. (2)A bibliometric map was formed based on the bibliometric evaluation using the mapping technique VOSviewer to visualize differences. (3)VOSviewer application program was used to build initial clusters. The Map of Bibliometric Visualizes the analytical findings which targeted the word harmony.

Keywords: bibliometric research, smart city, ICT, VOSviewer, urban modernization

Procedia PDF Downloads 204
22179 Development of an Analytical Model for a Synchronous Permanent Magnet Generator

Authors: T. Sahbani, M. Bouteraa, R. Wamkeue

Abstract:

Wind Turbine are considered to be one of the more efficient system of energy production nowadays, a reason that leads the main industrial companies in wind turbine construction and researchers in over the world to look for better performance and one of the ways for that is the use of the synchronous permanent magnet generator. In this context, this work is about developing an analytical model that could simulate different situation in which the synchronous generator may go through, and of course this model match perfectly with the numerical and experimental model.

Keywords: MATLAB, synchronous permanent magnet generator, wind turbine, analytical model

Procedia PDF Downloads 550
22178 Memristor-A Promising Candidate for Neural Circuits in Neuromorphic Computing Systems

Authors: Juhi Faridi, Mohd. Ajmal Kafeel

Abstract:

The advancements in the field of Artificial Intelligence (AI) and technology has led to an evolution of an intelligent era. Neural networks, having the computational power and learning ability similar to the brain is one of the key AI technologies. Neuromorphic computing system (NCS) consists of the synaptic device, neuronal circuit, and neuromorphic architecture. Memristor are a promising candidate for neuromorphic computing systems, but when it comes to neuromorphic computing, the conductance behavior of the synaptic memristor or neuronal memristor needs to be studied thoroughly in order to fathom the neuroscience or computer science. Furthermore, there is a need of more simulation work for utilizing the existing device properties and providing guidance to the development of future devices for different performance requirements. Hence, development of NCS needs more simulation work to make use of existing device properties. This work aims to provide an insight to build neuronal circuits using memristors to achieve a Memristor based NCS.  Here we throw a light on the research conducted in the field of memristors for building analog and digital circuits in order to motivate the research in the field of NCS by building memristor based neural circuits for advanced AI applications. This literature is a step in the direction where we describe the various Key findings about memristors and its analog and digital circuits implemented over the years which can be further utilized in implementing the neuronal circuits in the NCS. This work aims to help the electronic circuit designers to understand how the research progressed in memristors and how these findings can be used in implementing the neuronal circuits meant for the recent progress in the NCS.

Keywords: analog circuits, digital circuits, memristors, neuromorphic computing systems

Procedia PDF Downloads 176
22177 Effect of Post Treatment Temperature on Ni-20Cr Wire Arc Spray Coating to Thermal Resistance

Authors: Ken Ninez Nurpramesti Prinindya, Yuli Setiyorini

Abstract:

Crown enclosure high temperature flares damaged and reduced dimensions crown. Generally crown on EHTF could have a life time up to twenty years. Therefore, this study aims to increase the value of thermal resistance with the effect post treatment on NiCr coated arc spray method. The variation of post treatment temperature, was at 650°C, 750°C, and 850°C. Morphology on the surface and the adhesion strength was analyzed by SEM-EDX, Surface Roughness and Pull - off test. XRD testing was conducted to determine the contained in NiCr coated. Thermal stability of NiCr coated was tested by DSC-TGA. The most optimal results was owned by NiCr coating with post treated at 850°C. It has good thermal stability until 1000°C because of Cr2O3 formation in coated specimen. The higher temperature of post treatment coating was showed better result on porosity and roughness surface value.

Keywords: Arc spray process, NiCr wire, post-treatment coating, high temperature-corrosion resistance

Procedia PDF Downloads 479
22176 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming

Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad

Abstract:

Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.

Keywords: breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration

Procedia PDF Downloads 216
22175 Interactive and Innovative Environments for Modeling Digital Educational Games and Animations

Authors: Ida Srdić, Luka Mandić, LidijaMandić

Abstract:

Digitization and intensive use of tablets, smartphones, the internet, mobile, and web applications have massively disrupted our habits, and the way audiences (especially youth) consume content. To introduce educational content in games and animations, and at the same time to keep it interesting and compelling for kids, is a challenge. In our work, we are comparing the different possibilities and potentials that digital games could provide to successfully mitigate direct connection with education. We analyze the main directions and educational methods in game-based learning and the possibilities of interactive modeling through questionnaires for user experience and requirements. A pre and post-quantitative survey will be conducted in order to measure levels of objective knowledge as well as the games perception. This approach enables quantitative and objective evaluation of the impact the game has on participants. Also, we will discuss the main barriers to the use of games in education and how games can be best used for learning.

Keywords: Bloom’s taxonomy, epistemic games, learning objectives, virtual learning environments

Procedia PDF Downloads 100
22174 Industry 4.0 Platforms as 'Cluster' ecosystems for small and medium enterprises (SMEs)

Authors: Vivek Anand, Rainer Naegele

Abstract:

Industry 4.0 is a global mega-trend revolutionizing the world of advanced manufacturing, but also bringing up challenges for SMEs. In response, many regional, as well as digital Industry 4.0 Platforms, have been set up to boost the competencies of established enterprises as well as SMEs. The concept of 'Clusters' is a policy tool that aims to be a starting point to establish sustainable and self-supporting structures in industries of a region by identifying competencies and supporting cluster actors with services that match their growth needs. This paper is motivated by the idea that Clusters have the potential to enable firms, particularly SMEs, to accelerate the innovation process and transition to digital technologies. In this research, the efficacy of Industry 4.0 platforms as Cluster ecosystems is evaluated, especially for SMEs. Focusing on the Baden Wurttemberg region in Germany, an action research method is employed to study how SMEs leverage other actors on Industry 4.0 Platforms to further their Industry 4.0 journeys. The aim is to evaluate how such Industry 4.0 platforms stimulate innovation, cooperation and competitiveness. Additionally, the barriers to these platforms fulfilling their promise to serve as capacity building cluster ecosystems for SMEs in a region will also be identified. The findings will be helpful for academicians and policymakers alike, who can leverage a ‘cluster policy’ to enable Industry 4.0 ecosystems in their regions. Furthermore, relevant management and policy implications stem from the analysis. This will also be of interest to the various players in a cluster ecosystem - like SMEs and service providers - who benefit from the cooperation and competition. The paper will improve the understanding of how a dialogue orientation, a bottom-up approach and active integration of all involved cluster actors enhance the potential of Industry 4.0 Platforms. A strong collaborative culture is a key driver of digital transformation and technology adoption across sectors, value chains and supply chains; and will position Industry 4.0 Platforms at the forefront of the industrial renaissance. Motivated by this argument and based on the results of the qualitative research, a roadmap will be proposed to position Industry 4.0 Platforms as effective clusters ecosystems to support Industry 4.0 adoption in a region.

Keywords: cluster policy, digital transformation, industry 4.0, innovation clusters, innovation policy, SMEs and startups

Procedia PDF Downloads 224
22173 Numerical Assessment of Fire Characteristics with Bodies Engulfed in Hydrocarbon Pool Fire

Authors: Siva Kumar Bathina, Sudheer Siddapureddy

Abstract:

Fires accident becomes even worse when the hazardous equipment like reactors or radioactive waste packages are engulfed in fire. In this work, large-eddy numerical fire simulations are performed using fire dynamic simulator to predict the thermal behavior of such bodies engulfed in hydrocarbon pool fires. A radiatively dominated 0.3 m circular burner with n-heptane as the fuel is considered in this work. The fire numerical simulation results without anybody inside the fire are validated with the reported experimental data. The comparison is in good agreement for different flame properties like predicted mass burning rate, flame height, time-averaged center-line temperature, time-averaged center-line velocity, puffing frequency, the irradiance at the surroundings, and the radiative heat feedback to the pool surface. Cask of different sizes is simulated with SS304L material. The results are independent of the material of the cask simulated as the adiabatic surface temperature concept is employed in this study. It is observed that the mass burning rate increases with the blockage ratio (3% ≤ B ≤ 32%). However, the change in this increment is reduced at higher blockage ratios (B > 14%). This is because the radiative heat feedback to the fuel surface is not only from the flame but also from the cask volume. As B increases, the volume of the cask increases and thereby increases the radiative contribution to the fuel surface. The radiative heat feedback in the case of the cask engulfed in the fire is increased by 2.5% to 31% compared to the fire without cask.

Keywords: adiabatic surface temperature, fire accidents, fire dynamic simulator, radiative heat feedback

Procedia PDF Downloads 130
22172 Forecasting Materials Demand from Multi-Source Ordering

Authors: Hui Hsin Huang

Abstract:

The downstream manufactures will order their materials from different upstream suppliers to maintain a certain level of the demand. This paper proposes a bivariate model to portray this phenomenon of material demand. We use empirical data to estimate the parameters of model and evaluate the RMSD of model calibration. The results show that the model has better fitness.

Keywords: recency, ordering time, materials demand quantity, multi-source ordering

Procedia PDF Downloads 538
22171 Towards Accurate Velocity Profile Models in Turbulent Open-Channel Flows: Improved Eddy Viscosity Formulation

Authors: W. Meron Mebrahtu, R. Absi

Abstract:

Velocity distribution in turbulent open-channel flows is organized in a complex manner. This is due to the large spatial and temporal variability of fluid motion resulting from the free-surface turbulent flow condition. This phenomenon is complicated further due to the complex geometry of channels and the presence of solids transported. Thus, several efforts were made to understand the phenomenon and obtain accurate mathematical models that are suitable for engineering applications. However, predictions are inaccurate because oversimplified assumptions are involved in modeling this complex phenomenon. Therefore, the aim of this work is to study velocity distribution profiles and obtain simple, more accurate, and predictive mathematical models. Particular focus will be made on the acceptable simplification of the general transport equations and an accurate representation of eddy viscosity. Wide rectangular open-channel seems suitable to begin the study; other assumptions are smooth-wall, and sediment-free flow under steady and uniform flow conditions. These assumptions will allow examining the effect of the bottom wall and the free surface only, which is a necessary step before dealing with more complex flow scenarios. For this flow condition, two ordinary differential equations are obtained for velocity profiles; from the Reynolds-averaged Navier-Stokes (RANS) equation and equilibrium consideration between turbulent kinetic energy (TKE) production and dissipation. Then different analytic models for eddy viscosity, TKE, and mixing length were assessed. Computation results for velocity profiles were compared to experimental data for different flow conditions and the well-known linear, log, and log-wake laws. Results show that the model based on the RANS equation provides more accurate velocity profiles. In the viscous sublayer and buffer layer, the method based on Prandtl’s eddy viscosity model and Van Driest mixing length give a more precise result. For the log layer and outer region, a mixing length equation derived from Von Karman’s similarity hypothesis provides the best agreement with measured data except near the free surface where an additional correction based on a damping function for eddy viscosity is used. This method allows more accurate velocity profiles with the same value of the damping coefficient that is valid under different flow conditions. This work continues with investigating narrow channels, complex geometries, and the effect of solids transported in sewers.

Keywords: accuracy, eddy viscosity, sewers, velocity profile

Procedia PDF Downloads 112